
More
Java 17

An In-Depth Exploration of the
Java Language and Its Features
—
Third Edition
—
Kishori Sharan
Peter Späth

More Java 17
An In-Depth Exploration of the Java

Language and Its Features

Third Edition

Kishori Sharan
Peter Späth

More Java 17: An In-Depth Exploration of the Java Language and Its Features

ISBN-13 (pbk): 978-1-4842-7134-6 ISBN-13 (electronic): 978-1-4842-7135-3
https://doi.org/10.1007/978-1-4842-7135-3

Copyright © 2021 by Kishori Sharan, Peter Späth

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image by Ben Kolde on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.
springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science
+ Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484271346. For more
detailed information, please visit http://www.apress.com/source- code.

Printed on acid-free paper

Kishori Sharan
Montgomery, AL, USA

Peter Späth
Leipzig, Sachsen, Germany

https://doi.org/10.1007/978-1-4842-7135-3

To Paulina

v

Chapter 1: Annotations ��� 1

What Are Annotations? �� 1

Declaring an Annotation Type �� 6

Restrictions on Annotation Types �� 10

Restriction #1 �� 10

Restriction #2 �� 11

Restriction #3 �� 12

Restriction #4 �� 12

Restriction #5 �� 13

Restriction #6 �� 13

Default Value of an Annotation Element �� 14

Annotation Type and Its Instances �� 15

Using Annotations ��� 17

Primitive Types �� 17

String Types ��� 18

Class Types �� 19

Enum Type ��� 21

Annotation Type ��� 23

Array Type Annotation Element �� 24

No Null Value in an Annotation �� 25

Shorthand Annotation Syntax �� 25

Marker Annotation Types ��� 28

Table of Contents

About the Authors ���xix

About the Technical Reviewers ��xxi

Introduction ��xxiii

https://doi.org/10.1007/978-1-4842-7135-3_1#Sec3001
https://doi.org/10.1007/978-1-4842-7135-3_1#Sec3002
https://doi.org/10.1007/978-1-4842-7135-3_1#Sec3004
https://doi.org/10.1007/978-1-4842-7135-3_1#Sec3005
https://doi.org/10.1007/978-1-4842-7135-3_1#Sec3006

vi

Meta-Annotation Types ��� 29

The Target Annotation Type �� 29

The Retention Annotation Type �� 33

The Inherited Annotation Type ��� 35

The Documented Annotation Type ��� 36

The Repeatable Annotation Type ��� 37

Commonly Used Standard Annotations ��� 38

Deprecating APIs ��� 39

Suppressing Named Compile-Time Warnings ��� 54

Overriding Methods ��� 55

Declaring Functional Interfaces ��� 56

Annotating Packages �� 58

Annotating Modules �� 58

Accessing Annotations at Runtime ��� 59

Evolving Annotation Types ��� 66

Annotation Processing at Source Code Level ��� 66

Summary��� 76

Exercises ��� 77

Chapter 2: Reflection �� 81

What Is Reflection? ��� 81

Reflection in Java �� 82

Loading a Class ��� 84

Using Class Literals ��� 85

Using the Object::getClass() Method �� 86

Using the Class::forName() Method �� 86

Class Loaders �� 90

Reflecting on Classes �� 93

Reflecting on Fields �� 100

Reflecting on Executables ��� 103

Reflecting on Methods ��� 106

Reflecting on Constructors �� 109

Table of ConTenTs

vii

Creating Objects �� 111

Invoking Methods �� 113

Accessing Fields ��� 114

Deep Reflection ��� 117

Deep Reflection Within a Module ��� 119

Deep Reflection Across Modules ��� 124

Deep Reflection and Unnamed Modules�� 132

Deep Reflection on JDK Modules �� 132

Reflecting on Arrays �� 135

Expanding an Array ��� 138

Who Should Use Reflection? ��� 139

Summary��� 140

Exercises ��� 141

Chapter 3: Generics �� 145

What Are Generics? ��� 145

Supertype-Subtype Relationship �� 151

Raw Types ��� 152

Unbounded Wildcards ��� 153

Upper-Bounded Wildcards �� 157

Lower-Bounded Wildcards �� 159

Generic Methods and Constructors ��� 163

Type Inference in Generic Object Creation �� 165

No Generic Exception Classes ��� 170

No Generic Anonymous Classes �� 170

Generics and Arrays �� 170

Runtime Class Type of Generic Objects ��� 172

Heap Pollution ��� 173

Varargs Methods and Heap Pollution Warnings �� 174

Summary��� 176

Exercises ��� 177

Table of ConTenTs

viii

Chapter 4: Lambda Expressions ��� 183

What Is a Lambda Expression? ��� 183

Why Do We Need Lambda Expressions? ��� 186

Syntax for Lambda Expressions �� 188

Omitting Parameter Types ��� 190

Using Local Variable Syntax for Parameters �� 191

Declaring a Single Parameter �� 191

Declaring No Parameters��� 192

Parameters with Modifiers �� 192

Declaring the Body of Lambda Expressions �� 192

Target Typing ��� 193

Functional Interfaces �� 204

Using the @FunctionalInterface Annotation ��� 205

Generic Functional Interface ��� 206

Intersection Type and Lambda Expressions �� 208

Commonly Used Functional Interfaces �� 209

Using the Function<T,R> Interface ��� 211

Using the Predicate<T> Interface ��� 213

Using Functional Interfaces ��� 215

Method References ��� 221

Static Method References ��� 224

Instance Method References ��� 227

Supertype Instance Method References�� 231

Constructor References ��� 234

Generic Method References �� 237

Lexical Scoping ��� 239

Variable Capture �� 242

Jumps and Exits �� 246

Recursive Lambda Expressions �� 247

Comparing Objects �� 249

Summary��� 251

Exercises ��� 252

Table of ConTenTs

ix

Chapter 5: Threads ��� 257

What Is a Thread? ��� 257

Creating Threads in Java �� 262

Specifying Your Code for a Thread �� 265

Inheriting Your Class from the Thread Class ��� 265

Implementing the Runnable Interface ��� 266

Using a Method Reference �� 267

A Quick Example �� 267

Using Multiple Threads in a Program �� 268

Issues in Using Multiple Threads �� 270

Java Memory Model �� 274

Atomicity ��� 276

Visibility ��� 276

Ordering ��� 277

Object’s Monitor and Thread Synchronization �� 277

Rule #1 �� 288

Rule #2 �� 288

The Producer/Consumer Synchronization Problem �� 296

Which Thread Is Executing? �� 301

Letting a Thread Sleep �� 302

I Will Join You in Heaven ��� 304

Be Considerate to Others and Yield ��� 307

Lifecycle of a Thread ��� 308

Priority of a Thread �� 313

Is It a Demon or a Daemon? �� 315

Am I Interrupted? �� 318

Threads Work in a Group ��� 323

Volatile Variables ��� 324

Stopping, Suspending, and Resuming Threads ��� 327

Spin-Wait Hints ��� 333

Table of ConTenTs

x

Handling an Uncaught Exception in a Thread ��� 335

Thread Concurrency Packages ��� 337

Atomic Variables ��� 337

CAS �� 338

Scalar Atomic Variable Classes ��� 339

Atomic Array Classes ��� 339

Atomic Field Updater Classes �� 340

Atomic Compound Variable Classes �� 340

Explicit Locks �� 342

Synchronizers ��� 350

Semaphores �� 350

Barriers �� 355

Phasers �� 360

Latches �� 372

Exchangers �� 375

The Executor Framework �� 381

Result-Bearing Tasks ��� 389

Scheduling a Task �� 392

Handling Uncaught Exceptions in a Task Execution �� 396

Executor’s Completion Service �� 399

The Fork/Join Framework ��� 403

Steps in Using the Fork/Join Framework �� 405

A Fork/Join Example �� 406

Thread-Local Variables ��� 410

Setting Stack Size of a Thread �� 414

Summary��� 414

Exercises ��� 416

Table of ConTenTs

xi

Chapter 6: Streams ��� 419

What Are Streams? ��� 420

Streams Have No Storage ��� 421

Infinite Streams ��� 421

Internal Iteration vs� External Iteration �� 421

Imperative vs� Functional �� 423

Stream Operations ��� 424

Ordered Streams ��� 426

Streams Are Not Reusable ��� 427

Architecture of the Streams API �� 427

A Quick Example ��� 429

Creating Streams �� 435

Streams from Values ��� 435

Empty Streams �� 439

Streams from Functions �� 439

Streams from Arrays �� 447

Streams from Collections �� 447

Streams from Files �� 448

Streams from Other Sources ��� 450

Representing an Optional Value �� 451

Applying Operations to Streams ��� 459

Debugging a Stream Pipeline �� 460

Applying the ForEach Operation �� 462

Applying the Map Operation �� 464

Flattening Streams �� 466

Applying the Filter Operation ��� 469

Applying the Reduce Operation ��� 473

Collecting Data Using Collectors ��� 485

Collecting Summary Statistics �� 491

Collecting Data in Maps �� 494

Joining Strings Using Collectors ��� 497

Table of ConTenTs

xii

Grouping Data ��� 499

Partitioning Data ��� 504

Adapting the Collector Results �� 506

Finding and Matching in Streams ��� 511

Parallel Streams �� 514

Summary��� 517

Exercises ��� 518

Chapter 7: Implementing Services ��� 523

What Is a Service? �� 523

Discovering Services �� 526

Providing Service Implementations �� 528

Defining the Service Interface �� 530

Obtaining Service Provider Instances ��� 531

Defining the Service �� 535

Defining Service Providers �� 539

Defining a Default Prime Service Provider �� 539

Defining a Faster Prime Service Provider �� 541

Defining a Probable Prime Service Provider �� 544

Testing the Prime Service ��� 546

Testing Prime Service in Legacy Mode ��� 552

Summary��� 555

Exercises ��� 556

Chapter 8: Network Programming �� 559

What Is Network Programming? ��� 560

Network Protocol Suite ��� 562

IP Addressing Scheme �� 566

IPv4 Addressing Scheme ��� 568

IPv6 Addressing Scheme ��� 571

Special IP Addresses ��� 573

Loopback IP Address ��� 574

Table of ConTenTs

xiii

Unicast IP Address ��� 576

Multicast IP Address �� 576

Anycast IP Address �� 577

Broadcast IP Address��� 577

Unspecified IP Address �� 578

Port Numbers �� 578

Socket API and Client-Server Paradigm �� 580

The Socket Primitive �� 583

The Bind Primitive ��� 584

The Listen Primitive ��� 584

The Accept Primitive �� 584

The Connect Primitive ��� 584

The Send/Sendto Primitive �� 586

The Receive/ReceiveFrom Primitive �� 586

The Close Primitive �� 586

Representing a Machine Address ��� 587

Representing a Socket Address �� 590

Creating a TCP Server Socket ��� 592

Creating a TCP Client Socket ��� 598

Putting a TCP Server and Clients Together �� 601

Working with UDP Sockets �� 602

Creating a UDP Echo Server �� 607

A Connected UDP Socket �� 613

UDP Multicast Sockets �� 614

URI, URL, and URN ��� 618

URI and URL As Java Objects �� 625

Accessing the Contents of a URL �� 630

Non-blocking Socket Programming �� 641

Socket Security Permissions �� 658

Asynchronous Socket Channels �� 660

Setting Up an Asynchronous Server Socket Channel �� 662

Table of ConTenTs

xiv

Setting Up an Asynchronous Client Socket Channel �� 672

Putting the Server and the Client Together �� 678

Datagram-Oriented Socket Channels �� 679

Creating the Datagram Channel �� 679

Setting the Channel Options �� 680

Sending Datagrams ��� 682

Multicasting Using Datagram Channels �� 686

Creating the Datagram Channel �� 686

Setting the Channel Options �� 686

Binding the Channel �� 686

Setting the Multicast Network Interface �� 687

Joining the Multicast Group �� 689

Receiving a Message ��� 689

Closing the Channel ��� 690

Further Reading �� 695

Summary��� 695

Exercises ��� 697

Chapter 9: Java Remote Method Invocation ��� 699

What Is Java Remote Method Invocation? �� 700

The RMI Architecture ��� 702

Developing an RMI Application ��� 704

Writing the Remote Interface �� 705

Implementing the Remote Interface �� 706

Writing the RMI Server Program �� 709

Writing the RMI Client Program ��� 713

Separating the Server and Client Code ��� 716

Running the RMI Application ��� 717

Running the RMI Registry �� 718

Running the RMI Server��� 719

Running an RMI Client Program �� 721

Troubleshooting an RMI Application �� 721

Table of ConTenTs

xv

java�rmi�server�ExportException �� 722

java�security�AccessControlException ��� 723

java�lang�ClassNotFoundException �� 723

Debugging an RMI Application �� 725

Dynamic Class Downloading ��� 727

Garbage Collection of Remote Objects �� 730

Summary��� 735

Exercises ��� 736

Chapter 10: Scripting in Java ��� 739

What Is Scripting in Java? �� 740

Installing Script Engines in Maven �� 741

Executing Your First Script �� 743

Using Other Scripting Languages ��� 746

Exploring the javax�script Package ��� 749

The ScriptEngine and ScriptEngineFactory Interfaces �� 749

The AbstractScriptEngine Class ��� 750

The ScriptEngineManager Class �� 750

The Compilable Interface and the CompiledScript Class ��� 750

The Invocable Interface ��� 750

The Bindings Interface and the SimpleBindings Class �� 750

The ScriptContext Interface and the SimpleScriptContext Class ��� 751

The ScriptException Class ��� 751

Discovering and Instantiating Script Engines �� 751

Executing Scripts �� 753

Passing Parameters �� 755

Passing Parameters from Java Code to Scripts �� 755

Passing Parameters from Scripts to Java Code �� 758

Advanced Parameter Passing Techniques �� 760

Bindings ��� 760

Scope ��� 762

Table of ConTenTs

xvi

Defining the Script Context �� 763

Putting Them Together ��� 769

Using a Custom ScriptContext �� 777

Return Value of the eval() Method �� 781

Reserved Keys for Engine Scope Bindings ��� 783

Changing the Default ScriptContext �� 784

Sending Script Output to a File ��� 785

Invoking Procedures in Scripts ��� 787

Implementing Java Interfaces in Scripts �� 792

Using Compiled Scripts ��� 798

Using Java in Scripting Languages ��� 801

Declaring Variables �� 801

Importing Java Classes ��� 802

Implementing a Script Engine ��� 802

The Expression Class ��� 804

The JKScriptEngine Class �� 811

The JKScriptEngineFactory Class �� 813

Packaging the JKScript Files ��� 815

Using the JKScript Script Engine ��� 815

JavaFX in Groovy ��� 819

Summary��� 823

Exercises ��� 824

Chapter 11: Process API ��� 825

What Is the Process API? �� 825

Knowing the Runtime Environment��� 827

The Current Process �� 830

Querying the Process State��� 830

Comparing Processes ��� 835

Creating a Process �� 836

Obtaining a Process Handle �� 855

Table of ConTenTs

xvii

Terminating Processes �� 858

Managing Process Permissions �� 859

Summary��� 863

Exercises ��� 864

Chapter 12: Packaging Modules ��� 867

The JAR Format �� 868

What Is a Multi-release JAR? �� 868

Creating Multi-release JARs �� 871

Rules for Multi-release JARs ��� 879

Multi-release JARs and JAR URL ��� 881

Multi-release Manifest Attribute �� 881

The JMOD Format ��� 882

Using the jmod Tool ��� 882

Summary��� 891

Exercises ��� 892

Chapter 13: Custom Runtime Images ��� 893

What Is a Custom Runtime Image? ��� 893

Creating Custom Runtime Images �� 894

Binding Services ��� 900

Using Plugins with the jlink Tool ��� 904

The jimage Tool ��� 905

Summary��� 908

Exercises ��� 908

Chapter 14: Miscellanea ��� 911

Deleted Chapters from Previous Editions �� 911

More JDK17 Novelties ��� 912

Local Variables with Automatic Types�� 912

Launch Single-File Source Code Programs ��� 914

Enhanced switch Statements �� 914

Text Blocks �� 916

Table of ConTenTs

xviii

Enhanced instanceof Operator �� 917

Value Classes: Records �� 918

Sealed Classes �� 922

Summary��� 922

 Appendix: Solutions to the Exercises ��� 923

 Exercises in Chapter 1 �� 923

 Exercises in Chapter 2 �� 924

 Exercises in Chapter 3 �� 925

 Exercises in Chapter 4 �� 925

 Exercises in Chapter 5 �� 926

 Exercises in Chapter 6 �� 928

 Exercises in Chapter 7 �� 929

 Exercises in Chapter 8 �� 929

 Exercises in Chapter 9 �� 930

 Exercises in Chapter 10 �� 931

 Exercises in Chapter 11 �� 931

 Exercises in Chapter 12 �� 932

 Exercises in Chapter 13 �� 932

 Index ��� 935

Table of ConTenTs

xix

About the Authors

Kishori Sharan works as a senior software engineer lead at IndraSoft, Inc. He earned

a master of science degree in computer information systems from Troy University,

Alabama. He is a Sun-certified Java 2 programmer and has over 20 years of experience

in developing enterprise applications and providing training to professional developers

using the Java platform.

Peter Späth graduated in 2002 as a physicist and soon afterward became an IT

consultant, mainly for Java-related projects. In 2016, he decided to concentrate on

writing books on various aspects, but with the main focus set on software development.

With two books about graphics and sound processing, three books for Android app

development, and several books about Java and Jakarta EE development, the author

continues his effort in writing software development–related literature.

xxi

About the Technical Reviewers

Massimo Nardone has more than 25 years of experience

in security, web/mobile development, cloud, and IT

architecture. His true IT passions are security and Android.

He has been programming and teaching how to program with

Android, Perl, PHP, Java, VB, Python, C/C++, and MySQL for

more than 20 years. He holds a master of science degree in

computing science from the University of Salerno, Italy.

He has worked as a CISO, CSO, security executive, IoT

executive, project manager, software engineer, research

engineer, chief security architect, PCI/SCADA auditor, and

senior lead IT security/cloud/SCADA architect for many years. His technical skills

include security, Android, cloud, Java, MySQL, Drupal, Cobol, Perl, web and mobile

development, MongoDB, D3, Joomla, Couchbase, C/C++, WebGL, Python, Pro Rails,

Django CMS, Jekyll, Scratch, and more.

He worked as a visiting lecturer and supervisor for exercises at the Networking

Laboratory of the Helsinki University of Technology (Aalto University). He holds four

international patents (PKI, SIP, SAML, and Proxy areas). He is currently working for

Cognizant as head of cyber security and CISO to help both internally and externally with

clients in areas of information and cyber security, like strategy, planning, processes,

policies, procedures, governance, awareness, and so forth. In June 2017, he became a

permanent member of the ISACA Finland Board.

Massimo has reviewed more than 45 IT books for different publishing companies

and is the co-author of Pro Spring Security: Securing Spring Framework 5 and Boot

2-based Java Applications (Apress, 2019), Beginning EJB in Java EE 8 (Apress, 2018), Pro

JPA 2 in Java EE 8 (Apress, 2018), and Pro Android Games (Apress, 2015).

Satej Kumar Sahu works in the role of Senior Enterprise Architect at Honeywell. He is

passionate about technology, people, and nature. He believes through technology and

conscientious decision making, each of us has the power to make this world a better

place. In his free time, he can be found reading books, playing basketball, and having fun

with friends and family.

xxiii

Introduction

 How This Book Came About
My first encounter with the Java programming language was during a one-week Java

training session in 1997. I did not get a chance to use Java in a project until 1999. I read

two Java books and took a Java 2 programmer certification examination. I did very well

on the test, scoring 95%. The three questions that I missed on the test made me realize

that the books that I had read did not adequately cover details of all the topics. I made

up my mind to write a book on the Java programming language. So I formulated a plan

to cover most of the topics that a Java developer needs to use Java effectively in a project,

as well as to become certified. I initially planned to cover all essential topics in Java in

700–800 pages.

As I progressed, I realized that a book covering most of the Java topics in detail could

not be written in 700–800 pages. One chapter alone that covered data types, operators,

and statements spanned 90 pages. I was then faced with the question, “Should I shorten

the content of the book or include all the details that I think a Java developer needs?”

I opted for including all the details in the book, rather than shortening its content to

maintain the original number of pages. It has never been my intent to make lots of

money from this book. I was never in a hurry to finish this book because that rush could

have compromised the quality and coverage. In short, I wrote this book to help the Java

community understand and use the Java programming language effectively, without

having to read many books on the same subject. I wrote this book with the plan that

it would be a comprehensive one-stop reference for everyone who wants to learn and

grasp the intricacies of the Java programming language.

One of my high-school teachers used to tell us that if one wanted to understand

a building, one must first understand the bricks, steel, and mortar that make up the

building. The same logic applies to most of the things that we want to understand in

our lives. It certainly applies to an understanding of the Java programming language. If

you want to master the Java programming language, you must start by understanding

its basic building blocks. I have used this approach throughout this book, endeavoring

to build upon each topic by describing the basics first. In the book, you will rarely find a

xxiv

topic described without first learning about its background. Wherever possible, I tried

to correlate the programming practices with activities in daily life. Most of the books

about the Java programming language available on the market either do not include any

pictures at all or have only a few. I believe in the adage “A picture is worth a thousand

words.” To a reader, a picture makes a topic easier to understand and remember. I

have included plenty of illustrations in the book to aid readers in understanding and

visualizing the concepts. Developers who have little or no programming experience

have difficulty in putting things together to make it a complete program. Keeping them

in mind, I have included over 390 complete Java programs that are ready to be compiled

and run.

I spent countless hours doing research when writing this book. My main sources

were the Java Language Specification, whitepapers and articles on Java topics, and Java

Specification Requests (JSRs). I also spent quite a bit of time reading the Java source

code to learn more about some of the Java topics. Sometimes, it took a few months of

researching a topic before I could write the first sentence on it. Finally, it was always fun

to play with Java programs, sometimes for hours, to add them to the book.

 Introduction to the Second Edition
I am pleased to present the second edition of the Java Language Features book. It is the

second book in the three-volume “Beginning Java 9” series. It was not possible to include

all JDK9 changes in one volume. I have included JDK9-specific changes at appropriate

places in the three volumes, including this one. If you are interested in learning only

JDK9-specific topics, I suggest you read my Java 9 Revealed book (ISBN 9781484225912).

There are several changes in this edition, as follows:

• I added the following five chapters to this edition: Implementing

Services, The Module API, Breaking Module Encapsulation, Reactive

Streams, and Stack Walking.

• Implementing services in Java is not new to JDK9. I felt this book was

missing a chapter on this topic. A chapter covers in detail how to

define services and service interfaces and how to implement service

interfaces using JDK9-specific and pre-JDK9 constructs. This chapter

shows you how to use them and provides statements in a module

declaration.

InTroduCTIon

xxv

• Another chapter covers the Module API in detail, which gives you

programmatic access to modules. This chapter also touches on some

of the advanced topics, such as module layers. The first volume

of this series covered basics on modules, such as how to declare

modules and module dependence.

• The following chapter covers how to break module encapsulation

using command-line options. When you migrate to JDK9, there

will be cases requiring you to read the module’s internal APIs or

export non-exported packages. You can achieve these tasks using

command-line options covered in this chapter.

• Reactive Streams is an initiative for providing a standard for

asynchronous stream processing with non-blocking backpressure.

It is aimed at solving the problems processing a stream of items,

including how to pass a stream of items from a publisher to a

subscriber without requiring the publisher to block or the subscriber

to have an unbounded buffer. One more chapter covers the Reactive

Streams API, which was added in JDK9.

• A new chapter covers the Stack-Walking API, which was added

in JDK9. This API lets you inspect the stack frames of threads and

get the class reference of the caller class of a method. Inspecting a

thread’s stack and getting the caller’s class name were possible before

JDK9. The new Stack-Walking API lets you achieve this easily and

efficiently.

• I received several emails from the readers about the fact that the

books in this series do not include questions and exercises, which are

needed mainly for students and beginners. Students use this series

in their Java classes, and many beginners use it to learn Java. Due to

this popular demand, I spent over 60 hours preparing questions and

exercises at the end of each chapter. My friend Preethi offered her

help and provided the solutions.

Apart from these additions, I updated all the chapters that were part of the first

edition. I edited the contents to make them flow better, changed or added new examples,

and updated the contents to include JDK9-specific features.

It is my sincere hope that this edition will help you learn Java better.

InTroduCTIon

xxvi

 Introduction to the Third Edition
The third edition is the second author Peter Späth’s work. Pleasantly taking over much

of Kishori Sharan’s efforts, the original text was substantially shortened by omitting

a couple of chapters, and instead adding API-related topics from the book Java APIs,

Extensions and Libraries, again from Kishori Sharan. In addition, all topics covered were

hovered to Java 17, in order to maximize the benefit for the reader facing contemporary

Java projects and wishing to use the new features included with the JRE 17.

Caution oracle changed the licensing with JdK8. You must enter a paid program
if you plan to use oracle’s Jre or JdK for commercial projects. If you want to avoid
this, consider using openJdK.

 Structure of the Book
This book contains 14 chapters. The first seven chapters contain language-level topics

of Java such as annotations, reflection, generics, lambda expressions, streams, etc. The

chapters introduce Java topics in increasing order of complexity. The subsequent six

chapters introduce some of the more important Java APIs and modules, like network

programming, remote method invocation, scripting, and more. The last chapter,

“Miscellanea,” gives the rationale for chapters omitted in this edition compared to the

previous one.

In the appendix, solution hints to the exercises are provided.

 Audience
This book is designed to be useful to anyone who wants to learn the Java programming

language. If you are a beginner, with little or no programming background in Java, you

are advised to read one of the beginning-level Java books from Apress, and also the

online Java documentation including the Java tutorial will help. This book contains

topics of various degrees of complexity. As a beginner, if you find yourself overwhelmed

while reading a section in a chapter, you can skip to the next section or the next chapter

and revisit it later when you gain more experience.

InTroduCTIon

xxvii

If you are a Java developer with an intermediate or advanced level of experience,

you can jump to a chapter or to a section in a chapter directly. If a section covers an

unfamiliar topic, you need to visit that topic before continuing the current one.

If you are reading this book to get a certification in the Java programming language,

you need to read almost all of the chapters, paying attention to all of the detailed

descriptions and rules. Most of the certification programs test your fundamental

knowledge of the language, not the advanced knowledge. You need to read only those

topics that are part of your certification test. Compiling and running the Java programs

included with the book will help you prepare for your certification.

If you are a student who is attending a class on the Java programming language,

you should read the chapters of this book selectively. Some topics, such as lambda

expressions, collections, and streams, are used extensively in developing Java

applications, whereas other topics are infrequently used. You need to read only those

chapters that are covered in your class syllabus. I am sure that you, as a Java student, do

not need to read the entire book page by page.

 How to Use This Book
This book is the beginning, not the end, of learning the Java programming language.

If you are reading this book, it means you are heading in the right direction to learn

the Java programming language, which will enable you to excel in your academic and

professional career. However, there is always a higher goal for you to achieve, and you

must constantly work hard to achieve it. The following quotations from some great

thinkers may help you understand the importance of working hard and constantly

looking for knowledge with both your eyes and mind open.

The learning and knowledge that we have, is, at the most, but little com-
pared with that of which we are ignorant.

—Plato

True knowledge exists in knowing that you know nothing. And in knowing
that you know nothing, that makes you the smartest of all.

—Socrates

InTroduCTIon

xxviii

Readers are advised to use the API documentation for the Java programming language

as much as possible while reading this book. The Java API documentation includes a

complete list of everything available in the Java class library. You can download (or view)

the Java API documentation from the official website of Oracle Corporation at

www.oracle.com.

While you read this book, you need to practice writing Java programs. You can

also practice by tweaking the programs provided in the book. It does not help much in

your learning process if you just read this book and do not practice writing your own

programs. Remember that “practice makes perfect,” which is also true in learning how to

program in Java.

 Source Code and Errata
Source code for this book can be accessed by clicking the Download Source Code

button located at www.apress.com/9781484271346.

InTroduCTIon

http://www.oracle.com
http://www.apress.com/9781484271346

1
© Kishori Sharan, Peter Späth 2021
K. Sharan and P. Späth, More Java 17, https://doi.org/10.1007/978-1-4842-7135-3_1

CHAPTER 1

Annotations
In this chapter, you will learn:

• What annotations are

• How to declare annotations

• How to use annotations

• What meta-annotations are and how to use them

• Commonly used annotations that are used to deprecate APIs, to

suppress named compile-time warnings, override methods, and

declare functional interfaces

• How to access annotations at runtime

• How to process annotations in source code

All example programs in this chapter are a member of a jdojo.annotation module,

as declared in Listing 1-1.

Listing 1-1. The Declaration of a jdojo.annotation Module

// module-info.java

module jdojo.annotation {

 exports com.jdojo.annotation;

}

 What Are Annotations?
Before I define annotations and discuss their importance in programming, let’s look

at a simple example. Suppose you have an Employee class, which has a method called

https://doi.org/10.1007/978-1-4842-7135-3_1#DOI

2

setSalary() that sets the salary of an employee. The method accepts a parameter of

the type double. The following snippet of code shows a trivial implementation for the

Employee class:

public class Employee {

 public void setSalary(double salary) {

 System.out.println("Employee.setSalary():" +

 salary);

 }

}

A Manager class inherits from the Employee class. You want to set the salary for

managers differently. You decide to override the setSalary() method in the Manager

class. The code for the Manager class is as follows:

public class Manager extends Employee {

 // Override setSalary() in the Employee class

 public void setSalary(int salary) {

 System.out.println("Manager.setSalary():" +

 salary);

 }

}

There is a mistake in the Manager class, when you attempt to override the

setSalary() method. You’ll correct the mistake shortly. You have used the int data type

as the parameter type for the incorrectly overridden method. It is time to set the salary

for a manager. The following code is used to accomplish this:

Employee ken = new Manager();

int salary = 200;

ken.setSalary(salary);

Employee.setSalary():200.0

This snippet of code was expected to call the setSalary() method of the Manager

class, but the output does not show the expected result.

What went wrong in your code? The intention of defining the setSalary() method

in the Manager class was to override the setSalary() method of the Employee class, not

to overload it. You made a mistake. You used the type int as the parameter type in the

Chapter 1 annotations

3

setSalary() method, instead of the type double in the Manager class. You put comments

indicating your intention to override the method in the Manager class. However,

comments do not stop you from making logical mistakes. You might spend, as every

programmer does, hours and hours debugging errors resulting from this kind of logical

mistake. Who can help you in such situations? Annotations might help you in a few

situations like this.

Let’s rewrite your Manager class using an annotation. You do not need to know

anything about annotations at this point. All you are going to do is add one word to your

program. The following code is the modified version of the Manager class:

public class Manager extends Employee {

 @Override

 public void setSalary(int salary) {

 System.out.println("Manager.setSalary():" +

 salary);

 }

}

All you have added is an @Override annotation to the Manager class and removed the

“dumb” comments. Trying to compile the revised Manager class results in a compile-time

error that points to the use of the @Override annotation for the setSalary() method of

the Manager class:

Manager.java:2: error: method does not override or

 implement a method from a supertype

 @Override

 ^

1 error

The use of the @Override annotation did the trick. The @Override annotation is used

with a non-static method to indicate the programmer’s intention to override the method

in the superclass. At the source code level, it serves the purpose of documentation.

When the compiler comes across the @Override annotation, it makes sure that the

method really overrides the method in the superclass. If the method annotated does not

override a method in the superclass, the compiler generates an error. In your case, the

setSalary(int salary) method in the Manager class does not override any method in

the superclass Employee. This is the reason that you got the error. You may realize that

Chapter 1 annotations

4

using an annotation is as simple as documenting the source code. However, they have

compiler support. You can use them to instruct the compiler to enforce some rules.

Annotations provide benefits much more than you have seen in this example. Let’s go

back to the compile-time error. You can fix the error by doing one of the following two

things:

• You can remove the @Override annotation from the setSalary(int

salary) method in the Manager class. It will make the method an

overloaded method, not a method that overrides its superclass

method.

• You can change the method signature from setSalary(int salary)

to setSalary(double salary).

Since you want to override the setSalary() method in the Manager class, use the

second option and modify the Manager class as follows:

public class Manager extends Employee {

 @Override

 public void setSalary(double salary) {

 System.out.println("Manager.setSalary():" +

 salary);

 }

}

Now the following code will work as expected:

Employee ken = new Manager();

int salary = 200;

ken.setSalary(salary);

Manager.setSalary():200.0

Note that the @Override annotation in the setSalary() method of the Manager class

saves you debugging time. Suppose you change the method signature in the Employee

class. If the changes in the Employee class make this method no longer overridden in the

Manager class, you will get the same error when you compile the Manager class again. Are

you starting to understand the power of annotations? With this background in mind, let’s

start digging deep into annotations.

Chapter 1 annotations

5

According to the Merriam-Webster dictionary, the meaning of annotation is

A note added by way of comment or explanation.

This is exactly what an annotation is in Java. It lets you associate (or annotate)

metadata (or notes) to the program elements in a Java program. The program elements

may be a module, a package, a class, an interface, a field of a class, a local variable,

a method, a parameter of a method, an enum, an annotation, a type parameter in a

generic type/method declaration, a type use, etc. In other words, you can annotate any

declaration or type use in a Java program. An annotation is used as a “modifier” in a

declaration of a program element like any other modifiers (public, private, final, static,

etc.). Unlike a modifier, an annotation does not modify the meaning of the program

elements. It acts like a decoration or a note for the program element that it annotates.

An annotation differs from regular documentation in many ways. A regular

documentation is only for humans to read, and it is “dumb.” It has no intelligence

associated with it. If you misspell a word, or state something in the documentation and

do just the opposite in the code, you are on your own. It is very difficult and impractical

to read the elements of documentation programmatically at runtime. Java lets you

generate Javadocs from your documentation and that’s it for regular documentation.

This does not mean that you do not need to document your programs. You do need

regular documentation. At the same time, you need a way to enforce your intent using

a documentation-like mechanism. Your documentation should be available to the

compiler and the runtime. An annotation serves this purpose. It is human readable,

which serves as documentation. It is compiler readable, which lets the compiler

verify the intention of the programmer; for example, the compiler makes sure that

the programmer has really overridden the method if it comes across an @Override

annotation for a method. Annotations are also available at runtime so that a program

can read and use it for any purpose it wants. For example, a tool can read annotations

and generate boilerplate code. If you have worked with Enterprise JavaBeans (EJB), you

know the pain of keeping all the interfaces and classes in sync and adding entries to

XML configuration files. EJB 3.0 uses annotations to generate the boilerplate code, which

makes EJB development painless for programmers. Another example of an annotation

being used in a framework/tool is JUnit version 4.0. JUnit is a unit test framework for

Java programs. It uses annotations to mark methods that are test cases. Before that, you

had to follow a naming convention for the test case methods. Annotations have a variety

of uses, which are documentation, verification, and enforcement by the compiler, the

runtime validation, code generation by frameworks/tools, etc.

Chapter 1 annotations

6

To make an annotation available to the compiler and the runtime, an annotation

has to follow rules. In fact, an annotation is another type like a class and an interface. As

you have to declare a class type or an interface type before you can use it, you must also

declare an annotation type.

An annotation does not change the semantics (or meaning) of the program element

that it annotates. In that sense, an annotation is like a comment, which does not affect

the way the annotated program element works. For example, the @Override annotation

for the setSalary() method did not change the way the method works. You (or a tool/

framework) can change the behavior of a program based on an annotation. In such

cases, you use the annotation rather than the annotation doing anything on its own. The

point is that an annotation by itself is always passive.

 Declaring an Annotation Type
Declaring an annotation type is similar to declaring an interface type, except for some

restrictions. According to Java specification, an annotation type declaration is a special

kind of interface type declaration. You use the interface keyword, which is preceded by

the @ sign (at sign) to declare an annotation type. The following is the general syntax for

declaring an annotation type:

[modifiers] @ interface <annotation-type-name> {

 // Annotation type body goes here

}

[modifiers] for an annotation declaration is the same as for an interface

declaration. For example, you can declare an annotation type at the public or package

level. The @ sign and the interface keyword may be separated by whitespace, or they

can be placed together. By convention, they are placed together as @interface. The

interface keyword is followed by an annotation type name. It should be a valid Java

identifier. The annotation type body is placed within braces.

Suppose you want to annotate your program elements with the version information,

so you can prepare a report about new program elements added in a specific release

of your product. To use a custom annotation type (as opposed to a built-in annotation,

such as @Override), you must declare it first. You want to include the major and the

minor versions of the release in the version information. Listing 1-2 contains the

complete code for your first annotation declaration.

Chapter 1 annotations

7

Listing 1-2. The Declaration of an Annotation Type Named Version

// Version.java

package com.jdojo.annotation;

public @interface Version {

 int major();

 int minor();

}

Compare the declaration of the Version annotation with the declaration of an

interface. It differs from an interface definition only in one aspect: it uses the @ sign

before its name. You have declared two abstract methods in the Version annotation

type: major() and minor(). Abstract methods in an annotation type are known as its

elements. You can think about it in another way: an annotation can declare zero or more

elements, and they are declared as abstract methods. The abstract method names are the

names of the elements of the annotation type. You have declared two elements, major

and minor, for the Version annotation type. The data types of both elements are int.

Note although you can declare static and default methods in interface types,
they are not allowed in annotation types. static and default methods are meant
to contain some logic. annotations are meant to represent just the values for
elements in the annotation type. this is the reason that static and default methods
are not allowed in annotation types.

You need to compile the annotation type. When the Version.java file is compiled, it

will produce a Version.class file. The simple name of your annotation type is Version,

and its fully qualified name is com.jdojo.annotation.Version. Using the simple name

of an annotation type follows the rules of any other types (e.g., classes, interfaces, etc.).

You will need to import an annotation type the same way you import any other types.

How do you use an annotation type? You might be thinking that you will declare a

new class that will implement the Version annotation type, and you will create an object

of that class. You might be relieved to know that you do not need to take any additional

steps to use the Version annotation type. An annotation type is ready to be used as soon

as it is declared and compiled. To create an instance of an annotation type and use it to

annotate a program element, you need to use the following syntax:

@annotationType(name1=value1, name2=value2, name3=value3...)

Chapter 1 annotations

8

The annotation type is preceded by an @ sign. It is followed by a list of comma-

separated name=value pairs enclosed in parentheses. The name in a name=value pair

is the name of the element declared in the annotation type, and the value is the user-

supplied value for that element. The name=value pairs do not have to appear in the same

order as they are declared in the annotation type, although by convention name=value

pairs are used in the same order as the declaration of the elements in the annotation type.

Let’s use an instance of the Version type, which has the major element value as 1 and

the minor element value as 0. The following is an instance of your Version annotation type:

@Version(major=1, minor=0)

You can rewrite this annotation as @Version(minor=0, major=1) without changing

its meaning. You can also use the annotation type’s fully qualified name as

@com.jdojo.annotation.Version(major=0, minor=1)

You use as many instances of the Version annotation type in your program as you

want. For example, you have a VersionTest class, which has been in your application

since release 1.0. You have added some methods and instance variables in release 1.1.

You can use your Version annotation to document additions to the VersionTest class in

different releases. You can annotate your class declaration as

@Version(major=1, minor=0)

public class VersionTest {

 // Code goes here

}

An annotation is added in the same way you add a modifier for a program element.

You can mix the annotation for a program element with its other modifiers. You can

place annotations in the same line as other modifiers or in a separate line. It is a personal

choice whether you use a separate line to place the annotations or you mix them with

other modifiers. By convention, annotations for a program element are placed before all

other modifiers. Let’s follow this convention and place the annotation in a separate line

by itself, as shown. Both of the following declarations are technically the same:

// Style #1

@Version(major=1, minor=0) public class VersionTest {

 // Code goes here

}

Chapter 1 annotations

9

// Style #2

public @Version(major=1, minor=0)

class VersionTest {

 // Code goes here

}

Listing 1-3 shows the sample code for the VersionTest class.

Listing 1-3. A VersionTest Class with Annotated Elements

// VersionTest.java

package com.jdojo.annotation;

// Annotation for class VersionTest

@Version(major=1, minor=0)

public class VersionTest {

 // Annotation for instance variable xyz

 @Version(major=1, minor=1)

 private int xyz = 110;

 // Annotation for constructor VersionTest()

 @Version(major=1, minor=0)

 public VersionTest() {

 }

 // Annotation for constructor VersionTest(int xyz)

 @Version(major=1, minor=1)

 public VersionTest(int xyz) {

 this.xyz = xyz;

 }

 // Annotation for the printData() method

 @Version(major=1, minor=0)

 public void printData() {

 }

 // Annotation for the setXyz() method

 @Version(major=1, minor=1)

 public void setXyz(int xyz) {

 // Annotation for local variable newValue

Chapter 1 annotations

10

 @Version(major=1, minor=2)

 int newValue = xyz;

 this.xyz = xyz;

 }

}

In Listing 1-3, you use the @Version annotation to annotate the class declaration,

class field, local variables, constructors, and methods. There is nothing extraordinary in

the code for the VersionTest class. You just added the @Version annotation to various

elements of the class. The VersionTest class would work the same, even if you remove

all @Version annotations. It is to be emphasized that using annotations in your program

does not change the behavior of the program at all. The real benefit of annotations

comes from reading it at compile time and runtime.

What do you do next with the Version annotation type? You have declared it as a

type. You have used it in your VersionTest class. Your next step is to read it at runtime.

Let’s defer this step for now; I cover it in detail in a later section. I discuss more on

annotation type declarations first.

 Restrictions on Annotation Types
An annotation type is a special type of interface with some restrictions. I cover some of

the restrictions in the sections to follow.

Restriction #1
An annotation type cannot inherit from another annotation type. That is, you cannot

use the extends clause in an annotation type declaration. The following declaration will

not compile because you have used the extends clause to declare the WrongVersion

annotation type:

// Won't compile

public @interface WrongVersion extends BasicVersion {

 int extended();

}

Every annotation type implicitly inherits from the java.lang.annotation.

Annotation interface, which is declared as follows:

Chapter 1 annotations

11

package java.lang.annotation;

public interface Annotation {

 boolean equals(Object obj);

 int hashCode();

 String toString();

 Class<? extends Annotation> annotationType();

}

This implies that all of the four methods declared in the Annotation interface are

available in all annotation types.

Caution You declare elements for an annotation type using abstract method
declarations. the methods declared in the Annotation interface do not declare
elements in an annotation type. Your Version annotation type has only two
elements, major and minor, which are declared in the Version type itself. You
cannot use the annotation type Version as @Version(major=1, minor=2,
toString="Hello"). the Version annotation type does not declare toString
as an element. it inherits the toString() method from the Annotation interface.

The first three methods in the Annotation interface are the methods from the Object

class. The annotationType() method returns the class reference of the annotation type

to which the annotation instance belongs. The Java creates a proxy class dynamically

at runtime, which implements the annotation type. When you obtain an instance of an

annotation type, that instance class is the dynamically generated proxy class, whose reference

you can get using the getClass() method on the annotation instance. If you get an instance

of the Version annotation type at runtime, its getClass() method will return the class

reference of the dynamically generated proxy class, whereas its annotationType() method

will return the class reference of the com.jdojo.annotation.Version annotation type.

Restriction #2
Method declarations in an annotation type cannot specify any parameters. A method

declares an element for the annotation type. An element in an annotation type lets

you associate a data value to an annotation’s instance. A method declaration in an

annotation is not called to perform any kind of processing. Think of an element as an

instance variable in a class having two methods, a setter and a getter, for that instance

Chapter 1 annotations

12

variable. For an annotation, the Java runtime creates a proxy class that implements

the annotation type (which is an interface). Each annotation instance is an object of

that proxy class. The method you declare in your annotation type becomes the getter

method for the value of that element you specify in the annotation. See, for example, the

int major(); and int minor(); method declarations in Listing 1-2. The Java runtime

will take care of setting the specified value for the annotation elements. Since the goal

of declaring a method in an annotation type is to work with a data element, you do not

need to (and are not allowed to) specify any parameters in a method declaration. The

following declaration of an annotation type would not compile because it declares a

concatenate() method, which accepts two parameters:

// Won't compile

public @interface WrongVersion {

 // Cannot have parameters

 String concatenate(int major, int minor);

}

Restriction #3
Method declarations in an annotation type cannot have a throws clause. A method in

an annotation type is defined to represent a data element. Throwing an exception to

represent a data value does not make sense. The following declaration of an annotation

type would not compile because the major() method has a throws clause:

// Won't compile

public @interface WrongVersion {

 int major() throws Exception; // Cannot have a

 // throws clause

 int minor(); // OK

}

Restriction #4
The return type of a method declared in an annotation type must be one of the

following types:

• Any primitive type: byte, short, int, long, float, double, boolean,

and char

Chapter 1 annotations

13

• java.lang.String

• java.lang.Class

• An enum type

• An annotation type

• An array of any of the previously mentioned types, for example,

String[], int[], etc. The return type cannot be a nested array. For

example, you cannot have a return type of String[][] or int[][].

Note the reason behind these data type restrictions is that all values for allowed
data types must be represented in the source code, which the compiler should be
able to represent for compile-time analysis.

The return type of Class needs a little explanation. Instead of the Class type, you can

use a generic return type that will return a user-defined class type. Suppose you have a

Test class and you want to declare the return type of a method in an annotation type of

type Test. You can declare the annotation method as shown:

public @interface GoodOne {

 Class element1();

 // <- Any Class type

 Class<Test> element2();

 // <- Only Test class type

 Class<? extends Test> element3();

 // <- Test or its subclass type

}

Restriction #5
An annotation type cannot declare a method, which would be equivalent to

overriding a method in the Object class or the Annotation interface.

Restriction #6
An annotation type cannot be generic.

Chapter 1 annotations

14

 Default Value of an Annotation Element
The syntax for an annotation type declaration lets you specify a default value for its

elements. You are not required to, but you can, specify a value for an annotation element

that has a default value specified in its declaration. The default value for an element can

be specified using the following general syntax:

[modifiers] @interface <annotation-type-name> {

 <data-type> <element-name>() default <default-value>;

}

The keyword default is used to specify the default value. The default value of the

type must be compatible with the data type for the element.

Suppose you have a product that is not frequently released, so it is less likely that it

will have a minor version other than zero. You can simplify your Version annotation type

by specifying a default value for its minor element as zero, as shown:

public @interface Version {

 int major();

 int minor() default 0; // Set zero as default value

 // for minor

}

Once you set the default value for an element, you do not have to pass its value

when you use an annotation of this type. Java will use the default value for the missing

element:

@Version(major=1) // minor is zero, which is

 // its default value

@Version(major=2) // minor is zero, which is

 // its default value

@Version(major=2, minor=1) // minor is 1, which is the

 // specified value

All default values must be compile-time constants. How do you specify the default

value for an array type? You need to use the array initializer syntax. The following

snippet of code shows how to specify default values for an array and other data types:

Chapter 1 annotations

15

// Shows how to assign default values to elements of

// different types

public @interface DefaultTest {

 double d() default 12.89;

 int num() default 12;

 int[] x() default {1, 2};

 String s() default "Hello";

 String[] s2() default {"abc", "xyz"};

 Class c() default Exception.class;

 Class[] c2() default {Exception.class,

 java.io.IOException.class};

}

The default value for an element is not compiled with the annotation. It is read from

the annotation type definition when a program attempts to read the value of an element

at runtime. For example, when you use @Version(major=2), this annotation instance is

compiled as is. It does not add the minor element with its default value as zero. In other

words, this annotation is not modified to @Version(major=2, minor=0) at the time of

compilation. However, when you read the value of the minor element for this annotation

at runtime, Java will detect that the value for the minor element was not specified. It will

consult the Version annotation type definition for its default value. The implication of

this mechanism is that if you change the default value of an element, the changed default

value will be read whenever a program attempts to read it, even if the annotated program

was compiled before you changed the default value.

 Annotation Type and Its Instances
I use the terms “annotation type” and “annotation” frequently. An annotation type is a

type like an interface. Theoretically, you can use an annotation type wherever you can

use an interface type. Practically, we limit its use only to annotate program elements. You

can declare a variable of an annotation type as shown:

Version v = null; // Here, Version is an annotation type

Like an interface, you can also implement an annotation type in a class. However,

you are never supposed to do that, as it will defeat the purpose of having an annotation

type as a new construct. You should always implement an interface in a class, not an

Chapter 1 annotations

16

annotation type. Technically, the code in Listing 1-4 for the DoNotUseIt class is valid.

This is just for the purposes of demonstration. Do not implement an annotation in a

class even if it works.

Listing 1-4. A Class Implementing an Annotation Type

// DoNotUseIt.java

package com.jdojo.annotation;

import java.lang.annotation.Annotation;

public class DoNotUseIt implements Version {

 // Implemented method from the Version annotation

 // type

 @Override

 public int major() {

 return 0;

 }

 // Implemented method from the Version annotation

 // type

 @Override

 public int minor() {

 return 0;

 }

 // Implemented method from the Annotation annotation

 // type, which is the supertype of the Version

 // annotation type

 @Override

 public Class<? extends Annotation> annotationType() {

 return null;

 }

}

The Java runtime implements the annotation type to a proxy class. It provides you

with an object of a class that implements your annotation type for each annotation you

use in your program. You must distinguish between an annotation type and instances

(or objects) of that annotation type. In your example, Version is an annotation type.

Whenever you use it as @Version(major=2, minor=4), you are creating an instance of

the Version annotation type. An instance of an annotation type is simply referred to as

Chapter 1 annotations

17

an annotation. For example, we say that @Version(major=2, minor=4) is an annotation

or an instance of the Version annotation type. An annotation should be easy to use in a

program. The syntax @Version(...) is shorthand for creating a class, creating an object

of that class, and setting the values for its elements. I cover how to get to the object of an

annotation type at runtime later in this chapter.

 Using Annotations
In this section, I discuss the details of using different types of elements while declaring

annotation types. Keep in mind that the supplied value for elements of an annotation

must be a compile-time constant expression, and you cannot use null as the value for

any type of elements in an annotation.

 Primitive Types
The data type of an element in an annotation type could be any of the primitive data

types: byte, short, int, long, float, double, boolean, and char. The Version annotation

type declares two elements, major and minor, and both are of int data type. The

following code snippet declares an annotation type called PrimitiveAnnTest:

public @interface PrimitiveAnnTest {

 byte a();

 short b();

 int c();

 long d();

 float e();

 double f();

 boolean g();

 char h();

}

You can use an instance of the PrimitiveAnnTest type as

@PrimitiveAnnTest(a=1, b=2, c=3, d=4, e=12.34F, f=1.89, g=true, h='Y')

Chapter 1 annotations

18

You can use a compile-time constant expression to specify the value for an element

of an annotation. The following two instances of the Version annotation are valid and

have the same values for their elements:

@Version(major=2+1, minor=(int)13.2)

@Version(major=3, minor=13)

 String Types
You can use an element of the String type in an annotation type. Listing 1-5 contains the

code for an annotation type called Name. It has two elements, first and last, which are

of the String type.

Listing 1-5. Name Annotation Type, Which Has Two Elements, first and last, of

the String Type

// Name.java

package com.jdojo.annotation;

public @interface Name {

 String first();

 String last();

}

The following snippet of code shows how to use the Name annotation type in a

program:

@Name(first="John", last="Jacobs")

public class NameTest {

 @Name(first="Wally", last="Inman")

 public void aMethod() {

 // More code goes here...

 }

}

It is valid to use the string concatenation operator (+) in the value expression for an

element of a String type. The following two annotations are equivalent:

@Name(first="Jo" + "hn", last="Ja" + "cobs")

@Name(first="John", last="Jacobs")

Chapter 1 annotations

19

Typically, you will use string concatenation in an annotation when you want to

use a compile-time constant such as a final class variable as part of the value for an

annotation element. In the following annotation, Test is a class that defines a compile-

time constant String class variable named UNKNOWN:

@Name(first="Mr. " + Test.UNKNWON, last=Test.UNKNOWN)

The following use of the @Name annotation is not valid because the expression new

String("John") is not a compile-time constant expression:

@Name(first=new String("John"), last="Jacobs")

 Class Types
The benefits of using the Class type as an element in an annotation type are not obvious.

Typically, it is used where a tool/framework reads the annotations with elements of a

class type and performs some specialized processing on the element’s value or generates

code. Let’s go through a simple example of using a class type element. Suppose you

are writing a test runner tool for running test cases for a Java program. Your annotation

will be used in writing test cases. If your test case must throw an exception when it is

invoked by the test runner, you need to use an annotation to indicate that. Let’s create a

DefaultException class, as shown in Listing 1-6.

Listing 1-6. A DefaultException Class That Is Inherited from the Throwable

Exception Class

// DefaultException.java

package com.jdojo.annotation;

public class DefaultException

 extends java.lang.Throwable {

 public DefaultException() {

 }

 public DefaultException(String msg) {

 super(msg);

 }

}

Listing 1-7 shows the code for a TestCase annotation type.

Chapter 1 annotations

20

Listing 1-7. A TestCase Annotation Type Whose Instances Are Used to Annotate

Test Case Methods

// TestCase.java

package com.jdojo.annotation;

import java.lang.annotation.ElementType;

import java.lang.annotation.Retention;

import java.lang.annotation.RetentionPolicy;

import java.lang.annotation.Target;

@Retention(RetentionPolicy.RUNTIME)

@Target(ElementType.METHOD)

public @interface TestCase {

 Class<? extends Throwable> willThrow() default

 DefaultException.class;

}

The return type of the willThrow element is defined as the wildcard of the Throwable

class, so that the user will specify only the Throwable class or its subclasses as the

element’s value. You could have used the Class<?> type as the type of your willThrow

element. However, that would have allowed the users of this annotation type to pass

any class type as its value. Note that you have used two annotations, @Retention and

@Target, for the TestCase annotation type. The @Retention annotation type specified

that the @TestCase annotation would be available at runtime. It is necessary to use the

retention policy of RUNTIME for your TestCase annotation type because it is meant for the

test runner tool to read it at runtime. The @Target annotation states that the TestCase

annotation can be used only to annotate methods. I cover the @Retention and @Target

annotation types in detail in later sections when I discuss meta-annotations. Listing 1-8

shows the use of your TestCase annotation type.

Listing 1-8. A Test Case That Uses the TestCase Annotations

// PolicyTestCases.java

package com.jdojo.annotation;

import java.io.IOException;

public class PolicyTestCases {

 // Must throw IOException

Chapter 1 annotations

21

 @TestCase(willThrow=IOException.class)

 public static void testCase1(){

 // Code goes here

 }

 // We are not expecting any exception

 @TestCase()

 public static void testCase2(){

 // Code goes here

 }

}

The testCase1() method specifies, using the @TestCase annotation, that it will

throw an IOException. The test runner tool will make sure that when it invokes this

method, the method does throw an IOException. Otherwise, it will fail the test case.

The testCase2() method does not specify that it will throw an exception. If it throws an

exception when the test is run, the tool should fail this test case.

 Enum Type
An annotation can have elements of an enum type. Suppose you want to declare an

annotation type called Review that can describe the code review status of a program

element. Let’s assume that it has a status element and it can have one of the four values:

PENDING, FAILED, PASSED, and PASSEDWITHCHANGES. You can declare an enum as an

annotation type member. Listing 1-9 shows the code for a Review annotation type.

Listing 1-9. An Annotation Type That Uses an enum Type Element

// Review.java

package com.jdojo.annotation;

public @interface Review {

 ReviewStatus status() default ReviewStatus.PENDING;

 String comments() default "";

 // ReviewStatus enum is a member of the Review

 // annotation type

 public enum ReviewStatus {PENDING, FAILED, PASSED,

 PASSEDWITHCHANGES};

}

Chapter 1 annotations

22

Note the enum type used as the type of an annotation element need not be
declared as a nested enum type of the annotation type, as you did in this example.
the enum type can also be declared outside the annotation type.

The Review annotation type declares a ReviewStatus enum type, and the four review

statuses are the elements of the enum. It has two elements, status and comments. The

type of the status element is the enum type ReviewStatus. The default value for the

status element is ReviewStatus.PENDING. You have an empty string as the default value

for the comments element.

Here are some of the instances of the Review annotation type. You will need to

import the com.jdojo.annotation.Review.ReviewStatus enum in your program to use

the simple name of the ReviewStatus enum type:

import com.jdojo.annotation.Review.ReviewStatus;

...

// Have default for status and comments. Maybe the code

// is new.

@Review()

// Leave status as Pending, but add some comments

@Review(comments=

 "Have scheduled code review on December 1, 2017")

// Fail the review with comments

@Review(status=ReviewStatus.FAILED,

 comments="Need to handle errors")

// Pass the review without comments

@Review(status=ReviewStatus.PASSED)

Here is the sample code that annotates a Test class indicating that it passed the code

review:

import com.jdojo.annotation.Review.ReviewStatus;

import com.jdojo.annotation.Review;

@Review(status=ReviewStatus.PASSED)

public class Test {

 // Code goes here

}

Chapter 1 annotations

23

 Annotation Type
An annotation type can be used anywhere a type can be used in a Java program. For

example, you can use an annotation type as the return type for a method. You can

also use an annotation type as the type of an element inside another annotation type’s

declaration. Suppose you want to have a new annotation type called Description, which

will include the name of the author, version, and comments for a program element. You

can reuse your Name and Version annotation types as its name and version elements

type. Listing 1-10 shows the code for the Description annotation type.

Listing 1-10. An Annotation Type Using Other Annotation Types As Its Elements

// Description.java

package com.jdojo.annotation;

public @interface Description {

 Name name();

 Version version();

 String comments() default "";

}

To provide a value for an element of an annotation type, you need to use the syntax

that creates an annotation type instance. For example, @Version(major=1, minor=2)

creates an instance of the Version annotation. Note the nesting of an annotation inside

another annotation in the following snippet of code:

@Description(name=@Name(first="John", last="Jacobs"),

 version=@Version(major=1, minor=2),

 comments="Just a test class")

public class Test {

 // Code goes here

}

Chapter 1 annotations

24

 Array Type Annotation Element
An annotation can have elements of an array type. The array type could be one of the

following types:

• A primitive type

• java.lang.String type

• java.lang.Class type

• An enum type

• An annotation type

You need to specify the value for an array element inside braces. Elements of the

array are separated by a comma. Suppose you want to annotate your program elements

with a short description of a list of things that you need to work on. Listing 1-11 creates a

ToDo annotation type for this purpose.

Listing 1-11. ToDo Annotation Type with a String Array As Its Sole Element

// ToDo.java

package com.jdojo.annotation;

public @interface ToDo {

 String[] items();

}

The following snippet of code shows how to use a @ToDo annotation:

@ToDo(items={"Add readFile method", "Add error handling"})

public class Test {

 // Code goes here

}

If you have only one element in the array, you can omit the braces.

The following two annotation instances of the ToDo annotation type are equivalent:

@ToDo(items={"Add error handling"})

@ToDo(items="Add error handling")

Chapter 1 annotations

25

Note if you do not have valid values to pass to an element of an array type, you
can use an empty array. For example, @ToDo(items={}) is a valid annotation
where the items element has been assigned an empty array.

 No Null Value in an Annotation
You cannot use a null reference as a value for an element in an annotation. Note that it

is allowed to use an empty string for the String type element and an empty array for an

array type element. Using the following annotations will result in compile-time errors:

@ToDo(items=null)

@Name(first=null, last="Jacobs")

 Shorthand Annotation Syntax
The shorthand annotation syntax is a little easier to use in a few circumstances. Suppose

you have an annotation type Enabled with an element having a default value, as shown:

public @interface Enabled {

 boolean status() default true;

}

If you want to annotate a program element with the Enabled annotation type using

the default value for its element, you can use the @Enabled() syntax. You do not need

to specify the values for the status element because it has a default value. You can use a

shorthand in this situation, which allows you to omit the parentheses. You can just use

@Enabled instead of using @Enabled(). The Enabled annotation can be used in either of

the following two forms:

@Enabled

public class Test {

 // Code goes here

}

Chapter 1 annotations

26

@Enabled()

public class Test {

 // Code goes here

}

An annotation type with only one element also has a shorthand syntax.

You can use this shorthand if you adhere to a naming rule for the sole element in

the annotation type. The name of the element must be value. If an annotation type has

only one element that is named value, you can omit the name from the name=value pair

from your annotation. The following snippet of code declares a Company annotation type,

which has only one element named value:

public @interface Company {

 String value(); // the element name is value

}

You can omit the name from the name=value pair when you use the Company

annotation, as shown here. If you want to use the element name with the Company

annotation, you can always do so as

@Company(value="Abc Inc.")

@Company("Abc Inc.")

public class Test {

 // Code goes here

}

You can use this shorthand of omitting the name of the element from annotations,

even if the element data type is an array. Consider the following annotation type called

Reviewers:

public @interface Reviewers {

 String[] value(); // the element name is value

}

Chapter 1 annotations

27

Since the Reviewers annotation type has only one element, which is named value,

you can omit the element name when you are using it:

// No need to specify name of the element

@Reviewers({"John Jacobs", "Wally Inman"})

public class Test {

 // Code goes here

}

You can also omit the braces if you specify only one element in the array for the value

element of the Reviewers annotation type:

@Reviewers("John Jacobs")

public class Test {

 // Code goes here

}

You just saw several examples using the name of the element as a value. Here is the

general rule of omitting the name of the element in an annotation: if you supply only one

value when using an annotation, the name of the element is assumed value. This means

that you are not required to have only one element in the annotation type, which is

named value, to omit its name in the annotations. If you have an annotation type, which

has an element named value (with or without a default value) and all other elements

have default values, you can still omit the name of the element in annotation instances of

this type. Here are some examples to illustrate this rule:

public @interface A {

 String value();

 int id() default 10;

}

// Same as @A(value="Hello", id=10)

@A("Hello")

public class Test {

 // Code goes here

}

// Won't compile. Must use only one value to omit the

// element name

@A("Hello", id=16)

Chapter 1 annotations

28

public class WontCompile {

 // Code goes here

}

// OK. Must use name=value pair when passing more than

// one value

@A(value="Hello", id=16)

public class Test {

 // Code goes here

}

 Marker Annotation Types
A marker annotation type does not declare any elements, not even one with a default

value. Typically, a marker annotation is used by annotation processing tools, which

generate some kind of boilerplate code based on the marker annotation type:

public @interface Marker {

 // No element declarations

}

@Marker

public class Test {

 // Code goes here

}

An example would be a @Monitor annotation for methods to be monitored by some

performance monitoring tool:

public class Calculator {

 ...

 @Monitor

 public void calc() {

 ...

 }

}

The tool would automatically add code for measuring elapse times, call frequency,

and the like.

Chapter 1 annotations

29

 Meta-Annotation Types
Meta-annotation types are used to annotate other annotation type declarations. The

following are meta-annotation types:

• Target

• Retention

• Inherited

• Documented

• Repeatable

Meta-annotation types are part of the Java class library. They are declared in the

java.lang.annotation package. I discuss meta-annotation types in detail in subsequent

sections.

Note the java.lang.annotation package contains a Native annotation
type, which is not a meta-annotation. it is used to annotate fields indicating that
the field may be referenced from native code. it is a marker annotation. typically, it
is used by tools that generate some code based on this annotation.

 The Target Annotation Type
As a first member of the set of meta-annotations, the Target annotation type is used to

specify the context in which an annotation type can be used. It has only one element

named value, which is an array of the java.lang.annotation.ElementType enum type.

Table 1-1 lists all constants in the ElementType enum.

Chapter 1 annotations

30

The following declaration of the Version annotation type annotates the annotation

type declaration with the Target meta-annotation, which specifies that the Version

annotation type can be used with program elements of only three types: any type (class,

interface, enum, and annotation types), constructors, and method.

// Version.java

package com.jdojo.annotation;

import java.lang.annotation.Target;

import java.lang.annotation.ElementType;

@Target({ElementType.TYPE, ElementType.CONSTRUCTOR,

 ElementType.METHOD})

Table 1-1. List of Constants in the java.lang.annotation.ElementType Enum

Constant Name Description

ANNOTATION_TYPE Used to annotate another annotation type declaration. this makes the

annotation type a meta-annotation.

CONSTRUCTOR Used to annotate constructors.

FIELD Used to annotate fields and enum constants.

LOCAL_VARIABLE Used to annotate local variables.

METHOD Used to annotate methods.

MODULE Used to annotate modules. it was added in Java 9.

PACKAGE Used to annotate package declarations.

PARAMETER Used to annotate parameters.

TYPE Used to annotate class, interface (including annotation type), or enum

declarations.

TYPE_PARAMETER Used to annotate type parameters in generic classes, interfaces, methods,

etc. it was added in Java 8.

TYPE_USE Used to annotate all uses of types. it was added in Java 8. the annotation

can also be used where an annotation with ElementType.TYPE and

ElementType.TYPE_PARAMETER can be used. it can also be used

before constructors, in which case it represents the objects created by the

constructor.

Chapter 1 annotations

31

public @interface Version {

 int major();

 int minor();

}

The Version annotation type cannot be used on any program elements other than

the three types specified in its Target annotation. Its following use is incorrect because it

is being used on an instance variable (a field):

public class WontCompile {

 // A compile-time error. Version annotation cannot

 // be used on a field.

 @Version(major = 1, minor = 1)

 int id = 110;

}

The following uses of the Version annotation are valid:

// OK. A class type declaration

@Version(major = 1, minor = 0)

public class VersionTest {

 // OK. A constructor declaration

 @Version(major = 1, minor = 0)

 public VersionTest() {

 // Code goes here

 }

 // OK. A method declaration

 @Version(major = 1, minor = 1)

 public void doSomething() {

 // Code goes here

 }

}

Prior to Java 8, annotations were allowed on formal parameters of methods and

declarations of packages, classes, methods, fields, and local variables. Java 8 added

support for using annotations on any use of a type and on type parameter declarations.

The phrase “any use of a type” needs a little explanation. A type is used in many contexts,

for example, after the extends clause as a supertype, in an object creation expression

Chapter 1 annotations

32

after the new operator, in a cast, in a throws clause, etc. From Java 8, annotations may

appear before the simple name of the types wherever a type is used. Note that the simple

name of the type may be used only as a name, not as a type, for example, in an import

statement. Consider the declarations of the Fatal and NonZero annotation types shown

in Listings 1-12 and 1-13.

Listing 1-12. A Fatal Annotation Type That Can Be Used with Any Type Use

// Fatal.java

package com.jdojo.annotation;

import java.lang.annotation.ElementType;

import java.lang.annotation.Target;

@Target({ElementType.TYPE_USE})

public @interface Fatal {

}

Listing 1-13. A NonZero Annotation Type That Can Be Used with Any Type Use

// NonZero.java

package com.jdojo.annotation;

import java.lang.annotation.ElementType;

import java.lang.annotation.Target;

@Target({ElementType.TYPE_USE})

public @interface NonZero {

}

The Fatal and NonZero annotation types can be used wherever a type is used. Their

uses in the following contexts are valid:

public class Test {

 public void processData() throws @Fatal Exception {

 double value = getValue();

 int roundedValue = (@NonZero int) value;

 Test t = new @Fatal Test();

 // More code goes here

 }

Chapter 1 annotations

33

 public double getValue() {

 double value = 189.98;

 // More code goes here

 return value;

 }

}

Note if you do not annotate an annotation type with the Target annotation
type, the annotation type can be used everywhere, except in a type parameter
declaration.

 The Retention Annotation Type
You can use annotations for different purposes. You may want to use them solely for

documentation purposes, to be processed by the compiler, and/or to use them at

runtime. An annotation can be retained at three levels:

• Source code only

• Class file only (the default)

• Class file and runtime

The Retention meta-annotation type is used to specify how an annotation instance

of an annotation type should be retained by Java. This is also known as the retention

policy of an annotation type. If an annotation type has a “source code only” retention

policy, instances of its type are removed when compiled into a class file. If the retention

policy is “class file only,” annotation instances are retained in the class file, but they

cannot be read at runtime. If the retention policy is “class file and runtime” (simply

known as runtime), the annotation instances are retained in the class file, and they are

available for reading at runtime.

The Retention meta-annotation type declares one element, named value, which is of

the java.lang.annotation.RetentionPolicy enum type. The RetentionPolicy enum

has three constants, SOURCE, CLASS, and RUNTIME, which are used to specify the retention

policy of source only, class only, and class-and-runtime, respectively. The following

Chapter 1 annotations

34

code uses the Retention meta-annotation on the Version annotation type. It specifies

that the Version annotations should be available at runtime. Note the use of two meta-

annotations on the Version annotation type: Target and Retention.

// Version.java

package com.jdojo.annotation;

import java.lang.annotation.Target;

import java.lang.annotation.ElementType;

import java.lang.annotation.Retention;

import java.lang.annotation.RetentionPolicy;

@Target({ElementType.TYPE, ElementType.CONSTRUCTOR,

 ElementType.METHOD})

@Retention(RetentionPolicy.RUNTIME)

public @interface Version {

 int major();

 int minor();

}

Note if you do not use the Retention meta-annotation on an annotation type,
its retention policy defaults to class file only. this implies that you will not be able
to read those annotations at runtime. You will make this common mistake in the
beginning. You would try to read annotations, and the runtime will not return any
values. Make sure that your annotation type has been annotated with the retention
meta-annotation with the retention policy of RetentionPolicy.RUNTIME before
you attempt to read them at runtime. an annotation on a local variable declaration
is never available in the class file or at runtime irrespective of the retention policy
of the annotation type. the reason for this restriction is that the Java runtime does
not let you access the local variables using reflection at runtime; unless you have
access to the local variables at runtime, you cannot read annotations for them.

Chapter 1 annotations

35

 The Inherited Annotation Type
The Inherited annotation type is a marker meta-annotation type. If an annotation

type is annotated with an Inherited meta-annotation, its instances are inherited by

a subclass declaration. It has no effect if an annotation type is used to annotate any

program elements other than a class declaration. Let’s consider two annotation type

declarations: Ann2 and Ann3. Note that Ann2 is not annotated with an Inherited

meta- annotation, whereas Ann3 is.

public @interface Ann2 {

 int id();

}

@Inherited

public @interface Ann3 {

 int id();

}

Let’s declare two classes, A and B, as follows. Note that class B inherits class A:

@Ann2(id=505)

@Ann3(id=707)

public class A {

 // Code for class A goes here

}

// Class B inherits Ann3(id=707) annotation from the

// class A

public class B extends A {

 // Code for class B goes here

}

In this snippet of code, class B inherits the @Ann3(id=707) annotation from

class A because the Ann3 annotation type has been annotated with an Inherited

meta- annotation. Class B does not inherit the @Ann2(id=505) annotation because the

Ann2 annotation type is not annotated with an Inherited meta-annotation.

Chapter 1 annotations

36

 The Documented Annotation Type
The Documented annotation type is a marker meta-annotation type. If an annotation

type is annotated with a Documented annotation, the Javadoc tool will generate

documentation for all of its instances. Listing 1-14 has the code for the final version

of the Version annotation type, which has been annotated with a Documented

meta- annotation.

Listing 1-14. The Final Version of the Version Annotation Type

// Version.java

package com.jdojo.annotation;

import java.lang.annotation.Documented;

import java.lang.annotation.Target;

import java.lang.annotation.ElementType;

import java.lang.annotation.Retention;

import java.lang.annotation.RetentionPolicy;

@Target({ElementType.TYPE, ElementType.CONSTRUCTOR,

 ElementType.METHOD, ElementType.MODULE,

 ElementType.PACKAGE, ElementType.LOCAL_VARIABLE,

 ElementType.TYPE_USE})

@Retention(RetentionPolicy.RUNTIME)

@Documented

public @interface Version {

 int major();

 int minor();

}

Suppose you annotate a Test class with your Version annotation type as follows:

package com.jdojo.annotation;

@Version(major=1, minor=0)

public class Test {

 // Code for Test class goes here

}

Chapter 1 annotations

37

When you generate documentation for the Test class using the Javadoc tool,

the Version annotation on the Test class declaration is also generated as part of the

documentation. If you remove the Documented annotation from the Version annotation

type declaration, the Test class documentation would not contain information about its

Version annotation.

 The Repeatable Annotation Type
An annotation type declaration must be annotated with a @Repeatable annotation if its

repeated use is to be allowed. The Repeatable annotation type has only one element

named value whose type is a class type of another annotation type. Creating a repeatable

annotation type is a two-step process:

• Declare an annotation type (say T) and annotate it with the

Repeatable meta-annotation. Specify the value for the annotation as

another annotation that is known as containing an annotation for the

repeatable annotation type being declared.

• Declare the containing annotation type with one element that is an

array of the repeatable annotation.

Listings 1-15 and 1-16 contain declarations for the ChangeLog and ChangeLogs

annotation types. ChangeLog is annotated with the @Repeatable(ChangeLogs.class)

annotation, which means that it is a repeatable annotation type and its

containing annotation type is ChangeLogs.

Listing 1-15. A Repeatable Annotation Type That Uses the ChangeLogs As the

Containing Annotation Type

// ChangeLog.java

package com.jdojo.annotation;

import java.lang.annotation.Repeatable;

import java.lang.annotation.Retention;

import java.lang.annotation.RetentionPolicy;

@Retention(RetentionPolicy.RUNTIME)

@Repeatable(ChangeLogs.class)

Chapter 1 annotations

38

public @interface ChangeLog {

 String date();

 String comments();

}

Listing 1-16. A Containing Annotation Type for the ChangeLog Repeatable

Annotation Type

// ChangeLogs.java

package com.jdojo.annotation;

import java.lang.annotation.Retention;

import java.lang.annotation.RetentionPolicy;

@Retention(RetentionPolicy.RUNTIME)

public @interface ChangeLogs {

 ChangeLog[] value();

}

You can use the ChangeLog annotation to log change history for the Test class, as shown:

@ChangeLog(date="08/28/2017",

 comments="Declared the class")

@ChangeLog(date="09/21/2017",

 comments="Added the process() method")

public class Test {

 public static void process() {

 // Code goes here

 }

}

 Commonly Used Standard Annotations
The Java API defines many standard annotation types. This section discusses four of the

most commonly used standard annotations. They are defined in the java.lang package.

They are

• Deprecated

• Override

Chapter 1 annotations

39

• SuppressWarnings

• FunctionalInterface

 Deprecating APIs
Deprecating APIs in Java is a way to provide information about the lifecycle of the APIs.

You can deprecate modules, packages, types, constructors, methods, fields, parameters,

and local variables. When you deprecate an API, you are telling its users

• Not to use the API because it is dangerous

• To migrate away from the API because a better replacement for the

API exists

• To migrate away from the API because the API will be removed in a

future release

The JDK contains two constructs that are used to deprecate APIs:

• The @deprecated Javadoc tag

• The java.lang.Deprecated annotation type

The @deprecated Javadoc tag lets you specify the details about the deprecation with

a rich set of text formatting features of HTML. The java.lang.Deprecated annotation

type can be used on the API elements, which are deprecated.

The Deprecated annotation type is retained at runtime.

The @deprecated tag and the @Deprecated annotation are supposed to be used

together. Both should be present or both absent. The @Deprecation annotation does not

let you specify a description of the deprecation, so you must use the @deprecated tag to

provide the description.

Note Using a @deprecated tag, but not a @Deprecated annotation, on an api
element generates a compiler warning.

Listing 1-17 contains the declaration for a class named FileCopier. Suppose this

class is shipped as part of a library.

Chapter 1 annotations

40

Listing 1-17. A FileCopier Utility Class

// FileCopier.java

package com.jdojo.deprecation;

import java.io.File;

/**

* The class consists of static methods that can be used

* to copy files and directories.

*

* @deprecated Deprecated since 1.4. Not safe to use. Use

* the <code>java.nio.file.Files</code> class instead. This

* class will be removed in a future release of this library.

*

* @since 1.2

*/

@Deprecated

public class FileCopier {

 // No direct instantiation supported

 private FileCopier() {

 }

 /**

 * Copies the contents of src to dst.

 * @param src The source file

 * @param dst The destination file

 * @return true if the copy is successfully,

 * false otherwise.

 */

 public static boolean copy(File src, File dst) {

 // More code goes here

 return true;

 }

 // More code goes here

}

Chapter 1 annotations

41

The FileCopier class is deprecated using the @Deprecated annotation. Its Javadoc

uses the @deprecated tag to give the deprecation details such as when it was deprecated,

its replacement, and its removal notice. Before JDK9, the @Deprecated annotation type

did not contain any elements, so you had to provide all details about the deprecation

using the @deprecated tag in the Javadoc for the deprecated API. Note that the @since

tag used in the Javadoc indicates that the FileCopier class has existed since version 1.2

of this library, whereas the @deprecated tag indicates that the class has been deprecated

since version 1.4 of the library.

The Javadoc tool moves the contents of the @deprecated tag to the top in the

generated Javadoc to draw the reader’s attention. The compiler generates a warning

when non-deprecated code uses a deprecated API. Annotating an API with @Deprecated

does not generate a warning; however, using an API that has been annotated with a

@Deprecated annotation does. If you used the FileCopier class outside the class itself,

you will receive a compile-time warning about using the deprecated class.

Suppose you compiled your code and deployed it to production. If you upgraded

the JDK version or libraries/frameworks that contain new, deprecated APIs that your

old application uses, you do not receive any warnings, and you would miss a chance

to migrate away from the deprecated APIs. You must recompile your code to receive

warnings. There was no tool to scan and analyze the compiled code (e.g., JAR files)

and report the use of deprecated APIs. Even worse is the case when a deprecated API

is removed from the newer version, and your old, compiled code receives unexpected

runtime errors. Developers were also confused when they looked at a deprecated

element Javadoc—there was no way to express when the API was deprecated and

whether the deprecated API will be removed in a future release. Prior to JDK9, all you

could do was specify these pieces of information in text as part of the @deprecated

tag. For this reason, there are two additional elements enhancing the @Deprecated

annotation (since JDK9): since and forRemoval. They are declared as follows:

• String since() default “”;

• boolean forRemoval() default false;

Both new elements have default values specified, so the existing uses of the

annotation do not break. The since element specifies the version in which the annotated

API element became deprecated. It is a string and you are expected to follow the same

Chapter 1 annotations

42

version naming convention as the JDK version scheme, for example, “9” for JDK9. It

defaults to the empty string. Note that JDK9 did not add an element to the @Deprecated

annotation type to specify a description of the deprecation. This was done for two

reasons:

• The annotation is retained at runtime. Adding descriptive text to the

annotation would add to the runtime memory.

• The descriptive text cannot be just plain text. For example, it needs to

provide a link to the replacement of the deprecated API. The existing

@deprecated Javadoc tag already provides this feature.

The forRemoval element indicates that the annotated API element is subject to

removal in a future release, and you should migrate away from the API. It defaults to

false.

Note the @since Javadoc tag on an element indicates when the api element
was added, whereas the since element of the @Deprecated annotation indicates
when the api element was deprecated. in JDK9, reasonable efforts have been
made to backfill these two elements’ values in most, if not all, use-sites of the
@Deprecated annotations in the Java se apis.

The addition of the forRemoval element in the @Deprecation annotation type has

added five more use cases. When an API is deprecated with forRemoval set to false,

such a deprecation is known as an ordinary deprecation, and the warnings issued in

such cases are called ordinary deprecation warnings. When an API is deprecated with

forRemoval set to true, such a deprecation is known as a terminal deprecation, and

the warnings issued in such cases are called terminal deprecation warnings or removal

warnings. Table 1-2 shows the matrix of deprecation warnings (issued in JDK9).

Chapter 1 annotations

43

The warning issued in one case, where both the API and its use-site are terminally

deprecated, needs a little explanation. Both API and the code that uses it have been

deprecated, and both will be removed in the future, so what is the point of getting a

warning in such a case? This is done to cover cases where the terminally deprecated API

and its use-site are in two different codebases and are maintained independently. If the

use-site codebase outlives the API codebase, the use-site will get an unexpected runtime

error because the API it uses no longer exists. Issuing a warning at the use-site will give

its maintainers a chance to plan for alternatives in case the terminally deprecated API

goes away before the code at use-sites.

If you use @SuppressWarnings("deprecation"), the compiler suppresses only

ordinary deprecation warnings. To suppress removal warnings, you need to use

@SuppressWarnings("removal"). If you want to suppress both ordinary and removal

deprecation warnings, you need to use @SuppressWarnings({"deprecation",

"removal"}).

As an example, I show you all use cases of deprecating APIs, using the deprecated

API with and without suppressing warnings with a simple example. In the example,

I deprecate only methods and use them to generate compile-time warnings. You are,

however, not limited to deprecating only methods. Comments on the methods should

help you understand the expected behavior. Listing 1-18 contains the code for a class

named Box. The class contains three methods—one in each category of deprecation—

not deprecated, ordinarily deprecated, and terminally deprecated. I have kept the class

simple, so you can focus on the deprecation being used. Compiling the Box class will not

generate any deprecation warnings because the class does not use any deprecated API;

rather, it contains the deprecated APIs.

Table 1-2. Matrix of Deprecation Warnings

API Use-Site API Declaration Site,
Not Deprecated

API Declaration Site,
Terminally Deprecated

API Declaration Site,
Ordinarily Deprecated

not Deprecated no Warning ordinary Deprecation

Warning

removal Deprecation

Warning

ordinarily

Deprecated

no Warning no Warning removal Deprecation

Warning

terminally

Deprecated

no Warning no Warning removal Deprecation

Warning

Chapter 1 annotations

44

Listing 1-18. A Box Class with Three Types of Methods: Not Deprecated,

Ordinarily Deprecated, and Terminally Deprecated

// Box.java

package com.jdojo.annotation;

/**

* This class is used to demonstrate how to deprecate APIs.

*/

public class Box {

 /**

 * Not deprecated

 */

 public static void notDeprecated() {

 System.out.println("notDeprecated...");

 }

 /**

 * Deprecated ordinarily.

 * @deprecated Do not use it.

 */

 @Deprecated(since="2")

 public static void deprecatedOrdinarily() {

 System.out.println("deprecatedOrdinarily...");

 }

 /**

 * Deprecated terminally.

 * @deprecated It will be removed in a future release.

 * Migrate your code now.

 */

 @Deprecated(since="2", forRemoval=true)

 public static void deprecatedTerminally() {

 System.out.println("deprecatedTerminally...");

 }

}

Listing 1-19 contains the code for a BoxTest class. The class uses all methods of

the Box class. A few methods in the BoxTest class have been deprecated ordinarily and

Chapter 1 annotations

45

terminally. The first nine methods correspond to nine use cases in Table 1-2, which

will generate four deprecation warnings—one ordinary warning and three terminal

warnings. Methods named like m4X(), where X is a digit, show you how to suppress

ordinary and terminal deprecation warnings.

Listing 1-19. A BoxTest Class That Uses Deprecated APIs and Suppresses

Deprecation Warnings

// BoxTest.java

package com.jdojo.annotation;

public class BoxTest {

 /**

 * API: Not deprecated

 * Use-site: Not deprecated

 * Deprecation warning: No warning

 */

 public static void m11() {

 Box.notDeprecated();

 }

 /**

 * API: Ordinarily deprecated

 * Use-site: Not deprecated

 * Deprecation warning: No warning

 */

 public static void m12() {

 Box.deprecatedOrdinarily();

 }

 /**

 * API: Terminally deprecated

 * Use-site: Not deprecated

 * Deprecation warning: Removal warning

 */

 public static void m13() {

 Box.deprecatedTerminally();

 }

Chapter 1 annotations

46

 /**

 * API: Not deprecated

 * Use-site: Ordinarily deprecated

 * Deprecation warning: No warning

 * @deprecated Dangerous to use.

 */

 @Deprecated(since="1.1")

 public static void m21() {

 Box.notDeprecated();

 }

 /**

 * API: Ordinarily deprecated

 * Use-site: Ordinarily deprecated

 * Deprecation warning: No warning

 * @deprecated Dangerous to use.

 */

 @Deprecated(since="1.1")

 public static void m22() {

 Box.deprecatedOrdinarily();

 }

 /**

 * API: Terminally deprecated

 * Use-site: Ordinarily deprecated

 * Deprecation warning: Removal warning

 * @deprecated Dangerous to use.

 */

 @Deprecated(since="1.1")

 public static void m23() {

 Box.deprecatedTerminally();

 }

 /**

 * API: Not deprecated

 * Use-site: Terminally deprecated

 * Deprecation warning: No warning

 * @deprecated Going away.

Chapter 1 annotations

47

 */

 @Deprecated(since="1.1", forRemoval=true)

 public static void m31() {

 Box.notDeprecated();

 }

 /**

 * API: Ordinarily deprecated

 * Use-site: Terminally deprecated

 * Deprecation warning: No warning

 * @deprecated Going away.

 */

 @Deprecated(since="1.1", forRemoval=true)

 public static void m32() {

 Box.deprecatedOrdinarily();

 }

 /**

 * API: Terminally deprecated

 * Use-site: Terminally deprecated

 * Deprecation warning: Removal warning

 * @deprecated Going away.

 */

 @Deprecated(since="1.1", forRemoval=true)

 public static void m33() {

 Box.deprecatedTerminally();

 }

 /**

 * API: Ordinarily and Terminally deprecated

 * Use-site: Not deprecated

 * Deprecation warning: Ordinary and removal warnings

 */

 public static void m41() {

 Box.deprecatedOrdinarily();

 Box.deprecatedTerminally();

 }

Chapter 1 annotations

48

 /**

 * API: Ordinarily and Terminally deprecated

 * Use-site: Not deprecated

 * Deprecation warning: Ordinary warnings

 */

 @SuppressWarnings("deprecation")

 public static void m42() {

 Box.deprecatedOrdinarily();

 Box.deprecatedTerminally();

 }

 /**

 * API: Ordinarily and Terminally deprecated

 * Use-site: Not deprecated

 * Deprecation warning: Removal warnings

 */

 @SuppressWarnings("removal")

 public static void m43() {

 Box.deprecatedOrdinarily();

 Box.deprecatedTerminally();

 }

 /**

 * API: Ordinarily and Terminally deprecated

 * Use-site: Not deprecated

 * Deprecation warning: Removal warnings

 */

 @SuppressWarnings({"deprecation", "removal"})

 public static void m44() {

 Box.deprecatedOrdinarily();

 Box.deprecatedTerminally();

 }

}

You need to compile the BoxTest class using the -Xlint:deprecation compiler flag,

so the compiler emits deprecation warnings:

Chapter 1 annotations

49

C:\Java9LanguageFeatures>javac -Xlint:deprecation ^

 -d build\modules\jdojo.annotation ^

src\jdojo.annotation\classes\com\jdojo\annotation\

 BoxTest.java

src\jdojo.annotation\classes\com\jdojo\annotation\

 BoxTest.java:20: warning: [deprecation]

deprecatedOrdinarily() in Box has been deprecated

 Box.deprecatedOrdinarily();

 ^

src\jdojo.annotation\classes\com\jdojo\annotation\

 BoxTest.java:29: warning: [removal]

deprecatedTerminally() in Box has been deprecated

 and marked for removal

 Box.deprecatedTerminally();

 ^

src\jdojo.annotation\classes\com\jdojo\annotation\

 BoxTest.java:62: warning: [removal]

deprecatedTerminally() in Box has been deprecated

 and marked for removal

 Box.deprecatedTerminally();

 ^

src\jdojo.annotation\classes\com\jdojo\annotation\

 BoxTest.java:95: warning: [removal]

deprecatedTerminally() in Box has been deprecated

 and marked for removal

 Box.deprecatedTerminally();

 ^

src\jdojo.annotation\classes\com\jdojo\annotation\

 BoxTest.java:104: warning: [deprecation]

deprecatedOrdinarily() in Box has been deprecated

 Box.deprecatedOrdinarily();

 ^

src\jdojo.annotation\classes\com\jdojo\annotation\

 BoxTest.java:105: warning: [removal]

Chapter 1 annotations

50

deprecatedTerminally() in Box has been deprecated

 and marked for removal

 Box.deprecatedTerminally();

 ^

src\jdojo.annotation\classes\com\jdojo\annotation\

 BoxTest.java:116: warning: [removal]

deprecatedTerminally() in Box has been deprecated

 and marked for removal

 Box.deprecatedTerminally();

 ^

src\jdojo.annotation\classes\com\jdojo\annotation\

 BoxTest.java:126: warning: [deprecation]

deprecatedOrdinarily() in Box has been deprecated

 Box.deprecatedOrdinarily();

 ^

8 warnings

(No line break and no spaces after “annotation\” in the command.)

Recall that deprecation warnings are compile-time warnings. You will not get any

warnings if compiled code for your deployed application starts using an ordinarily

deprecated API or generates a runtime error because an API that was once valid had

been terminally deprecated and removed. JDK9 and later improve this situation by

providing a static analysis tool called jdeprscan that scans compiled code to give you the

list of deprecated APIs being used. Currently, the tool reports the use of only deprecated

JDK APIs. If your compiled code uses deprecated APIs from other libraries, say, Spring or

Hibernate, or your own libraries, this tool will not report those uses.

The jdeprscan tool is in the JDK_HOME\bin directory. The general syntax to use the

tool is as follows:

jdeprscan [options] {dir|jar|class}

Here, [options] is a list of zero or more options. You can specify a list of

space- separated directories, JARs, fully qualified class names, or class file paths

as arguments to scan. The available options are as follows:

• -l, –list

• –class-path <CLASSPATH>

Chapter 1 annotations

51

• –for-removal

• –release <6|7|8|9|...|17>

• -v, –verbose

• –version

• –full-version

• -h, –help

The –list option lists the set of deprecated APIs in Java SE. No arguments specifying

the location of compiled classes should be specified when this option is used.

The –class-path specifies the class path to be used to find dependent classes during

the scan.

The –for-removal option restricts the scan or list to only those APIs that have been

deprecated for removal.

The –release option specifies the Java SE release that provides the set of deprecated

APIs during scanning. For example, to list all deprecated APIs in JDK15, you will use the

tool as follows: jdeprscan –list –release 15.

The –verbose option prints additional messages during the scanning process.

The –version and –full-version options print the abbreviated and full versions of

the jdeprscan tool, respectively.

The –help option prints a detailed help message about the jdeprscan tool.

Listing 1-20 contains the code for a JDeprScanTest class. The code is trivial. It is

intended to just compile, not run. Running it will not produce any interesting output.

It creates two threads. One thread is stopped using the stop() method of the Thread

class, and another thread is destroyed using the destroy() method of the Thread class.

The stop() and destroy() methods have been ordinarily deprecated since JDK 1.2 and

JDK 1.5, respectively. JDK9 has terminally deprecated the destroy() method, whereas

it continued to keep the stop() method ordinarily deprecated. I use this class in the

following examples.

Chapter 1 annotations

52

Listing 1-20. A JDeprScanTest Class That Uses the Ordinarily Deprecated

Method stop() and the Terminally Deprecated Method destroy() of the Thread

Class

// JDeprScanTest.java

package com.jdojo.annotation;

public class JDeprScanTest {

 public static void main(String[] args) {

 Thread t = new Thread(() ->

 System.out.println("Test"));

 t.start();

 t.stop();

 Thread t2 = new Thread(() ->

 System.out.println("Test"));

 t2.start();

 t2.destroy();

 }

}

The following command prints the list of all deprecated APIs in JDK16. The command

takes a few seconds to start printing the results because it scans the entire JDK:

C:\Java9LanguageFeatures>jdeprscan --list --release 16

@Deprecated(since="16", forRemoval=true)

 javax.management.relation.RoleStatus()

@Deprecated(since="9") interface

 java.beans.AppletInitializer

...

The following command prints all terminally deprecated APIs in JDK16. That is, it

prints all deprecated APIs that have been marked for removal in a future release:

C:\Java9LanguageFeatures>jdeprscan --list --for-removal ^

 --release 16

@Deprecated(since="16", forRemoval=true)

 javax.management.relation.RoleStatus()

...

Chapter 1 annotations

53

The following command prints the list of all APIs deprecated in JDK8:

C:\ Java9LanguageFeatures >jdeprscan --list --release 8

@Deprecated class javax.swing.text.TableView.TableCell

...

The following command prints the list of deprecated APIs in JDK16 used by the

java.lang.Thread class:

C:\Java9LanguageFeatures>jdeprscan --release 16 ^

 java.lang.Thread

class java/lang/Thread uses deprecated method

 java/lang/Thread::resume()V (forRemoval=true)

Note that the previous command does not print the list of deprecated APIs in

the Thread class. Rather, it prints the list of APIs in the Thread class that uses those

deprecated APIs.

The following command lists all uses of deprecated JDK APIs in some directory:

C:\Java9LanguageFeatures>jdeprscan --release 16 ^

 path/to/folder

class com/test/Jdk17 uses deprecated method

 java/lang/Integer::<init>(I)V (forRemoval=true)

The jdeprscan tool is a static analysis tool, so it will skip dynamic uses of deprecated

APIs. For example, you can call a deprecated method using reflection, which this tool

will miss during scanning. You can also call deprecated methods in providers loaded by

a ServiceLoader, which will be missed by this tool.

Until JDK9, the compiler generated a warning if you imported deprecated constructs

using import statements, even if you used a @SuppressWarnings annotation on all

use- sites of the deprecated imported constructs. This was an annoyance if you were

trying to get rid of all deprecation warnings in your code. You just could not get rid

of them because you cannot annotate import statements. JDK9 improved on this by

omitting the deprecation warnings on import statements.

Chapter 1 annotations

54

 Suppressing Named Compile-Time Warnings
The SuppressWarnings annotation type is used to suppress named compile-time

warnings. It declares one element named value whose data type is an array of String.

Let’s consider the code for the SuppressWarningsTest class, which uses the raw type for

the ArrayList<T> in the test() method. The compiler generates an unchecked named

warning when you use a raw type. See Listing 1-21.

Listing 1-21. A Class That Will Generate Warnings When Compiled

// SuppressWarningsTest.java

package com.jdojo.annotation;

import java.util.ArrayList;

public class SuppressWarningsTest {

 public void test() {

 ArrayList list = new ArrayList();

 list.add("Hello"); // The compiler issues an

 // unchecked warning

 }

}

Compile the SuppressWarningsTest class with an option to generate an unchecked

warning using the command:

javac -Xlint:unchecked SuppressWarningsTest.java

com\jdojo\annotation\SuppressWarningsTest.java:10:

 warning: [unchecked] unchecked call to add(E) as a

 member of the raw type ArrayList

 list.add("Hello");

 ^

 where E is a type-variable

 E extends Object declared in class ArrayList

1 warning

As a developer, sometimes you are aware of such compiler warnings,

and you want to suppress them when your code is compiled. You can do so by using a

@SuppressWarnings annotation on your program element by supplying a list of the

names of the warnings to be suppressed. For example, if you use it on a class declaration,

Chapter 1 annotations

55

all specified warnings will be suppressed from all methods inside that class declaration.

It is recommended that you use this annotation on the innermost program element on

which you want to suppress the warnings.

Listing 1-22 uses a @SuppressWarnings annotation on the test() method. It

specifies two named warnings: “unchecked” and “deprecation.” The test() method

does not contain code that will generate a “deprecated” warning. It was included here to

show you that you could suppress multiple named warnings using a SuppressWarnings

annotation. If you recompile the SuppressWarningsTest class with the same options

shown previously, it will not generate any compiler warnings.

Listing 1-22. The Modified Version of the SuppressWarningsTest Class

// SuppressWarningsTest.java

package com.jdojo.annotation;

import java.util.ArrayList;

public class SuppressWarningsTest {

 @SuppressWarnings({"unchecked", "deprecation"})

 public void test() {

 ArrayList list = new ArrayList();

 list.add("Hello"); // The compiler does not

 // issue an unchecked warning

 }

}

 Overriding Methods
The java.lang.Override annotation type is a marker annotation type. It can only be

used on methods. It indicates that a method annotated with this annotation overrides a

method declared in its supertype. This is very helpful for developers to avoid typos that

lead to logical errors in the program. If you mean to override a method in a supertype,

it is recommended to annotate the overridden method with an @Override annotation.

The compiler will make sure that the annotated method really overrides a method in the

supertype. If the annotated method does not override a method in the supertype, the

compiler will generate an error.

Chapter 1 annotations

56

Consider two classes, A and B. Class B inherits from class A. The m1() method in class

B overrides the m1() method in its superclass A. The annotation @Override on the m1()

method in class B just makes a statement about this intention. The compiler verifies this

statement and finds it to be true in this case:

public class A {

 public void m1() {

 }

}

public class B extends A {

 @Override

 public void m1() {

 }

}

Let’s consider class C:

// Won't compile because m2() does not override any method

public class C extends A {

 @Override

 public void m2() {

 }

}

The method m2() in class C has an @Override annotation. However, there is no m2()

method in its superclass A. The method m2() is a new method in class C. The compiler

finds out that method m2() in class C does not override any superclass method, even

though its developer has indicated so. The compiler generates an error in this case.

 Declaring Functional Interfaces
An interface with one abstract method declaration is known as a functional interface.

Previously, a functional interface was known as a SAM (Single Abstract Method) type.

The compiler verifies that all interfaces annotated with a @FunctionalInterface really

contain one and only one abstract method. A compile-time error is generated

if the interfaces annotated with this annotation are not functional. It is also a

compile- time error to use this annotation on classes, annotation types, and enums.

The FunctionalInterface annotation type is a marker annotation.

Chapter 1 annotations

57

The following declaration of the Runner interface uses a @FunctionalInterface

annotation. The interface declaration will compile fine:

@FunctionalInterface

public interface Runner {

 void run();

}

The following declaration of the Job interface uses a @FunctionalInterface

annotation, which will generate a compile-time error because the Job interface declares

two abstract methods, and therefore it is not a functional interface:

@FunctionalInterface

public interface Job {

 void run();

 void abort();

}

The following declaration of the Test class uses a @FunctionalInterface

annotation, which will generate a compile-time error because a @FunctionalInterface

annotation can only be used on interfaces:

@FunctionalInterface

public class Test {

 public void test() {

 // Code goes here

 }

}

Note an interface with only one abstract method is always a functional interface
whether it is annotated with a @FunctionalInterface annotation or not. the
use of the annotation instructs the compiler to verify the fact that the interface is
really a functional interface.

Chapter 1 annotations

58

 Annotating Packages
Annotating program elements such as classes and fields are intuitive, as you annotate

them when they are declared. How do you annotate a package? A package declaration

appears in a compilation unit as part of top-level type declarations. Further, the same

package declaration occurs multiple times in different compilation units. The question

arises: How and where do you annotate a package declaration?

You need to create a file, which should be named package-info.java, and

place the annotated package declaration in it. Listing 1-23 shows the contents of the

package- info.java file. When you compile the package-info.java file, a class file will

be created.

Listing 1-23. Contents of a package-info.java File

// package-info.java

@Version(major=1, minor=0)

package com.jdojo.annotation;

You may need some import statements to import annotation types, or you can

use the fully qualified names of the annotation types in the package-info.java file.

Even though the import statements appear after the package declaration, it should

be okay to use the imported types. You can have contents like the following in a

package-info.java file:

// package-info.java

@com.jdojo.myannotations.Author("John Jacobs")

@Reviewer("Wally Inman")

package com.jdojo.annotation;

import com.jdojo.myannotations.Reviewer;

 Annotating Modules
You can use annotations on module declarations. For this aim, the java.lang.

annotation.ElementType enum has a value called MODULE. If you use MODULE as a target

type on an annotation declaration, it allows the annotation type to be used on modules.

The two annotations java.lang.Deprecated and java.lang.SuppressWarnings can be

used on module declarations as follows:

Chapter 1 annotations

59

@Deprecated(since="1.2", forRemoval=true)

@SuppressWarnings("unchecked")

module com.jdojo.myModule {

 // Module statements go here

}

When a module is deprecated, the use of that module in requires, but not in

exports or opens statements, causes a warning to be issued. This rule is based on the

fact that if module M is deprecated, a “requires M” statement will be used by the module’s

users who need to get the deprecation warnings. Other statements such as exports

and opens are within the module that is deprecated. A deprecated module does not

cause warnings to be issued for uses of types within the module. Similarly, if a warning

is suppressed in a module declaration, the suppression applies to elements within the

module declaration and not to types contained in that module.

Note You cannot annotate individual module statements. For example, you
cannot annotate an exports statement with a @Deprecated annotation
indicating that the exported package will be removed in a future release. During
the early design phase, it was considered and rejected on the ground that this
feature will take a considerable amount of time that is not needed at this time. this
could be added in the future, if needed.

 Accessing Annotations at Runtime
Accessing annotations on a program element is easy. Annotations on a program

element are Java objects. All you need to know is how to get the reference of objects of

an annotation type at runtime. Program elements that let you access their annotations

implement the java.lang.reflect.AnnotatedElement interface. There are several

methods in the AnnotatedElement interface that let you access annotations of a program

element. The methods in this interface let you retrieve all annotations on a program

element, all declared annotations on a program element, and annotations of a specified

type on a program element. I show some examples of using those methods shortly. The

following classes implement the AnnotatedElement interface:

• java.lang.Class

• java.lang.reflect.Executable

Chapter 1 annotations

60

• java.lang.reflect.Constructor

• java.lang.reflect.Field

• java.lang.reflect.Method

• java.lang.reflect.Module

• java.lang.reflect.Parameter

• java.lang.Package

• java.lang.reflect.AccessibleObject

Methods of the AnnotatedElement interface are used to access annotations on these

types of objects.

Caution it is very important to note that an annotation type must be annotated
with the Retention meta-annotation with the retention policy of runtime to
access it at runtime. if a program element has multiple annotations, you would be
able to access only annotations, which have runtime as their retention policy.

Suppose you have a Test class and you want to print all its annotations. The following

snippet of code will print all annotations on the class declaration of the Test class:

// Get the class object reference

Class<Test> cls = Test.class;

// Get all annotations on the class declaration

Annotation[] allAnns = cls.getAnnotations();

System.out.println("Annotation count: " + allAnns.length);

// Print all annotations

for (Annotation ann : allAnns) {

 System.out.println(ann.toString());

}

The toString() method of the Annotation interface returns the string representation

of an annotation. Suppose you want to print the Version annotation on the Test class.

You can do so as follows:

Chapter 1 annotations

61

Class<Test> cls = Test.class;

// Get the instance of the Version annotation of Test

// class

Version v = cls.getAnnotation(Version.class);

if (v == null) {

 System.out.println(

 "Version annotation is not present.");

} else {

 int major = v.major();

 int minor = v.minor();

 System.out.println("Version: major=" + major +

 ", minor=" + minor);

}

This snippet of code shows that you can use the major() and minor() methods to

read the value of the major and minor elements of the Version annotation. It also shows

that you can declare a variable of an annotation type (e.g., Version v), which can refer

to an instance of that annotation type. The instances of an annotation type are created

by the Java runtime. You never create an instance of an annotation type using the new

operator.

You will use the Version and Deprecated annotation types to annotate your program

elements and access those annotations at runtime. You will also annotate a package

declaration and a method declaration. You will use the code for the Version annotation

type, as listed in Listing 1-24. Note that it uses the @Retention(RetentionPolicy.

RUNTIME) annotation, which is needed to read its instances at runtime.

Listing 1-24. A Version Annotation Type

// Version.java

package com.jdojo.annotation;

import java.lang.annotation.Documented;

import java.lang.annotation.Target;

import java.lang.annotation.ElementType;

import java.lang.annotation.Retention;

import java.lang.annotation.RetentionPolicy;

Chapter 1 annotations

62

@Target({ElementType.TYPE, ElementType.CONSTRUCTOR,

 ElementType.METHOD, ElementType.MODULE,

 ElementType.PACKAGE})

@Retention(RetentionPolicy.RUNTIME)

@Documented

public @interface Version {

 int major();

 int minor();

}

Listing 1-25 shows the code that you need to save in a package-info.java file and

compile it along with other programs. It annotates the com.jdojo.annotation package.

Listing 1-26 contains the code for a class for demonstration purposes that has some

annotations.

Listing 1-25. Contents of the package-info.java File

// package-info.java

@Version(major=1, minor=0)

package com.jdojo.annotation;

Listing 1-26. AccessAnnotation Class Has Some Annotations, Which Will Be

Accessed at Runtime

// AccessAnnotation.java

package com.jdojo.annotation;

@Version(major=1, minor=0)

public class AccessAnnotation {

 @Version(major=1, minor=1)

 public void testMethod1() {

 // Code goes here

 }

 @Version(major=1, minor=2)

 @Deprecated

 public void testMethod2() {

 // Code goes here

 }

}

Chapter 1 annotations

63

Listing 1-27 is the program that demonstrates how to access annotations at runtime.

Its output shows that you are able to read all annotations used in the AccessAnnotation

class successfully. The printAnnotations() method accesses the annotations. It accepts

a parameter of the AnnotatedElement type and prints all annotations of its parameter.

If the annotation is of the Version annotation type, it prints the values for its major and

minor versions.

Listing 1-27. Using the AccessAnnotationTest Class to Access Annotations

// AccessAnnotationTest.java

package com.jdojo.annotation;

import java.lang.annotation.Annotation;

import java.lang.reflect.AnnotatedElement;

import java.lang.reflect.Method;

public class AccessAnnotationTest {

 public static void main(String[] args) {

 // Read annotations on the class declaration

 Class<AccessAnnotation> cls =

 AccessAnnotation.class;

 System.out.println("Annotations for class: " +

 cls.getName());

 printAnnotations(cls);

 // Read annotations on the package declaration

 Package p = cls.getPackage();

 System.out.println("Annotations for package: " +

 p.getName());

 printAnnotations(p);

 // Read annotations on the methods declarations

 System.out.println("Method annotations:");

 Method[] methodList = cls.getDeclaredMethods();

 for (Method m : methodList) {

 System.out.println("Annotations for method: " +

 m.getName());

 printAnnotations(m);

 }

 }

Chapter 1 annotations

64

 public static void printAnnotations(

 AnnotatedElement programElement) {

 Annotation[] annList = programElement.

 getAnnotations();

 for (Annotation ann : annList) {

 System.out.println(ann);

 if (ann instanceof Version) {

 Version v = (Version) ann;

 int major = v.major();

 int minor = v.minor();

 System.out.println(

 "Found Version annotation: "

 + "major=" + major +

 ", minor=" + minor);

 }

 }

 System.out.println();

 }

}

Annotations for class:

 com.jdojo.annotation.AccessAnnotation

@com.jdojo.annotation.Version(major=1, minor=0)

Found Version annotation: major=1, minor=0

Annotations for package: com.jdojo.annotation

@com.jdojo.annotation.Version(major=1, minor=0)

Found Version annotation: major=1, minor=0

Method annotations:

Annotations for method: testMethod1

@com.jdojo.annotation.Version(major=1, minor=1)

Found Version annotation: major=1, minor=1

Annotations for method: testMethod2

@com.jdojo.annotation.Version(major=1, minor=2)

Found Version annotation: major=1, minor=2

@java.lang.Deprecated(forRemoval=false, since="")

Chapter 1 annotations

65

Accessing instances of a repeatable annotation is a little different. Recall that a

repeatable annotation has a companion containing an annotation type. For example,

you declared a ChangeLogs annotation type that is a containing annotation type for the

ChangeLog repeatable annotation type. You can access repeated annotations using either

the annotation type or the containing annotation type. Use the getAnnotationsByType()

method, passing it the class reference of the repeatable annotation type to get the

instances of the repeatable annotation in an array. Use the getAnnotation() method,

passing it the class reference of the containing annotation type to get the instances of the

repeatable annotation as an instance of its containing annotation type.

Listing 1-28 contains the code for a RepeatableAnnTest class. The class declaration

has been annotated with the ChangeLog annotation twice. The main() method accesses

the repeated annotations on the class declaration using both of these methods.

Listing 1-28. Accessing Instances of Repeatable Annotations at Runtime

// RepeatableAnnTest.java

package com.jdojo.annotation;

@ChangeLog(date = "09/18/2017",

 comments = "Declared the class")

@ChangeLog(date = "10/22/2017",

 comments = "Added the main() method")

public class RepeatableAnnTest {

 public static void main(String[] args) {

 Class<RepeatableAnnTest> mainClass =

 RepeatableAnnTest.class;

 Class<ChangeLog> annClass = ChangeLog.class;

 // Access annotations using the ChangeLog type

 System.out.println("Using the ChangeLog type...");

 ChangeLog[] annList = mainClass.

 getAnnotationsByType(ChangeLog.class);

 for (ChangeLog log : annList) {

 System.out.println("Date=" + log.date() +

 ", Comments=" + log.comments());

 }

 // Access annotations using the ChangeLogs

 // containing annotation type

Chapter 1 annotations

66

 System.out.println(

 "\nUsing the ChangeLogs type...");

 Class<ChangeLogs> containingAnnClass =

 ChangeLogs.class;

 ChangeLogs logs = mainClass.getAnnotation(

 containingAnnClass);

 for (ChangeLog log : logs.value()) {

 System.out.println("Date=" + log.date() +

 ", Comments=" + log.comments());

 }

 }

}

Using the ChangeLog type...

Date=09/18/2017, Comments=Declared the class

Date=10/22/2017, Comments=Added the main() method

Using the ChangeLogs type...

Date=09/18/2017, Comments=Declared the class

Date=10/22/2017, Comments=Added the main() method

 Evolving Annotation Types
An annotation type can evolve without breaking the existing code that uses it. If you add

a new element to an annotation type, you need to supply its default value. All existing

instances of the annotation will use the default value for the new elements. If you add

a new element to an existing annotation type without specifying a default value for the

element, the code that uses the annotation will break.

 Annotation Processing at Source Code Level
This section is for experienced programmers. You may skip this section if you are

learning Java for the first time. We discuss in detail how to develop annotation processors

to process an annotation at the source code level when you compile Java programs.

Chapter 1 annotations

67

Note the University of Washington developed a Checker Framework that
contains a lot of annotations to be used in programs. it also ships with many
annotation processors. You can download the Checker Framework from https://
checkerframework.org/. it contains a tutorial for using different types of
processors and a tutorial on how to create your own processor.

Java lets you process annotations at runtime as well as at compile time. You have

already seen how to process annotations at runtime. Now, I discuss, in brief, how to

process annotations at compile time (or at the source code level).

Why would you want to process annotations at compile time? Processing

annotations at compile time opens up a wide variety of possibilities that can help Java

programmers during development of applications. It also helps developers of Java tools

immensely. For example, boilerplate code and configuration files can be generated

based on annotations in the source code; custom annotation-based rules can be

validated at compile time, etc.

Annotation processing at compile time is a two-step process. First, you need to write

a custom annotation processor. Second, you need to use the javac command-line utility

tool. You need to specify the module path for your custom annotation processor to the

javac compiler using the –processor-modulepath option. The following command

compiles the Java source file, MySourceFile.java:

javac --processor-module-path <path> MySourceFile.java

Using the -proc option, the javac command lets you specify if you want to

process the annotation and/or compile the source files. You can use the -proc option

as -proc:none or -proc:only. The -proc:none option does not perform annotation

processing. It only compiles source files. The -proc:only option performs only

annotation processing and skips the source file compilation. If the -proc:none

and the -processor options are specified in the same command, the -processor

option is ignored. The following command processes annotations in the source file

MySourceFile.java using custom processors: MyProcessor1 and MyProcessor2. It does

not compile the source code in the MySourceFile.java file:

javac -proc:only --processor-module-path <path> ^

 MySourceFile.java

Chapter 1 annotations

https://checkerframework.org/
https://checkerframework.org/

68

To see the compile-time annotation processing in action, you must write an

annotation processor using the classes in the javax.annotation.processing package,

which is in the java.compiler module.

While writing a custom annotation processor, you often need to access the elements

from the source code, for example, the name of a class and its modifiers, the name of

a method and its return type, etc. You need to use classes in the javax.lang.model

package and its subpackages to work with the elements of the source code. In your

example, you will write an annotation processor for your @Version annotation. It will

validate all @Version annotations that are used in the source code to make sure the

major and minor values for a Version are always zero or greater than zero. For example,

if @Version(major=-1, minor=0) is used in source code, your annotation processor will

print an error message because the major value for the version is negative.

An annotation processor is an object of a class, which implements the Processor

interface. The AbstractProcessor class is an abstract annotation processor, which

provides a default implementation for all methods of the Processor interface, except an

implementation for the process() method. The default implementation is fine in most

circumstances. To create your own processor, you need to inherit your processor class

from the AbstractProcessor class and provide an implementation for the process()

method. If the AbstractProcessor class does not suit your need, you can create

your own processor class, which implements the Processor interface. Let’s call your

processor class VersionProcessor, which inherits from the AbstractProcessor class,

as shown:

public class VersionProcessor extends AbstractProcessor {

 // Code goes here

}

The annotation processor object is instantiated by the compiler using a no-args

constructor. You must have a no-args constructor for your processor class, so that the

compiler can instantiate it. The default constructor for your VersionProcessor class will

meet this requirement.

The next step is to add two pieces of information to the processor class. The first

one is about what kind of annotation processing is supported by this processor. You

can specify the supported annotation type using the @SupportedAnnotationTypes

annotation at the class level. The following snippet of code shows that the

VersionProcessor supports processing of the com.jdojo.annotation.Version

annotation type:

Chapter 1 annotations

69

@SupportedAnnotationTypes({"com.jdojo.annotation.Version"})

public class VersionProcessor extends AbstractProcessor {

 // Code goes here

}

You can use an asterisk (*) by itself or as part of the annotation name of the

supported annotation types. The asterisk works as a wildcard. For example, “com.

jdojo.*” means any annotation types whose names start with “com.jdojo.”. An asterisk

only (“*”) means all annotation types. Note that when an asterisk is used as part of

the name, the name must be of the form PartialName.*. For example, “com*” and

“com.*jdojo” are invalid uses of an asterisk in the supported annotation types. You

can pass multiple supported annotation types using the SupportedAnnotationTypes

annotation. The following snippet of code shows that the processor supports processing

for the com.jdojo.Ann1 annotation and any annotations whose name begins with

com.jdojo.annotation:

@SupportedAnnotationTypes({"com.jdojo.Ann1",

 "com.jdojo.annotation.*"})

You need to specify the latest source code version that is supported by your

processor using a @SupportedSourceVersion annotation. The following snippet of

code specifies the source code version 17 as the supported source code version for the

VersionProcessor class:

@SupportedAnnotationTypes({"com.jdojo.annotation.Version"})

@SupportedSourceVersion(SourceVersion.RELEASE_17)

public class VersionProcessor extends AbstractProcessor {

 // Code goes here

}

The next step is to provide the implementation for the process() method in the

processor class. Annotation processing is performed in rounds. An instance of the

RoundEnvironment interface represents a round. The javac compiler calls the process()

method of your processor by passing all annotations that the processor declares to

support and a RoundEnvironment object. The return type of the process() method is

boolean. If it returns true, the annotations passed to it are considered to be claimed by

the processor. The claimed annotations are not passed to other processors. If it returns

Chapter 1 annotations

70

false, the annotations passed to it are considered as not claimed, and other processors

will be asked to process them. The following snippet of code shows the skeleton of the

process() method:

public boolean process(Set<? extends TypeElement>

 annotations, RoundEnvironment roundEnv) {

 // The processor code goes here

}

The code you write inside the process() method depends on your requirements. In

your case, you want to look at the major and minor values for each @Version annotation

in the source code. If either of them is less than zero, you want to print an error message.

To process each Version annotation, you will iterate through all Version annotation

instances passed to the process() method as follows:

for (TypeElement currentAnnotation : annotations) {

 // Code to validate each Version annotation goes here

}

You can get the fully qualified name of an annotation using the getQualifiedName()

method of the TypeElement interface:

Name qualifiedName = currentAnnotation.getQualifiedName();

// Check if it is a Version annotation

if (qualifiedName.contentEquals(

 "com.jdojo.annotation.Version")) {

 // Get Version annotation values to validate

}

Once you are sure that you have a Version annotation, you need to get all its

instances from the source code. To get information from the source code, you need to

use the RoundEnvironment object. The following snippet of code will get all elements

of the source code (e.g., classes, methods, constructors, etc.) that are annotated with a

Version annotation:

Set<? extends Element> annotatedElements =

 roundEnv.getElementsAnnotatedWith(currentAnnotation);

Chapter 1 annotations

71

At this point, you need to iterate through all elements that are annotated with a

Version annotation; get the instance of the Version annotation present on them; and

validate the values of the major and minor elements. You can perform this logic as

follows:

for (Element element : annotatedElements) {

 Version v = element.getAnnotation(Version.class);

 int major = v.major();

 int minor = v.minor();

 if (major < 0 || minor < 0) {

 // Print the error message here

 }

}

You can print the error message using the printMessage() method of the Messager.

The processingEnv is an instance variable defined in the AbstractProcessor class that

you can use inside your processor to get the Messager object reference, as shown next.

If you pass the source code element’s reference to the printMessage() method, your

message will be formatted to include the source code file name and the line number

in the source code for that element. The first argument to the printMessage() method

indicates the type of the message. You can use Kind.NOTE and Kind.WARNING as the first

argument to print a note and warning, respectively.

String errorMsg = "Version cannot be negative. major=" +

 major + " minor=" + minor;

Messager messager = this.processingEnv.getMessager();

messager.printMessage(Kind.ERROR, errorMsg, element);

Finally, you need to return true or false from the process() method. If a processor

returns true, it means it claimed all the annotations that were passed to it. Otherwise,

those annotations are considered unclaimed, and they will be passed to other

processors. Typically, your annotation processors should be packaged in a separate

module. Listing 1-29 contains the declaration for a jdojo.annotation.processor

module, which contains the annotation processor named VersionProcessor for the

Version annotation type, as shown in Listing 1-30.

Chapter 1 annotations

72

Listing 1-29. The Declaration for a jdojo.annotation.processor Module

// module-info.java

module jdojo.annotation.processor {

 exports com.jdojo.annotation.processor;

 requires jdojo.annotation;

 requires java.compiler;

 provides javax.annotation.processing.Processor

 with

 com.jdojo.annotation.processor.VersionProcessor;

}

The module reads the jdojo.annotation module because it uses the Version

annotation type in the VersionProcessor class. It reads the java.compiler module

to use annotation processor–related types. Notice the use of the provides statement

in the module’s declaration. Java will load all annotation processors on the processor

module path mentioned in the with clause of the provides statement. The statement

specifies that the VersionProcessor class provides an implementation for the Processor

service interface. Refer to Chapter 7 for more details on the provides statement and

implementing services.

Listing 1-30. An Annotation Processor to Process Version Annotations

// VersionProcessor.java

package com.jdojo.annotation.processor;

import java.util.Set;

import javax.annotation.processing.AbstractProcessor;

import javax.annotation.processing.Messager;

import javax.annotation.processing.RoundEnvironment;

import javax.annotation.processing.SupportedAnnotationTypes;

import javax.annotation.processing.SupportedSourceVersion;

import javax.lang.model.SourceVersion;

import javax.lang.model.element.Element;

import javax.lang.model.element.Name;

import javax.lang.model.element.TypeElement;

import javax.tools.Diagnostic.Kind;

Chapter 1 annotations

73

@SupportedAnnotationTypes({

 "com.jdojo.annotation.Version"})

@SupportedSourceVersion(SourceVersion.RELEASE_17)

public class VersionProcessor extends AbstractProcessor {

 // A no-args constructor is required for an

 // annotation processor

 public VersionProcessor() {

 }

 @Override

 public boolean process(Set<? extends TypeElement>

 annotations, RoundEnvironment roundEnv) {

 // Process all annotations

 for (TypeElement currentAnnotation: annotations) {

 Name qualifiedName = currentAnnotation.

 getQualifiedName();

 // check if it is a Version annotation

 if (qualifiedName.contentEquals(

 "com.jdojo.annotation.Version")) {

 // Look at all elements that have Version

 // annotations

 Set<? extends Element> annotatedElements;

 annotatedElements = roundEnv.

 getElementsAnnotatedWith(

 currentAnnotation);

 for (Element element: annotatedElements) {

 Version v = element.getAnnotation(

 Version.class);

 int major = v.major();

 int minor = v.minor();

 if (major < 0 || minor < 0) {

 // Print the error message

 String errorMsg =

 "Version cannot be negative." +

 " major=" + major +

 " minor=" + minor;

Chapter 1 annotations

74

 Messager messager = this.

 processingEnv.getMessager();

 messager.printMessage(Kind.ERROR,

 errorMsg, element);

 }

 }

 }

 }

 return true;

 }

}

Now you have an annotation processor. It is time to see it in action. You need to have

a source code that uses invalid values for the major and minor elements in the Version

annotation. You will place the source code in a module named jdojo.annotation.

test, as shown in Listing 1-31. The VersionProcessorTest class in Listing 1-32 uses the

Version annotation three times. It uses negative values for major and minor elements

for the class itself and for the method m2(). The processor should catch these two errors

when you compile the source code for the VersionProcessorTest class.

Listing 1-31. The Declaration of a jdojo.annotation.test Module

// module-info.java

module jdojo.annotation.test {

 exports com.jdojo.annotation.test;

 requires jdojo.annotation;

}

Listing 1-32. A Test Class to Test VersionProcessor

// VersionProcessorTest.java

package com.jdojo.annotation.test;

@Version(major = -1, minor = 2)

public class VersionProcessorTest {

 @Version(major = 1, minor = 1)

 public void m1() {

 }

Chapter 1 annotations

75

 @Version(major = -2, minor = 1)

 public void m2() {

 }

}

To see the processor in action, you need to run the following command. You need to

specify the path for the VersionProcessor class’s module using the –processor-module-

path option. The modules that the annotation processor depends on should also be

specified in the processor module path. When the command is run, the compiler will

automatically discover the VersionProcessor as an annotation processor, and it will

pass all @Version instances to this processor. The output displays two errors with the

source file name and the line number at which errors were found in the source file:

C:\Java9LanguageFeatures>javac --module-path ^

 dist\jdojo.annotation.jar ^

 --processor-module-path ^

 dist\jdojo.annotation.processor.jar;

 dist\jdojo.annotation.jar ^

 -d build\modules\jdojo.annotation.test

src\jdojo.annotation.test\classes\module-info.java

src\jdojo.annotation.test\classes\com\jdojo\annotation\

 test\VersionProcessorTest.java

src\jdojo.annotation.test\classes\com\jdojo\annotation\

 test\VersionProcessorTest.java:7:

error: Version cannot be negative. major=-1 minor=2

public class VersionProcessorTest {

 ^

src\jdojo.annotation.test\classes\com\jdojo\annotation\

 test\VersionProcessorTest.java:13:

error: Version cannot be negative. major=-2 minor=1

 public void m2() {

 ^

2 errors

(No line break and no spaces after “dist\jdojo.annotation.processor.jar;”.)

Chapter 1 annotations

76

 Summary
Annotations are types in Java. They are used to associate information to the declarations

of program elements or type uses in a Java program. Using annotations does not change

the semantics of the program.

Annotations can be available in the source code only, in the class files, or at

runtime. Their availability is controlled by the retention policy that is specified when the

annotation types are declared.

There are two types of annotations: regular annotations or simple annotations and

meta-annotations. Annotations are used to annotate program elements, whereas meta-

annotations are used to annotate other annotations. When you declare an annotation,

you can specify its targets that are the types of program elements that it can annotate. It

is possible for annotations to be repeated on the same element.

The Java library contains many annotation types that you can use in your Java

programs—Deprecated, Override, SuppressWarnings, FunctionalInterface, etc.

are a few of the commonly used annotation types. They have compiler support, which

means that the compiler generates errors if the program elements annotated with these

annotations do not adhere to specific rules.

Java lets you write annotation processors that can be plugged into the Java compiler

to process annotations when Java programs are compiled. You can write processors to

enforce custom rules based on annotations.

Deprecation in Java is a way to provide information about the lifecycle of the

API. Deprecating an API tells its users to migrate away because the API is dangerous

to use, a better replacement exists, or it will be removed in a future release. Using

deprecated APIs generates compile-time deprecation warnings. The @deprecated

Javadoc tag and the @Deprecated annotation are used together to deprecate API

elements such as modules, packages, types, constructors, methods, fields, parameters,

and local variables. This annotation is retained at runtime.

The Deprecated annotation type contains since and forRemoval as elements. The

since element defaults to an empty string. Its value denotes the version of the API in

which the API element was deprecated. The forRemoval element’s type is boolean, and

it defaults to false. Its value of true denotes that the API element will be removed in a

future release.

Chapter 1 annotations

77

The compiler (starting at JDK9) generates two types of deprecation warnings

depending on the value of the forRemoval element of the @Deprecated annotation:

ordinary deprecation warnings when forRemoval=false and removal warnings for

forRemoval=true.

You need to use @SuppressWarnings("deprecation") to suppress ordinary

warnings, @SuppressWarnings("removal") to suppress removal warnings, and

@SuppressWarnings({"deprecation", "removal"}) to suppress both types of warnings.

Just importing a deprecated construct, and not actually using it, does not generate

deprecation warnings.

 Exercises
Exercise 1

What are annotations? How do you declare them?

Exercise 2

What are meta-annotations?

Exercise 3

What is the difference between an annotation type and annotation instances?

Exercise 4

Can you inherit an annotation type from another annotation type?

Exercise 5

What are marker annotations? Describe their use. Name two marker annotations

available in Java SE API.

Exercise 6

Name the annotation type whose instances are used to annotate an overridden

method. What is the fully qualified name of this annotation type?

Exercise 7

What are the allowed return types for methods in an annotation type declaration?

Exercise 8

Declare an annotation type named Table. It contains one String element named

name. The sole element does not have any default value. This annotation must be used

only on classes. Its instances should be available at runtime.

Chapter 1 annotations

78

Exercise 9

What is wrong with the following annotation type declaration?

public @interface Version extends BasicVersion {

 int extended();

}

Exercise 10

What is wrong with the following annotation type declaration?

public @interface Author {

 void name(String firstName, String lastName);

}

Briefly describe the use of the following built-in meta-annotations: Target,

Retention, Inherited, Documented, Repeatable, and Native.

Exercise 11

Declare an annotation type named ModuleOwner, which contains one element name,

which is of the String type. The instances of the ModuleOwner type should be retained

only in the source code, and they should be used only on module declarations.

Exercise 12

Declare a repeatable annotation type named Author. It contains two elements of

String type: firstName and lastName. This annotation can be used on types, methods,

and constructors. Its instances should be available at runtime. Name the containing

annotation type for the Author annotation type as Authors.

Exercise 13

What annotation type do you use to deprecate your APIs? Describe all the elements

of such an annotation type.

Exercise 14

What annotation type do you use to annotate a functional interface?

Exercise 15

How do you annotate a package?

Exercise 16

Create an annotation type named Owner. It should have one element, name, of the

String type. Its instances should be retained at runtime. It should be repeatable. It

should be used only on types, methods, constructors, and modules. Create a module

Chapter 1 annotations

79

named jdojo.annotation.test and create a class named Test in the com.jdojo.

annotation.exercises package. Add a constructor and a method to the class. Annotate

the class, its module, constructor, and method with the Owner annotation type. Add a

main() method to the Test class and write code to access and print the details of these

instances of the Owner annotation.

Exercise 17

Consider the following declaration of an annotation type named Status:

public @interface Status {

 boolean approved() default false;

 String approvedBy();

}

Later, you need to add another element to the Status annotation type.

Modify the declaration of the annotation to include a new element named

approvedOn, which is of the String type. The new element will contain a date in ISO

format whose default value may be set to “1900-01-01”.

Exercise 18

Consider the declaration of the following annotation type named LuckyNumber:

public @interface LuckyNumber {

 int[] value() default {19};

}

Which of the following uses of the LuckyNumber annotation type is/are invalid?

Explain your answer.

 a) @LuckyNumber

 b) @LuckyNumber({})

 c) @LuckyNumber(10)

 d) LuckyNumber({8, 10, 19, 28, 29, 26})

 e) LuckyNumber(value={8, 10, 19, 28, 29, 26})

 f) @LuckyNumber(null)

Chapter 1 annotations

80

Exercise 19

Given a LuckyNumber annotation type, is the following variable declaration valid?

LuckNumber myLuckNumber = null;

Exercise 20

Consider the following declaration for a jdojo.annotation.exercises module:

module jdojo.annotation.exercises {

 exports com.jdojo.annotation.exercises;

}

The module exists since version 1.0. The module has been deprecated and will be

removed in the next version. Annotate the module declaration to reflect these pieces of

information.

Chapter 1 annotations

81
© Kishori Sharan, Peter Späth 2021
K. Sharan and P. Späth, More Java 17, https://doi.org/10.1007/978-1-4842-7135-3_2

CHAPTER 2

Reflection
In this chapter, you will learn:

• What reflection is

• What a class loader is and about the built-in class loaders

• How to use reflection to get information about classes, constructors,

methods, etc. at runtime

• How to access fields of an object and a class using reflection

• How to create objects of a class using reflection

• How to invoke methods of a class using reflection

• How to create arrays using reflection

Most example programs in this chapter are a member of a jdojo.reflection

module, as declared in Listing 2-1. I use more modules in this chapter, which I show later.

Listing 2-1. The Declaration of a jdojo.reflection Module

// module-info.java

module jdojo.reflection {

 exports com.jdojo.reflection;

}

 What Is Reflection?
Reflection is the ability of a program to query and modify its state “as data” during the

execution of the program. The ability of a program to query or obtain information about

itself is known as introspection. The ability of a program to modify its execution state,

https://doi.org/10.1007/978-1-4842-7135-3_2#DOI

82

modify its own interpretation or its meaning, or add new behaviors to the program as it is

executing is called intercession. Reflection is further divided into two categories:

• Structural reflection

• Behavioral reflection

The ability of a program to query about the implementation of its data and code is

called structural introspection, whereas its ability to modify or create new data structure

and code is called structural intercession.

The ability of a program to obtain information about its runtime environment is

called behavioral introspection, whereas its ability to modify the runtime environment is

called behavioral intercession.

Providing the ability to a program to query or modify its state requires a mechanism

for encoding the execution state as data. In other words, the program should be able to

represent its execution state as data elements (as objects in object-oriented languages

such as Java) so that it can be queried and modified. The process of encoding the

execution state into data is called reification. A programming language is called reflective

if it provides the programs with reflection capability.

 Reflection in Java
The support for reflection in Java is mostly limited to introspection. It supports

intercession in a very limited form. The introspection features provided by Java let

you obtain class information about an object at runtime. Java also lets you obtain

information about the fields, methods, modifiers, and the superclass of a class at

runtime.

The intercession features provided by Java let you create an instance of a class whose

name is not known until runtime, invoke methods on such instances, and get/set its

fields. However, Java does not allow you to change the data structure at runtime. For

example, you cannot add a new field or a method to an object at runtime. All fields of an

object are always determined during the startup of a program. Examples of behavioral

intercession are the ability to change the method execution at runtime or add a new

method to a class at runtime. Java does not provide any of these intercession features.

That is, you cannot change a class’s method code at runtime to change its execution

behavior; neither can you add a new method to a class at runtime.

Chapter 2 refleCtion

83

Java provides reification by providing an object representation for a class and its

methods, constructors, fields, etc. at runtime. In most cases, Java does not support

reification for generic types. Java 5 added support for generic types. Refer to Chapter 3

for more details on generic types. A program can work on the reified objects in order

to get information about the runtime execution. For example, you have been using the

object of the java.lang.Class class to get the information about the class of an object.

A Class object is the reification of the bytecode for the class of an object. When you want

to gather information about the class of an object, you do not have to worry about the

bytecode of the class from which the object was instantiated. Rather, Java provides the

reification of the bytecode as an object of the Class class.

The reflection facility in Java is provided through the reflection API. Most of the

reflection API classes and interfaces are in the java.lang.reflect package. The Class

class, which is central to the reflection in Java, is in the java.lang package. Some of the

frequently used classes in reflection are listed in Table 2-1.

Table 2-1. Commonly Used Classes in Reflection

Class Name Description

Class an object of this class represents a single class loaded by a class loader in the JVM.

Field an object of this class represents a single field of a class or an interface. the field

represented by this object may be a static field or an instance field.

Constructor an object of this class represents a single constructor of a class.

Method an object of this class represents a method of a class or an interface. the method

represented by this object may be a class method or an instance method.

Modifier this class has static methods that are used to decode the access modifiers for a

class and its members.

Parameter an object of this class represents a method’s parameter.

Array this class provides static methods that are used to create arrays at runtime.

Chapter 2 refleCtion

84

Some of the things you can do using the reflection features in Java are as follows:

• If you have an object reference, you can determine the class name of

the object.

• If you have a class name, you can know its full description, for

example, its package name, its access modifiers, etc.

• If you have a class name, you can determine the methods defined

in the class, their return type, access modifiers, parameter type,

parameter names, etc. The support for parameter names was added

in Java 8.

• If you have a class name, you can determine all field descriptions of

the class.

• If you have a class name, you can determine all constructors defined

in the class.

• If you have a class name, you can create an object of the class using

one of its constructors.

• If you have an object reference, you can invoke its method knowing

just the method’s name and method’s parameter types.

• You can get or set the state of an object at runtime.

• You can create an array of a type dynamically at runtime and

manipulate its elements.

 Loading a Class
The Class<T> class is central to reflection in Java. The Class<T> class is a generic class.

It takes a type parameter, which is the type of the class represented by the Class object.

For example, Class<String> represents the class object for the String class. Class<?>

represents a class type whose class is unknown.

The Class class lets you discover everything about a class at runtime. An object of

the Class class represents a class in a program at runtime. When you create an object

in your program, Java loads the class’s bytecode and creates an object of the Class class

to represent the bytecode. Java uses that Class object to create any object of that class.

Chapter 2 refleCtion

85

No matter how many objects of a class you create in your program, Java creates only one

Class object for each class loaded by a class loader in a JVM from one module. Each

class from a module is also loaded only once by a particular class loader. In a JVM, a

class is uniquely identified by its fully qualified name, its class loader, and its module. If

two different class loaders load the same class, the two loaded classes are considered two

different classes, and their objects are not compatible with each other.

You can get the reference to the Class object of a class in one of the followings ways:

• Using class literal

• Using the getClass() method of the Object class

• Using the forName() static method of the Class class

 Using Class Literals
A class literal is the class name or interface name followed by a dot and the word “class.”

For example, if you have a class Test, its class literal is Test.class, and you can write

Class<Test> testClass = Test.class;

Note that the class literal is always used with a class name, not with an object

reference. The following statement to get the class reference is invalid:

Test t = new Test();

Class<Test> testClass = t.class; // A compile-time error.

 // Must use Test.class

You can also get the class object for primitive data types and the keyword void using

class literals as boolean.class, byte.class, char.class, short.class, int.class,

long.class, float.class, double.class, and void.class. Each wrapper class for these

primitive data types has a static field named TYPE, which has the reference to the class

object of the primitive data type it represents. Therefore, int.class and Integer.TYPE

refer to the same class object, and the expression int.class == Integer.TYPE evaluates

to true. Table 2-2 shows the class literals for all primitive data types and the void

keyword.

Chapter 2 refleCtion

86

 Using the Object::getClass() Method
The Object class contains a getClass() method, which returns the reference to the

Class object of the class of the object. This method is available in every class in Java

because every class in Java, explicitly or implicitly, inherits the Object class. The method

is declared final, so no descendant class can override it. For example, if you have testRef

as a reference to an object of class Test, you can get the reference to the Class object of

the Test class as follows:

Test testRef = new Test();

Class<?> testClass = testRef.getClass();

 Using the Class::forName() Method
The Class class has a forName() static method, which loads a class and returns the

reference to its Class object. It is an overloaded method. Its declarations are as follows:

• Class<?> forName(String className) throws

ClassNotFoundException

Table 2-2. Class Literals for Primitive Data Types and the void Keyword

Data Type Primitive Class Literal Wrapper Class static Field

boolean boolean.class Boolean.TYPE

Byte byte.class Byte.TYPE

Char char.class Character.TYPE

Short short.class Short.TYPE

Int int.class Integer.TYPE

Long long.class Long.TYPE

Float float.class Float.TYPE

Double double.class Double.TYPE

Void void.class Void.TYPE

Chapter 2 refleCtion

87

• Class<?> forName(String className, boolean initialize,

ClassLoader loader) throws ClassNotFoundException

• Class<?> forName(Module module, String className)

The forName(String className) method takes the fully qualified name of the class

to be loaded. It loads the class, initializes it, and returns the reference to its Class object. If

the class is already loaded, it simply returns the reference to the Class object of that class.

The forName(String className, boolean initialize, ClassLoader loader)

method gives you options to initialize or not to initialize the class when it is loaded, and

which class loader should load the class. The first two versions of the method throw a

ClassNotFoundException if the class could not be loaded.

The forName(Module module, String className) method loads the class with the

specified className in the specified module without initializing the loaded class. If the

class is not found, the method returns null.

To load a class named pkg1.Test, you would write

Class testClass = Class.forName("pkg1.Test");

To get a Class object reference using the forName() method, you do not have to

know the name of the class until runtime. The forName(String className) method

initializes the class if it is not already initialized, whereas the use of a class literal does not

initialize the class. When a class is initialized, all its static initializers are executed, and

all static fields are initialized. Listing 2-2 lists a Bulb class with only one static initializer,

which prints a message on the console. Listing 2-3 uses various methods to load and

initialize the Bulb class.

Listing 2-2. A Bulb Class to Demonstrate Initialization of a Class

// Bulb.java

package com.jdojo.reflection;

public class Bulb {

 static {

 // This will execute when this class is loaded

 // and initialized

 System.out.println("Loading class Bulb...");

 }

}

Chapter 2 refleCtion

88

Listing 2-3. Testing Class Loading and Initialization

// BulbTest.java

package com.jdojo.reflection;

public class BulbTest {

 public static void main(String[] args) {

 /* Uncomment only one of the following statements

 at a time. Observe the output to see the

 difference in the way the Bulb class is loaded

 and initialized.

 */

 BulbTest.createObject();

 // BulbTest.forNameVersion1();

 // BulbTest.forNameVersion2();

 // BulbTest.forNameVersion3();

 // BulbTest.classLiteral();

 }

 public static void classLiteral() {

 // Will load the class, but won't initialize it.

 Class<Bulb> c = Bulb.class;

 }

 public static void forNameVersion1() {

 try {

 String className = "com.jdojo.reflection.Bulb";

 // Will load and initialize the class

 Class c = Class.forName(className);

 } catch (ClassNotFoundException e) {

 System.out.println(e.getMessage());

 }

 }

 public static void forNameVersion2() {

 try {

 String className = "com.jdojo.reflection.Bulb";

 boolean initialize = false;

 // Get the classloader for the current class

Chapter 2 refleCtion

89

 ClassLoader cLoader = BulbTest.class.

 getClassLoader();

 // Will load, but not initialize the class,

 // because we have set the initialize variable

 // to false

 Class c = Class.forName(className, initialize,

 cLoader);

 } catch (ClassNotFoundException e) {

 System.out.println(e.getMessage());

 }

 }

 public static void forNameVersion3() {

 String className = "com.jdojo.reflection.Bulb";

 // Get the module reference for the current class

 Module m = BulbTest.class.getModule();

 // Will load, but not initialize, the class

 Class c = Class.forName(m, className);

 if(c == null) {

 System.out.println(

 "The bulb class was not loaded.");

 } else {

 System.out.println(

 "The bulb class was loaded.");

 }

 }

 public static void createObject() {

 // Will load and initialize the Bulb class

 new Bulb();

 }

}

Loading class Bulb...

Chapter 2 refleCtion

90

 Class Loaders
At runtime, every type is loaded by a class loader, which is represented by an instance of

the java.lang. ClassLoader class. You can get the reference of the class loader of a type

by using the getClassLoader() method of the Class class. The following snippet of code

shows how to get the class loader of the Bulb class:

Class<Bulb> cls = Bulb.class;

ClassLoader loader = cls.getClassLoader();

The Java runtime uses three class loaders to load classes as shown in Figure 2-1.

The direction of the arrows indicates the delegation direction. These class loaders load

classes from different locations and of different types. You can add more class loaders,

which would be a subclass of the ClassLoader class. Using custom class loaders, you can

load classes from custom locations, partition user code, and unload classes. For most

applications, the built-in class loaders are sufficient.

Note Since JDK9, the application class loader can delegate to the platform class
loader as well as the bootstrap class loader; the platform class loader can delegate
to the application class loader.

The bootstrap class loader is implemented in the library code and in the virtual

machine. Classes under its custody return null if you call getClassLoader(), as in

Object.class.getClassLoader() == null. Not all Java SE Platform and JDK modules

are loaded by the bootstrap class loader. To name a few, modules loaded by the

bootstrap class loader are java.base, java.logging, java.prefs, and java.desktop.

Figure 2-1. Class loader hierarchy

Chapter 2 refleCtion

91

Other Java SE Platform and JDK modules are loaded by the platform class loader and the

application class loader, which are described next. Use the -Xbootclasspath/a option to

specify additional boot class paths. Its value is stored in the system property jdk.boot.

class.path.append.

The platform class loader may be used to implement a class loading extension

mechanism (the JDK8 extension mechanism for loading classes is no longer supported).

The ClassLoader class contains a new static method named getPlatformClassLoader(),

which returns the reference of the platform class loader. Table 2-3 lists the modules

loaded by the platform class loader.

The platform class loader serves another purpose. Classes loaded by the bootstrap

class loader are granted all permissions by default. However, several classes did not need

all permissions. Such classes are loaded by the platform class loader.

The application class loader loads the application modules found on the module

path and a few JDK modules that provide tools or export tool APIs, as listed in Table 2-4.

You can still use the static method named getSystemClassLoader() of the ClassLoader

class to get the reference of the application class loader.

Table 2-3. The JDK Modules Loaded by the Platform Class Loader

java.compiler java.net.http java.scripting

java.security.jgss java.smartcardio java.sql

java.sql.rowset java.transaction.xa java.xml.crypto

jdk.accessibility jdk.charsets jdk.crypto.cryptoki

jdk.crypto.ec jdk.dynalink jdk.httpserver

jdk.jsobject jdk.localedata jdk.naming.dns

jdk.security.auth jdk.security.jgss jdk.xml.dom

jdk.zipfs

Table 2-4. The JDK Modules Loaded by the Application Class Loader

jdk.compiler jdk.internal.opt jdk.jartool

jdk.javadoc jdk.jdeps jdk.jlink

jdk.unsupported.desktop

Chapter 2 refleCtion

92

Note Before JDK9, the extension class loader and the application class loader
were an instance of the java.net.URLClassLoader class. in JDK9 and later,
the platform class loader (the erstwhile extension class loader) and the application
class loader are an instance of an internal JDK class. if your code relied on the
methods specific to the URLClassLoader class, your pre-JDK9 code may break
in JDK9 or later.

The JDK modules not listed in Tables 2-3 and 2-4 are loaded by the bootstrap class

loader. Listing 2-4 shows you how to print module names and their class loader names.

A partial output is shown. The output depends on the modules resolved by the runtime.

To print all JDK modules and their class loaders, you should add a “requires java.se.ee”

in your module declaration before running this class. I discuss module layers in

Chapter 7.

Listing 2-4. Listing the Names of Loaded Modules by Class Loader

// ModulesByClassLoader.java

package com.jdojo.reflection;

public class ModulesByClassLoader {

 public static void main(String[] args) {

 // Get the boot layer

 ModuleLayer layer = ModuleLayer.boot();

 // Print all module's names and their class loader

 // names in the boot layer

 for (Module m : layer.modules()) {

 ClassLoader loader = m.getClassLoader();

 String moduleName = m.getName();

 String loaderName = loader == null ?

 "bootstrap" : loader.getName();

 System.out.printf("%s: %s%n", loaderName,

 moduleName);

 }

 }

}

Chapter 2 refleCtion

93

bootstrap: java.base

platform: java.net.http

bootstrap: java.security.sasl

app: jdk.internal.opt

...

The three built-in class loaders work in tandem to load classes. When the application

class loader needs to load a class, it searches modules defined to all class loaders. If a

suitable module is defined to one of these class loaders, that class loader loads the class,

implying that the application class loader can now delegate to the bootstrap class loader

and the platform class loader. If a class is not found in a named module defined to these

class loaders, the application class loader delegates to its parent, which is the platform

class loader. If a class is still not loaded, the application class loader searches the class

path. If it finds the class on the class path, it loads the class as a member of its unnamed

module. If it does not find the class on the class path, a ClassNotFoundException is

thrown.

When the platform class loader needs to load a class, it searches modules defined

to all class loaders. If a suitable module is defined to one of these class loaders, that

class loader loads the class, implying that the platform class loader can delegate to the

bootstrap class loader as well as the application class loader. If a class is not found in a

named module defined to these class loaders, the platform class loader delegates to its

parent, which is the bootstrap class loader.

When the bootstrap class loader needs to load a class, it searches its own list of

named modules. If a class is not found, it searches the list of files and directories

specified through the command-line option: Xbootclasspath/a. If it finds a class on the

bootstrap class path, it loads the class as a member of its unnamed module. If a class is

still not found, a ClassNotFoundException is thrown.

 Reflecting on Classes
This section demonstrates the features of Java reflection that enable you to get the

description of a class, such as its package name, access modifiers, etc. You will use a

Person class, as listed in Listing 2-5, to demonstrate the reflection features. It is a simple

class with two instance fields, two constructors, and some methods. It implements two

interfaces.

Chapter 2 refleCtion

94

Listing 2-5. A Person Class Used to Demonstrate Reflection

// Person.java

package com.jdojo.reflection;

import java.io.Serializable;

public class Person implements Cloneable, Serializable {

 private int id = -1;

 private String name = "Unknown";

 public Person() {

 }

 public Person(int id, String name) {

 this.id = id;

 this.name = name;

 }

 public int getId() {

 return id;

 }

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 @Override

 public Person clone() {

 try {

 return (Person) super.clone();

 } catch (CloneNotSupportedException e) {

 throw new RuntimeException(e.getMessage());

 }

 }

 @Override

 public String toString() {

 return "Person: id=" + this.id + ", name=" +

 this.name;

 }

}

Chapter 2 refleCtion

95

Listing 2-6 illustrates how to get the description of a class. It lists the class access

modifiers, the class name, its superclass name, and all interfaces implemented by the

class.

Listing 2-6. Reflecting on a Class

// ClassReflection.java

package com.jdojo.reflection;

import java.lang.reflect.Modifier;

import java.lang.reflect.TypeVariable;

public class ClassReflection {

 public static void main(String[] args) {

 // Print the declaration of the Person class

 String clsDecl = getClassDescription(Person.class);

 System.out.println(clsDecl);

 // Print the declaration of the Class class

 clsDecl = getClassDescription(Class.class);

 System.out.println(clsDecl);

 // Print the declaration of the Runnable interface

 clsDecl = getClassDescription(Runnable.class);

 System.out.println(clsDecl);

 // Print the declaration of the class representing

 // the int data type

 clsDecl = getClassDescription(int.class);

 System.out.println(clsDecl);

 }

 public static

 String getClassDescription(Class<?> cls) {

 StringBuilder classDesc = new StringBuilder();

 // Prepare the modifiers and construct keyword

 // (class, enum, interface etc.)

 int modifierBits = 0;

 String keyword = " ";

Chapter 2 refleCtion

96

 // Add keyword @interface, interface or class

 if (cls.isPrimitive()) {

 // We do not want to add anything

 } else if (cls.isInterface()) {

 modifierBits = cls.getModifiers() & Modifier.

 interfaceModifiers();

 // An annotation is an interface

 if (cls.isAnnotation()) {

 keyword = "@interface";

 } else {

 keyword = "interface";

 }

 } else if (cls.isEnum()) {

 modifierBits = cls.getModifiers() &

 Modifier.classModifiers();

 keyword = "enum";

 } else {

 modifierBits = cls.getModifiers() &

 Modifier.classModifiers();

 keyword = "class";

 }

 // Convert modifiers to their string representation

 String modifiers = Modifier.toString(modifierBits);

 // Append modifiers

 classDesc.append(modifiers);

 // Append the construct keyword

 classDesc.append(" ");

 classDesc.append(keyword);

 // Append simple name

 String simpleName = cls.getSimpleName();

 classDesc.append(" ");

 classDesc.append(simpleName);

 // Append generic parameters

 String genericParms = getGenericTypeParams(cls);

 classDesc.append(genericParms);

Chapter 2 refleCtion

97

 // Append super class

 Class superClass = cls.getSuperclass();

 if (superClass != null) {

 String superClassSimpleName = superClass.

 getSimpleName();

 classDesc.append(" extends ");

 classDesc.append(superClassSimpleName);

 }

 // Append Interfaces

 String interfaces = ClassReflection.

 getClassInterfaces(cls);

 if (interfaces != null) {

 classDesc.append(" implements ");

 classDesc.append(interfaces);

 }

 return classDesc.toString().trim();

 }

 public static String getClassInterfaces(Class<?> cls) {

 // Get a comma-separated list of interfaces

 // implemented by the class

 Class<?>[] interfaces = cls.getInterfaces();

 if (interfaces.length == 0) {

 return null;

 }

 String[] names = new String[interfaces.length];

 for (int i = 0; i < interfaces.length; i++) {

 names[i] = interfaces[i].getSimpleName();

 }

 String interfacesList = String.join(", ", names);

 return interfacesList;

 }

 public static

 String getGenericTypeParams(Class<?> cls) {

 StringBuilder sb = new StringBuilder();

 TypeVariable<?>[] typeParms = cls.

 getTypeParameters();

Chapter 2 refleCtion

98

 if (typeParms.length == 0) {

 return "";

 }

 String[] paramNames = new String[typeParms.

 length];

 for (int i = 0; i < typeParms.length; i++) {

 paramNames[i] = typeParms[i].getTypeName();

 }

 sb.append('<');

 String parmsList = String.join(",", paramNames);

 sb.append(parmsList);

 sb.append('>');

 return sb.toString();

 }

}

public class Person extends Object implements Cloneable,

 Serializable

public final class Class<T> extends Object implements

 Serializable, GenericDeclaration,

Type, AnnotatedElement

public abstract interface Runnable

int

The getName() method of the Class class returns the fully qualified name of the

class. To get the simple class name, use the getSimpleName() method of the Class class,

like so:

String simpleName = c.getSimpleName();

The modifiers of a class are the keywords that appear before the keyword class in the

class declaration. In the following example, public and abstract are the modifiers for the

MyClass class:

public abstract class MyClass {

 // Code goes here

}

Chapter 2 refleCtion

99

The getModifiers() method of the Class class returns all modifiers for the class.

Note that the getModifiers() method returns an integer. To get the textual form of the

modifiers, you need to call the toString(int modifiers) static method of the Modifier

class, passing the modifiers value in an integer form. Assuming cls is the reference of a

Class object, you get the modifiers of the class as shown:

// You need to AND the returned value from the

// getModifiers() method with appropriate value returned

// from xxxModifiers() method of the Modifiers class

int mod = cls.getModifiers() & Modifier.classModifiers(); String modStr =

Modifier.toString(mod);

It is straightforward to get the name of the superclass of a class. Use the

getSuperclass() method of the Class class to get the reference of the superclass. Note

that every class in Java has a superclass except the Object class. If the getSuperclass()

method is invoked on the Object class, it returns null:

Class superClass = cls.getSuperclass();

if (superClass != null) {

 String superClassName = superClass.getSimpleName();

}

Note the getSuperclass() method of the Class class returns null when it
represents the Object class, a class for an interface such as List.class, and a
class for a primitive type such as int.class, void.class, etc.

To get the names of all interfaces implemented by a class, you use the

getInterfaces() method of the Class class. It returns an array of Class objects. Each

element in the array represents an interface implemented by the class:

// Get all interfaces implemented by cls

Class<?>[] interfaces = cls.getInterfaces();

The getClassDescription() method of the ClassReflection class puts all parts of

a class declaration into a string and returns that string. The main() method of this class

demonstrates how to use this class.

Chapter 2 refleCtion

100

A method called toGenericString() of the Class class returns a string describing the

class. The string contains the modifiers and type parameters for the class. The call Person.

class.toGenericString() will return public class com.jdojo.reflection.Person.

 Reflecting on Fields
A field of a class is represented by an object of the java.lang.reflect.Field class. The

following four methods in the Class class can be used to get information about the fields

of a class:

• Field[] getFields()

• Field[] getDeclaredFields()

• Field getField(String name)

• Field getDeclaredField(String name)

The getFields() method returns all the accessible public fields of the class or

interface. The accessible public fields include public fields declared in the class or

inherited from its superclass. The getDeclaredFields() method returns all the fields

that appear in the declaration of the class. It does not include inherited fields. The other

two methods, getField() and getDeclaredField(), are used to get the Field object if

you know the name of the field. Let’s consider the following declarations of classes A and

B and an interface IConstants:

interface IConstants {

 int DAYS_IN_WEEK = 7;

}

class A implements IConstants {

 private int aPrivate;

 public int aPublic;

 protected int aProtected;

}

class B extends A {

 private int bPrivate;

 public int bPublic;

 protected int bProtected;

}

Chapter 2 refleCtion

101

If bClass is the reference of the Class object for class B, the expression bClass.

getFields() will return the following three fields that are accessible and public:

• public int B.bPublic

• public int A.aPublic

• public static final int IConstants.DAYS_IN_WEEK

The bClass.getDeclaredFields() method will return the three fields that are

declared in class B:

• private int B.bPrivate

• public int B.bPublic

• protected int B.bProtected

To get all the fields of a class and its superclass, you must get the reference of the

superclass using the getSuperclass() method and use the combinations of these

methods. Listing 2-7 illustrates how to get the information about the fields of a class.

Note that you do not get anything when you call the getFields() method on the Class

object of the Person class because the Person class does not contain any public fields.

Listing 2-7. Reflecting on Fields of a Class

// FieldReflection.java

package com.jdojo.reflection;

import java.lang.reflect.Field;

import java.lang.reflect.Modifier;

import java.util.ArrayList;

public class FieldReflection {

 public static void main(String[] args) {

 Class<Person> cls = Person.class;

 // Print declared fields

 ArrayList<String> fieldsDescription =

 getDeclaredFieldsList(cls);

 System.out.println("Declared Fields for " +

 cls.getName());

 for (String desc : fieldsDescription) {

 System.out.println(desc);

 }

Chapter 2 refleCtion

102

 // Get the accessible public fields

 fieldsDescription = getFieldsList(cls);

 System.out.println("\nAccessible Fields for " +

 cls.getName());

 for (String desc : fieldsDescription) {

 System.out.println(desc);

 }

 }

 public static

 ArrayList<String> getFieldsList(Class c) {

 Field[] fields = c.getFields();

 ArrayList<String> fieldsList =

 getFieldsDescription(fields);

 return fieldsList;

 }

 public static

 ArrayList<String> getDeclaredFieldsList(Class c) {

 Field[] fields = c.getDeclaredFields();

 ArrayList<String> fieldsList =

 getFieldsDescription(fields);

 return fieldsList;

 }

 public static ArrayList<String>

 getFieldsDescription(Field[] fields) {

 ArrayList<String> fieldList = new ArrayList<>();

 for (Field f : fields) {

 // Get the modifiers for the field

 int mod = f.getModifiers() &

 Modifier.fieldModifiers();

 String modifiers = Modifier.toString(mod);

 // Get the simple name of the field type

 Class<?> type = f.getType();

 String typeName = type.getSimpleName();

 // Get the name of the field

 String fieldName = f.getName();

Chapter 2 refleCtion

103

 fieldList.add(modifiers + " " + typeName +

 " " + fieldName);

 }

 return fieldList;

 }

}

Declared Fields for com.jdojo.reflection.Person

private int id

private String name

Accessible Fields for com.jdojo.reflection.Person

Note You cannot use this technique to describe the length field of an array
object. each array type has a corresponding class. When you try to get the fields of
an array class using the getFields() method, you get an array of Field objects
of zero length. the array length is not part of the array’s class definition. rather, it
is stored as part of the array object in the object header.

 Reflecting on Executables
An instance of the Method class represents a method. An instance of the Constructor

class represents a constructor. Structurally, methods and constructors have a few things

in common. Both use modifiers, parameters, and a throws clause. Both can be executed.

These classes inherit from a common abstract superclass, Executable. Methods to

retrieve information common to both are methods of the Executable class.

A parameter in an Executable is represented by an object of the Parameter class.

The getParameters() method in the Executable class returns all parameters of an

Executable as Parameter[]. By default, the formal parameter names are not stored in

the class files to keep the file size smaller. The getName() method of the Parameter class

returns synthesized parameter names like arg0, arg1, etc. unless the actual parameter

names are retained. If you want to retain the actual parameter names in class files, you

need to compile the source code using the -parameters option with the javac compiler.

Chapter 2 refleCtion

104

The getExceptionTypes() method of the Executable class returns an array of Class

objects, which describes the exceptions thrown by the Executable. If no exceptions are

listed in the throws clause, it returns an array of length zero.

The getModifiers() method of the Executable class returns the modifiers as an int.

The getTypeParameters() method of the Executable class returns an array of

TypeVariable that represents the type parameters for generic methods/constructors.

The examples in this chapter do not include the generic type variable declarations in

methods/constructors.

Listing 2-8 contains a utility class that consists of static methods to get information

about an Executable such as the list of modifiers, parameters, and exceptions. I use this

class when I discuss methods and constructors in the subsequent sections.

Listing 2-8. A Utility Class to Get Information for an Executable

// ExecutableUtil.java

package com.jdojo.reflection;

import java.lang.reflect.Constructor;

import java.lang.reflect.Executable;

import java.lang.reflect.Method;

import java.lang.reflect.Modifier;

import java.lang.reflect.Parameter;

import java.util.ArrayList;

public class ExecutableUtil {

 public static

 ArrayList<String> getParameters(Executable exec) {

 Parameter[] parms = exec.getParameters();

 ArrayList<String> parmList = new ArrayList<>();

 for (int i = 0; i < parms.length; i++) {

 // Get modifiers, type, and name of the

 // parameter

 int mod = parms[i].getModifiers() &

 Modifier.parameterModifiers();

 String modifiers = Modifier.toString(mod);

 String parmType = parms[i].getType().

 getSimpleName();

Chapter 2 refleCtion

105

 String parmName = parms[i].getName();

 String temp = modifiers + " " + parmType +

 " " + parmName;

 // Trim it as it may have leading spaces when

 // modifiers are absent

 parmList.add(temp.trim());

 }

 return parmList;

 }

 public static

 ArrayList<String> getExceptionList(Executable exec) {

 ArrayList<String> exceptionList =

 new ArrayList<>();

 for (Class<?> c : exec.getExceptionTypes()) {

 exceptionList.add(c.getSimpleName());

 }

 return exceptionList;

 }

 public static String

 getThrowsClause(Executable exec) {

 ArrayList<String> exceptionList =

 getExceptionList(exec);

 String exceptions = ExecutableUtil.

 arrayListToString(exceptionList, ",");

 String throwsClause = "";

 if (exceptionList.size() > 0) {

 throwsClause = "throws " + exceptions;

 }

 return throwsClause;

 }

 public static String getModifiers(Executable exec) {

 // Get the modifiers for the class

 int mod = exec.getModifiers();

Chapter 2 refleCtion

106

 if (exec instanceof Method) {

 mod = mod & Modifier.methodModifiers();

 } else if (exec instanceof Constructor) {

 mod = mod & Modifier.constructorModifiers();

 }

 return Modifier.toString(mod);

 }

 public static String

 arrayListToString(ArrayList<String> list,

 String saparator) {

 String[] tempArray = new String[list.size()];

 tempArray = list.toArray(tempArray);

 String str = String.join(saparator, tempArray);

 return str;

 }

}

 Reflecting on Methods
The following four methods in the Class class can be used to get information about the

methods of a class:

• Method[] getMethods()

• Method[] getDeclaredMethods()

• Method getMethod(String name, Class... parameterTypes)

• Method getDeclaredMethod(String name, Class...

parameterTypes)

The getMethods() method returns all the accessible public methods of the class. The

accessible public methods include any public method declared in the class or inherited

from the superclass. The getDeclaredMethods() method returns all the methods

declared only in the class. It does not return any methods that are inherited from the

superclass. The other two methods, getMethod() and getDeclaredMethod(), are used to

get the Method object if you know the name of the method and its parameter types.

The getReturnType() method of the Method class returns the Class object, which

contains information about the return type of the method.

Chapter 2 refleCtion

107

Listing 2-9 illustrates how to get information about the methods of a class. You can

uncomment the code in the main() method to print all methods in the Person class—

declared in the Person class and inherited from the Object class.

Listing 2-9. Reflecting on Methods of a Class

// MethodReflection.java

package com.jdojo.reflection;

import java.lang.reflect.Method;

import java.util.ArrayList;

public class MethodReflection {

 public static void main(String[] args) {

 Class<Person> cls = Person.class;

 // Get the declared methods

 ArrayList<String> methodsDescription =

 getDeclaredMethodsList(cls);

 System.out.println("Declared Methods for " +

 cls.getName());

 for (String desc : methodsDescription) {

 System.out.println(desc);

 }

 /* Uncomment the following code to print all

 methods in the Person class

 // Get the accessible public methods

 methodsDescription = getMethodsList(cls);

 System.out.println("\nMethods for " + cls.getName());

 for (String desc : methodsDescription) {

 System.out.println(desc);

 }

 */

 }

 public static ArrayList<String>

 getMethodsList(Class c) {

 Method[] methods = c.getMethods();

Chapter 2 refleCtion

108

 ArrayList<String> methodsList =

 getMethodsDescription(methods);

 return methodsList;

 }

 public static ArrayList<String>

 getDeclaredMethodsList(Class c) {

 Method[] methods = c.getDeclaredMethods();

 ArrayList<String> methodsList =

 getMethodsDescription(methods);

 return methodsList;

 }

 public static ArrayList<String>

 getMethodsDescription(Method[] methods) {

 ArrayList<String> methodList = new ArrayList<>();

 for (Method m : methods) {

 String modifiers = ExecutableUtil.

 getModifiers(m);

 // Get the method return type

 Class returnType = m.getReturnType();

 String returnTypeName =

 returnType.getSimpleName();

 // Get the name of the method

 String methodName = m.getName();

 // Get the parameters of the method

 ArrayList<String> paramsList =

 ExecutableUtil.getParameters(m);

 String params = ExecutableUtil.

 arrayListToString(paramsList, ",");

 // Get the Exceptions thrown by method

 String throwsClause = ExecutableUtil.

 getThrowsClause(m);

 methodList.add(modifiers + " " +

 returnTypeName + " " + methodName +

 "(" + params + ") " + throwsClause);

 }

Chapter 2 refleCtion

109

 return methodList;

 }

}

Declared Methods for com.jdojo.reflection.Person

public String toString()

public Object clone()

public String getName()

public int getId()

public void setName(String arg0)

 Reflecting on Constructors
Getting information about constructors of a class is similar to getting information

about methods of a class. The following four methods in the Class class are used to get

information about the constructors represented by a Class object:

• Constructor[] getConstructors()

• Constructor[] getDeclaredConstructors()

• Constructor<T> getConstructor(Class... parameterTypes)

• Constructor<T> getDeclaredConstructor(Class...

parameterTypes)

The getConstructors() method returns all public constructors. The

getDeclaredConstructors() method returns all declared constructors. The other

two methods, getConstructor() and getDeclaredConstructor(), are used to get the

Constructor object if you know the parameter types of the constructor. Listing 2-10

illustrates how to get information for the constructors represented by a Class object.

Listing 2-10. Reflecting on Constructors of a Class

// ConstructorReflection.java

package com.jdojo.reflection;

import java.lang.reflect.Constructor;

import java.util.ArrayList;

Chapter 2 refleCtion

110

public class ConstructorReflection {

 public static void main(String[] args) {

 Class<Person> cls = Person.class;

 // Get the declared constructors

 System.out.println("Constructors for " +

 cls.getName());

 Constructor[] constructors = cls.getConstructors();

 ArrayList<String> constructDescList =

 getConstructorsDescription(constructors);

 for (String desc : constructDescList) {

 System.out.println(desc);

 }

 }

 public static

 ArrayList<String> getConstructorsDescription(

 Constructor[] constructors) {

 ArrayList<String> constructorList =

 new ArrayList<>();

 for (Constructor constructor : constructors) {

 String modifiers = ExecutableUtil.

 getModifiers(constructor);

 // Get the name of the constructor

 String constructorName = constructor.getName();

 // Get the parameters of the constructor

 ArrayList<String> paramsList = ExecutableUtil.

 getParameters(constructor);

 String params = ExecutableUtil.

 arrayListToString(paramsList, ",");

 // Get the Exceptions thrown by the constructor

 String throwsClause = ExecutableUtil.

 getThrowsClause(constructor);

 constructorList.add(modifiers + " " +

 constructorName + "(" + params + ") " +

 throwsClause);

 }

Chapter 2 refleCtion

111

 return constructorList;

 }

}

Constructors for com.jdojo.reflection.Person

public com.jdojo.reflection.Person()

public com.jdojo.reflection.Person(int arg0,String arg1)

 Creating Objects
Java lets you use reflection to create objects of a class. The class name need not be known

until runtime. You can create the object by invoking one of the constructors of the class using

reflection. You can also access the values of fields of objects, set their values, and invoke

their methods. If you know the class name and have access to the class code at compile time,

do not use reflection to create its object; rather, use the new operator in your code to create

objects of the class. Typically, frameworks and libraries use reflection to create objects.

You can create an object of a class using reflection. You need to get the reference of

the constructor before you can create an object. The previous section showed you how

to get the reference of a specific constructor of a class. Use the newInstance() method

of the Constructor class to create an object. You can pass the actual parameter to the

constructor to the newInstance() method, which is declared as follows:

public T newInstance(Object... initargs) throws

 InstantiationException,

 IllegalAccessException,

 IllegalArgumentException,

 InvocationTargetException

Here, initargs are the actual parameters for the constructor. You will not pass any

parameters for the no-args constructor.

The following snippet of code gets the reference of the no-args constructor of the

Person class and invokes it. I have omitted the exception handling for brevity:

Class<Person> cls = Person.class;

// Get the reference of the Person() constructor

Constructor<Person> noArgsCons = cls.getConstructor();

Person p = noArgsCons.newInstance();

Chapter 2 refleCtion

112

Listing 2-11 contains the complete code to illustrate how to use the Person(int,

String) constructor of the Person class to create a Person object using reflection. Note

that the Constructor<T> class is a generic type. Its type parameter is the class type

that declares the constructor, for example, the Constructor<Person> type represents a

constructor for the Person class.

Listing 2-11. Using a Specific Constructor to Create a New Object

// InvokeConstructorTest.java

package com.jdojo.reflection;

import java.lang.reflect.Constructor;

import java.lang.reflect.InvocationTargetException;

public class InvokeConstructorTest {

 public static void main(String[] args) {

 Class<Person> personClass = Person.class;

 try {

 // Get the constructor "Person(int, String)"

 Constructor<Person> cons = personClass.

 getConstructor(int.class, String.class);

 // Invoke the constructor with values for id

 // and name

 Person chris = cons.newInstance(1994, "Chris");

 System.out.println(chris);

 } catch (NoSuchMethodException | SecurityException

 | InstantiationException

 | IllegalAccessException

 | IllegalArgumentException

 | InvocationTargetException e) {

 System.out.println(e.getMessage());

 }

 }

}

Person: id=1994, name=Chris

Chapter 2 refleCtion

113

 Invoking Methods
You can invoke methods of an object using reflection. You need to get the reference to

the method that you want to invoke. Suppose you want to invoke the setName() method

of the Person class. You can get the reference to the setName() method as follows:

Class<Person> personClass = Person.class;

Method setName = personClass.getMethod("setName",

 String.class);

To invoke this method, call the invoke() method on the method’s reference, which is

declared as follows:

public Object invoke(Object obj, Object... args)

 throws IllegalAccessException,

 lllegalArgumentException,

 InvocationTargetException

The first parameter of the invoke() method is the object on which you want to

invoke the method. If the Method object represents a static method, the first argument

is ignored or it may be null. The second parameter is a varargs parameter in which you

pass all the actual parameters in the same order as declared in the method’s declaration.

Since the setName() method of the Person class takes a String argument, you need

to pass a String object as the second argument to the invoke() method. Listing 2-12

illustrates how to invoke a method on a Person object using reflection.

Listing 2-12. Invoking a Method on an Object Reference Using Reflection

// InvokeMethodTest.java

package com.jdojo.reflection;

import java.lang.reflect.InvocationTargetException;

import java.lang.reflect.Method;

public class InvokeMethodTest {

 public static void main(String[] args) {

 Class<Person> personClass = Person.class;

 try {

 // Create an object of Person class

 Person p = personClass.newInstance();

Chapter 2 refleCtion

114

 // Print the details of the Person object

 System.out.println(p);

 // Get the reference of the setName() method

 Method setName = personClass.getMethod(

 "setName", String.class);

 // Invoke the setName() method on p passing

 // passing "Ann" as the actual parameter

 setName.invoke(p, "Ann");

 // Print the details of the Person object

 System.out.println(p);

 } catch (InstantiationException

 | IllegalAccessException

 | NoSuchMethodException

 | SecurityException

 | IllegalArgumentException

 | InvocationTargetException e) {

 System.out.println(e.getMessage());

 }

 }

}

Person: id=-1, name=Unknown

Person: id=-1, name=Ann

 Accessing Fields
You can read or set the value of a field of an object using reflection. First, you need to get

the reference of the field you want to work with. To read the field’s value, you need to call

the getXxx() method on the field, where Xxx is the data type of the field. For example,

to read a boolean field value, you would call the getBoolean() method, and to read an

int field, you would call the getInt() method. To set the value of a field, you call the

corresponding setXxx() method. The following are the declarations of the getInt() and

setInt() methods where the first argument, obj, is the object’s reference whose field is

being read or written:

Chapter 2 refleCtion

115

• int getInt(Object obj) throws IllegalArgumentException,

IllegalAccessException

• void setInt(Object obj, int newValue) throws

IllegalArgumentException, IllegalAccessException

Note static and instance fields are accessed the same way. in the case of static
fields, the first argument to the get() and set() methods is the reference of the
class/interface.

Note that you can access fields only that have been declared as accessible, such as

a public field. In the Person class, all fields are declared private. Therefore, you cannot

access any of these fields using normal Java programming language rules. To access

a field that is not normally accessible, for example, if it is declared private, refer to the

“Deep Reflection” section later in this chapter. You will use the PublicPerson class listed

in Listing 2-13 to learn the technique to access the fields.

Listing 2-13. A PublicPerson Class with a Public Name Field

// PublicPerson.java

package com.jdojo.reflection;

public class PublicPerson {

 private int id = -1;

 public String name = "Unknown";

 public PublicPerson() {

 }

 @Override

 public String toString() {

 return "Person: id=" + this.id + ", name=" +

 this.name;

 }

}

Listing 2-14 demonstrates how to get the reference of a field of an object and how to

read and set its value.

Chapter 2 refleCtion

116

Listing 2-14. Accessing Fields Using Reflection

// FieldAccessTest.java

package com.jdojo.reflection;

import java.lang.reflect.Field;

public class FieldAccessTest {

 public static void main(String[] args) {

 Class<PublicPerson> ppClass = PublicPerson.class;

 try {

 // Create an object of the PublicPerson class

 PublicPerson p = ppClass.newInstance();

 // Get the reference of the name field

 Field name = ppClass.getField("name");

 // Get and print the current value of the

 // name field

 String nameValue = (String) name.get(p);

 System.out.println("Current name is " +

 nameValue);

 // Set the value of name to Ann

 name.set(p, "Ann");

 // Get and print the new value of name field

 nameValue = (String) name.get(p);

 System.out.println("New name is " + nameValue);

 } catch (InstantiationException

 | IllegalAccessException

 | NoSuchFieldException

 | SecurityException

 | IllegalArgumentException e) {

 System.out.println(e.getMessage());

 }

 }

}

Current name is Unknown

New name is Ann

Chapter 2 refleCtion

117

 Deep Reflection
There are two things you can do using reflection:

• Describe an entity

• Access the members of an entity

Describing an entity means knowing the entity’s details. For example, describing

a class means knowing its name, modifiers, packages, modules, fields, methods, and

constructors. Accessing the members of an entity means reading and writing fields and

invoking methods and constructors. Describing an entity does not pose any issues of

access control. If you have access to a class file, you should be able to know the details

of the entity represented in that class file. However, accessing members of an entity is

controlled by the Java language access control. For example, if you declare a field of a

class as private, the field should be accessible only within the class. Code outside the

class should not be able to access the private field of the class. However, this is half-true.

The Java language access control rules are applied when you access members statically.

The access control rules can be suppressed when you access members using reflection.

The following snippet of code accesses the private name field of the Person class.

This code will compile only within the Person class:

Person john = new Person();

String name = john.name; // Accessing the private field

 // name statically

Java has been allowing access to rather inaccessible members such as a private field

of a class outside the class using reflection. This is called deep reflection. Reflective

access to inaccessible members made it possible to have many great frameworks in Java

such as Hibernate and Spring. These frameworks perform most of their work using deep

reflection. You can access the private name field of the Person class outside the Person

class using deep reflection.

So far in this chapter, I kept the examples simple and stayed away from violating the

Java language access control. I accessed only public fields, methods, and constructors;

the accessed members and the accessing code were in the same module. Before

JDK9, accessing inaccessible members was easy. All you had to do was call the

setAccessible(true) method on the inaccessible Field, Method, and Constructor

Chapter 2 refleCtion

118

objects before accessing them. The introduction of the module system in JDK9 has made

deep reflection a bit complicated. In this section and its subsections, I walk you through

rules and examples for deep reflection in JDK9 and later.

Note if a security manager is present, the code performing deep reflection must
have a ReflectPermission("suppressAccessChecks") permission.

To perform deep reflection, you need to get the reference of the desired field,

method, and constructor using the getDeclaredXxx() method of the Class object,

where Xxx can be Field, Method, or Constructor. Note that using the getXxx()

method to get the reference of an inaccessible field, method, or constructor will throw

an IllegalAccessException. The Field, Method, and Constructor classes have the

AccessibleObject class as their superclass. The AccessibleObject class contains the

following methods to let you work with the accessible flag:

• void setAccessible(boolean flag)

• static void setAccessible(AccessibleObject[] array,

boolean flag)

• boolean trySetAccessible()

• boolean canAccess(Object obj)

The setAccessible(boolean flag) method sets the accessible flag for a member

(Field, Method, and Constructor) to true or false. If you are trying to access an

inaccessible member, you need to call setAccessible(true) on the member object

before accessing the member. The method throws an InaccessibleObjectException

if the accessible flag cannot be set. The static setAccessible(AccessibleObject[]

array, boolean flag) is a convenience method to set the accessible flag for all

AccessibleObject in the specified array.

The trySetAccessible() method attempts to set the accessible flag to true on the

object on which it is called. It returns true if the accessible flag was set to true and false

otherwise. Compare this method with the setAccessible(true) method. This method

does not throw a runtime exception on failure, whereas the setAccessible(true) does.

The canAccess(Object obj) method returns true if the caller can access the

member for the specified obj object. Otherwise, it returns false. If the member is a

static member or a constructor, the obj must be null.

Chapter 2 refleCtion

119

I discuss accessing rather inaccessible members within a module, across modules, in

unnamed modules, and of JDK modules in the next sections.

 Deep Reflection Within a Module
Let’s start with an example. You want to access the private name field of a Person object.

First, you get the reference of the name field in a Field object and try reading its current

value. Listing 2-15 contains the code for the IllegalAccess1 class.

Listing 2-15. Accessing the Private Name Field of the Person Class

// IllegalAccess1.java

package com.jdojo.reflection;

import java.lang.reflect.Constructor;

import java.lang.reflect.Field;

public class IllegalAccess1 {

 public static void main(String[] args)

 throws Exception {

 // Get the class reference for the Person class

 String className = "com.jdojo.reflection.Person";

 Class<?> cls = Class.forName(className);

 // Create a Person object

 Constructor<?> cons = cls.getConstructor();

 Object person = cons.newInstance();

 // Get the reference of the name field

 Field nameField = cls.getDeclaredField("name");

 // Try accessing the name field by reading its

 // value

 String name = (String) nameField.get(person);

 // Print the person and its name separately

 System.out.println(person);

 System.out.println("name=" + name);

 }

}

Chapter 2 refleCtion

120

Exception in thread "main" java.lang.

 IllegalAccessException: class com.jdojo.reflection.

IllegalAccess1 (in module jdojo.reflection) cannot access

 a member of class com.jdojo.

reflection.Person (in module jdojo.reflection) with

 modifiers "private"

 at java.base/jdk.internal.reflect.Reflection.

 newIllegalAccessException(Reflection.java:361)

 at java.base/java.lang.reflect.AccessibleObject.

 checkAccess(AccessibleObject.java:589)

 at java.base/java.lang.reflect.Field.checkAccess(

 Field.java:1075)

 at java.base/java.lang.reflect.Field.get(

 Field.java:416)

 at jdojo.reflection/com.jdojo.reflection.

 IllegalAccess1.main(IllegalAccess1.java:21)

In Listing 2-15, I added the Exception class in the throws clause of the main()

method to keep the logic simple inside the method. I keep doing this for all examples

in this section, so you can focus on the illegal access rules rather than on exception

handling. The IllegalAccess1 and the Person class are in the same jdojo.reflection

module. You were able to create a Person object successfully because you used the

public no-args constructor of the Person class. The name field in the Person class

is declared as private, and accessing it from another class failed. Fixing this error is

simple—you set the accessible flag to the Field object using the setAccessible(true)

or the trySetAccessible() method. Listing 2-16 contains the complete code.

Listing 2-16. Accessing the Private Name Field of the Person Class After Making

It Accessible

// IllegalAccess2.java

package com.jdojo.reflection;

import java.lang.reflect.Constructor;

import java.lang.reflect.Field;

Chapter 2 refleCtion

121

public class IllegalAccess2 {

 public static void main(String[] args)

 throws Exception {

 // Get the class reference for the Person class

 String className = "com.jdojo.reflection.Person";

 Class<?> cls = Class.forName(className);

 // Create a Person object

 Constructor<?> cons = cls.getConstructor();

 Object person = cons.newInstance();

 // Get the reference of the name field

 Field nameField = cls.getDeclaredField("name");

 // Try making the name field accessible before

 // accessing it

 boolean accessEnabled = nameField.

 trySetAccessible();

 if (accessEnabled) {

 // Try accessing the name field by reading

 // its value

 String name = (String) nameField.get(person);

 // Print the person and its name separately

 System.out.println(person);

 System.out.println("name=" + name);

 } else {

 System.out.println("The Person.name field " +

 "is not accessible.");

 }

 }

}

Person: id=-1, name=Unknown

name=Unknown

So far, everything looks fine. You might think that if you cannot access the private

member of a class, you can always use reflection to access them. However, this is not

always true. Access to otherwise inaccessible members of a class is handled through the

Java security manager. By default, when you run your application on your computer,

Chapter 2 refleCtion

122

the security manager is not installed for your application. The absence of the security

manager for your application lets you access all fields, methods, and constructors of

a class in the same module after you set the accessible flag to true as you did in the

previous example. However, if a security manager is installed for your application,

whether you can access an inaccessible class member depends on the permission

granted to your application to access such members. You can check if the security

manager is installed for your application or not by using the following piece of code:

SecurityManager smgr = System.getSecurityManager();

if (smgr == null) {

 System.out.println(

 "Security manager is not installed.");

}

You can install a default security manager by passing the -Djava.security.manager

option on the command line when you run the Java application. The security manager

uses a Java security policy file to enforce the rules specified in that policy file. The Java

security policy file is specified using the -Djava.security.policy command-line

option. If you want to run the IllegalAccess2 class with a Java security manager with

the Java policy file stored in the C:\Java17LanguageFeatures\conf\myjava.policy file,

you would use the following command:

C:\Java17LanguageFeatures>java -Djava.security.manager

-Djava.security.policy=conf\myjava.policy --module-path

 build\modules\jdojo.reflection

--module jdojo.reflection/com.jdojo.reflection.

 IllegalAccess2

Exception in thread "main" java.security.

 AccessControlException: access denied

("java.lang.reflect.ReflectPermission"

 "suppressAccessChecks")

 at java.base/java.security.AccessControlContext.

 checkPermission

 (AccessControlContext.java:472)

 at java.base/java.security.AccessController.

 checkPermission

 (AccessController.java:895)

Chapter 2 refleCtion

123

 at java.base/java.lang.SecurityManager.

 checkPermission(SecurityManager.java:558)

 at java.base/java.lang.reflect.AccessibleObject.

 checkPermission

 (AccessibleObject.java:85)

 at java.base/java.lang.reflect.AccessibleObject.

 trySetAccessible

 (AccessibleObject.java:245)

 at jdojo.reflection/com.jdojo.reflection.

 IllegalAccess2.main

 (IllegalAccess2.java:26)

The myjava.policy file is empty when this command was run, which means that the

application did not have permission to suppress the Java language access control.

If you want to allow your program to access an inaccessible field of a class using

reflection, the contents of the myjava.policy file would look as shown in Listing 2-17.

Listing 2-17. Contents of the conf\myjava.policy File

grant {

 // Grant permission to all programs to access

 // inaccessible members

 permission java.lang.reflect.ReflectPermission

 "suppressAccessChecks";

};

Let’s rerun the IllegalAccess2 class with a security manager and the Java policy as

shown in Listing 2-17:

C:\Java17LanguageFeatures>java -Djava.security.manager ^

-Djava.security.policy=conf\myjava.policy ^

--module-path build\modules\jdojo.reflection ^

--module ^

jdojo.reflection/com.jdojo.reflection.IllegalAccess2

Person: id=-1, name=Unknown

name=Unknown

Chapter 2 refleCtion

124

This time, you were able to access the private name field of the Person class when

you granted the appropriate security permission. The rules for accessing the inaccessible

members have just begun. You saw the rules for deep reflection within a module, when

the code gaining illegal access and the code being illegally accessed were in the same

module. The next section describes the illegal access behavior across modules.

 Deep Reflection Across Modules
Let’s set up a new module named jdojo.reflection.model, as shown in Listing 2-18,

and a simple class in it called Phone, as shown in Listing 2-19. The module declaration

contains no module statements. The Phone class contains a number instance variable,

two constructors, and a getter and a setter for the number instance variable. The

toString() method returns the phone number.

Listing 2-18. The Declaration of a jdojo.reflection.model Module

// module-info.java

module jdojo.reflection.model {

 // No module statements at this time

}

Listing 2-19. A Phone Class

// Phone.java

package com.jdojo.reflection.model;

public class Phone {

 private String number = "9999999999";

 public Phone() {

 }

 public Phone(String number) {

 this.number = number;

 }

 public String getNumber() {

 return number;

 }

Chapter 2 refleCtion

125

 public void setNumber(String number) {

 this.number = number;

 }

 @Override

 public String toString() {

 return this.number;

 }

}

Let’s create a class called IllegalAccess3 in the jdojo.reflection module.

The class will try to create an object of the Phone class in the jdojo.reflection.model

module and read the object’s private field, number. The IllegalAccess3 class in

Listing 2-20 contains the complete code. It is very similar to the IllegalAccess2 class.

The only difference is that you are accessing the Phone class and its private instance

variable across the module’s boundary.

Listing 2-20. Accessing the Private Number Field of the Phone Class

// IllegalAccess3.java

package com.jdojo.reflection;

import java.lang.reflect.Constructor;

import java.lang.reflect.Field;

public class IllegalAccess3 {

 public static void main(String[] args)

 throws Exception {

 // Get the class reference for the Phone class

 String className =

 "com.jdojo.reflection.model.Phone";

 Class<?> cls = Class.forName(className);

 // Create a Phone object

 Constructor<?> cons = cls.getConstructor();

 Object phone = cons.newInstance();

 // Get the reference of the number field

 Field numberField = cls.getDeclaredField("number");

 // try making the number field accessible before

Chapter 2 refleCtion

126

 // accessing it

 boolean accessEnabled = numberField.

 trySetAccessible();

 if (accessEnabled) {

 // Try accessing the number field by reading

 // its value

 String number = (String) numberField.

 get(phone);

 // Print the phone number

 System.out.println("number=" + number);

 } else {

 System.out.println("The Phone.number field " +

 "is not accessible.");

 }

 }

}

Let’s run the IllegalAccess3 class using the following command:

C:\Java17LanguageFeatures>java ^

--module-path build\modules\jdojo.reflection;build\modules\

 jdojo.reflection.model ^

--module ^

 jdojo.reflection/com.jdojo.reflection.IllegalAccess3

Exception in thread "main"

 java.lang.ClassNotFoundException:

 com.jdojo.reflection.model.Phone

 at java.base/jdk.internal.loader.

 BuiltinClassLoader.loadClass(BuiltinClassLoader.

 java:582)

 at java.base/jdk.internal.loader.ClassLoaders$

 AppClassLoader.loadClass(ClassLoaders.

 java:185)

 at java.base/java.lang.ClassLoader.loadClass

 (ClassLoader.java:496)

 at java.base/java.lang.Class.forName0

 (Native Method)

Chapter 2 refleCtion

127

 at java.base/java.lang.Class.forName

 (Class.java:292)

 at jdoj9o.reflection/com.jdojo.reflection.

 IllegalAccess3.main(IllegalAccess3.java:11)

(No line break and no spaces after “modules\”.)

Can you guess what is wrong with the command? The error is indicating that the

runtime did not find the Phone class. You were able to compile the IllegalAccess3

class because the class does not use the Phone class reference in the source code. It

attempts to use the Phone class using reflection at runtime. You have included the

jdojo.reflection.model module in the module path. However, including a module

in the module path does not resolve the module. The jdojo.reflection module does

not read the jdojo.reflection.model module, so running the IllegalAccess3 did not

resolve the jdojo.reflection.model module, and this is why the runtime did not find

the Phone class. You need to resolve the module manually by using the –addmodules

command- line option:

C:\Java17LanguageFeatures>java ^

--module-path build\modules\jdojo.reflection;build\modules\

 jdojo.reflection.model ^

--add-modules jdojo.reflection.model ^

--module ^

 jdojo.reflection/com.jdojo.reflection.IllegalAccess3

Exception in thread "main" java.lang.

 IllegalAccessException: class com.jdojo.reflection.

IllegalAccess3 (in module jdojo.reflection) cannot access

 class com.jdojo.reflection.model.Phone (in module

 jdojo.reflection.model) because module jdojo.

 reflection.model does not export com.jdojo.reflection.

 model to module jdojo.reflection

 at java.base/jdk.internal.reflect.Reflection.

 newIllegalAccessException

 (Reflection.java:361)

 at java.base/java.lang.reflect.AccessibleObject.

 checkAccess

 (AccessibleObject.java:589)

Chapter 2 refleCtion

128

 at java.base/java.lang.reflect.Constructor.

 newInstance

 (Constructor.java:479)

 at jdojo.reflection/com.jdojo.reflection.

 IllegalAccess3.main

 (IllegalAccess3.java:15)

(No line break and no spaces after “modules\”.)

This time, the runtime was able to find the Phone class, but it complained about

accessing the Phone class in the jdojo.reflection.model module from another module,

jdojo.reflection. The error is stating that the jdojo.reflection.model module does

not export the com.jdojo.reflection.model package, so the Phone class is in the com.

jdojo.reflection.model package and is not accessible outside the jdojo.reflection.

model module. Listing 2-21 contains the modified version of the jdojo.reflection.

model module. Now it exports the com.jdojo.reflection.model package.

Listing 2-21. The Modified Declaration of a jdojo.reflection.model Module

// module-info.java

module jdojo.reflection.model {

 exports com.jdojo.reflection.model;

}

Let’s rerun the IllegalAccess3 class using the previous command:

C:\Java17LanguageFeatures>java ^

--module-path ^

 build\modules\jdojo.reflection;

 build\modules\jdojo.reflection.model

--add-modules jdojo.reflection.model ^

--module ^

 jdojo.reflection/com.jdojo.reflection.IllegalAccess3

The Phone.number field is not accessible.

(No line break and no spaces after “reflection;”.)

Chapter 2 refleCtion

129

This time, you were able to instantiate the Phone class, but you would not access its

private number field. Notice that the jdojo.reflection module does not read the jdojo.

reflection.model module. Still the IllegalClass3 class is able to access the Phone

class and instantiate it using reflection. If you write the following snippet of code in the

IllegalAccess3 class, it would not compile:

Phone phone = new Phone();

When module M accesses the types in module N using reflection, a read from

module M to module N is granted implicitly. Such a read must be specified explicitly

using a requires statement when such access is needed statically (without reflection).

This is what the previous command did when creating an object of the Phone class.

If you used the setAccessible(true) in the IllegalAccess3 class to make the

number field accessible, the previous command would have produced an error message

similar to the following:

Exception in thread "main" java.lang.reflect.

InaccessibleObjectException: Unable to make field private

java.lang.String com.jdojo.reflection.model.Phone.number

accessible: module jdojo.reflection.model does not "opens

com.jdojo.reflection.model" to module jdojo.reflection

...

This error message is loud and clear. It is stating that the runtime could not make the

private number field accessible because the jdojo.reflection.model module does not

open the com.jdojo.reflection.model package to the jdojo.reflection module. Here

comes the concept of opening a module’s package and opening an entire module.

Exporting a package of a module grants access to the public types in the package and

the accessible public members of those types to another module. Exporting a package

grants the access at compile time and at runtime. You can use reflection to access the

same accessible public members that you can access without reflection. That is, Java

language access control is always enforced for exported packages of a module.

If you want to allow deep reflection on types of a package in a module by code in

other modules at runtime, you need to open the package of the module using the opens

statement. The syntax for the opens statement is as follows:

opens <package-name> [to <module-name>,<module-name>...];

Chapter 2 refleCtion

130

The syntax allows you to open a package to all other modules or a set of specific

modules. In the following declaration, module M opens its package p to modules S and T:

module M {

 opens p to S, T;

}

In the following declaration, module N opens its package q to all other modules:

module N {

 opens q;

}

It is possible that a module exports and opens the same package. It is needed if other

modules need to access the types in the package statically at compile time and runtime

and using deep reflection at runtime. The following module declaration exports and

opens the same package p to all other modules:

module J {

 exports p;

 opens p;

}

An opens statement in a module declaration allows you to open one package to all

other modules or selective modules. If you want to open all packages of a module to all

other modules, you can declare the module itself as an open module. You can declare

an open module by using the open modifier in the module declaration. The following

declares an open module named K:

open module K {

 // Other module statements go here

}

An open module cannot contain an opens statement. This is because an open

module means it has opened all its packages to all other modules for deep reflection.

The following declaration of module L is invalid because it declares the module as open

and, at the same time, contains an opens statement:

Chapter 2 refleCtion

131

open module L {

 opens p; // A compile-time error

 // Other module statements go here

}

It is fine to export packages in an open module. The following declaration of module

D is valid:

open module D {

 exports p;

 // Other module statements go here

}

So, now you know what to do with the jdojo.reflection.model module for the

jdojo.reflection module to perform deep reflection on the Phone class. You need to do

either of the following:

• Open the com.jdojo.reflection.model package of the jdojo.

reflection.model module to all other modules or at least to the

jdojo.reflection module.

• Declare the jdojo.reflection.model module as an open module.

Listings 2-22 and 2-23 contain the modified module declaration of the jdojo.

reflection.model module. You will need to use one of them, not both. For this example,

you do not need to export the package in the module’s declaration because you are not

accessing the Phone class at compile time in the jdojo.reflection module.

Listing 2-22. The Modified Declaration of a model Module, Which Opens the

com.jdojo.reflection.model Package to All Other Modules

// module-info.java

module jdojo.reflection.model {

 exports com.jdojo.reflection.model;

 opens com.jdojo.reflection.model;

}

Chapter 2 refleCtion

132

Listing 2-23. The Modified Declaration of a model Module, Which Declares It As

an Open Module

// module-info.java

open module jdojo.reflection.model {

 exports com.jdojo.reflection.model;

}

Let’s rerun the IllegalAccess3 class using the previous command with the

com.jdojo.reflection.model package open. This time, you will receive the desired

output:

C:\Java17LanguageFeatures>java ^

--module-path build\modules\jdojo.reflection;

 build\modules\jdojo.reflection.model ^

--add-modules jdojo.reflection.model ^

--module ^

 jdojo.reflection/com.jdojo.reflection.IllegalAccess3

number=9999999999

(No line break and no spaces after “reflection;”.)

 Deep Reflection and Unnamed Modules
All packages in an unnamed module are open to all other modules. Therefore, you can

always perform deep reflection on types in unnamed modules.

 Deep Reflection on JDK Modules
Prior to JDK9, deep reflection was allowed on members of all types—JDK internals and

your types. One of the main goals of JDK9 is strong encapsulation, and you should not

be able to access rather inaccessible members of an object using deep reflection. Since

JDK9, deep reflection on JDK modules is only possible from the unnamed module. If

applications are modularized, deep reflection on JDK modules is illegal. The weakened

restrictions for unnamed modules are for backward compatibility only; modern

applications should never access JDK internals like private fields.

Chapter 2 refleCtion

133

Let’s walk through an example of this. The java.lang.Long class is immutable. It

contains a private field named value to hold the long value that this object represents.

Listing 2-24 shows you how to access and modify the private value field of the Long class

using deep reflection, which is not possible using the Long class statically.

Listing 2-24. Accessing and Modifying the Private Value Field of the java.lang.

Long Class Using Deep Reflection

// IllegalAccessJDKType.java

package com.jdojo.reflection;

import java.lang.reflect.Field;

public class IllegalAccessJDKType {

 public static void main(String[] args)

 throws Exception {

 // Create a Long object

 Long num = 1969L;

 System.out.println("#1: num = " + num);

 // Get the class reference for the Long class

 String className = "java.lang.Long";

 Class<?> cls = Class.forName(className);

 // Get the value field reference

 Field valueField = cls.getDeclaredField("value");

 // try making the value field accessible before

 // accessing it

 boolean accessEnabled = valueField.

 trySetAccessible();

 if (accessEnabled) {

 // Get and print the current value of the

 // Long.value private field of the num object

 // that you created in the beginning of this

 // method

 Long value = (Long) valueField.get(num);

 System.out.println("#2: num = " + value);

 // Change the value of the Long.value field

 valueField.set(num, 1968L);

 value = (Long) valueField.get(num);

 System.out.println("#3: num = " + value);

Chapter 2 refleCtion

134

 } else {

 System.out.println("The Long.value field is " +

 "not accessible.");

 }

 }

}

In the beginning of the main() method, you create a Long object, called num, and set

its value to 1969L:

Long num = 1969L;

System.out.println("#1: num = " + num);

Later, you get the reference of the Class object for the Long class and get the

reference of the private value field and try to make it accessible. If you were able to make

the field accessible, you read its current value, which would be 1969L. Now you change

its value to 1968L and read it back in your program.

The IllegalAccessJDKType class is a member of the jdojo.reflection module.

Let’s run it using the following command:

C:\Java17LanguageFeatures>java ^

--module-path build\modules\jdojo.reflection ^

--module ^

jdojo.reflection/com.jdojo.reflection.IllegalAccessJDKType

#1: num = 1969

The Long.value field is not accessible.

You were not able to make the private value field of the Long class accessible

because the IllegalAccessJDKType class is part of a named module, and code in named

modules is not allowed to have illegal access to the members of the JDK internal types.

The following command reruns the class from the class path (effectively unmodularizing

it and implicitly using the unnamed module), and you get the desired output. Notice the

one-time warnings even though you have accessed the private field three times:

C:\Java17LanguageFeatures>java ^

--class-path build\modules\jdojo.reflection ^

com.jdojo.reflection.IllegalAccessJDKType

Chapter 2 refleCtion

135

#1: num = 1969

WARNING: An illegal reflective access operation has

 occurred

WARNING: Illegal reflective access by com.jdojo.reflection.

 IllegalAccessJDKType

(file:/C:/Java17LanguageFeatures/build/modules/

 jdojo.reflection/) to field java.lang.Long.value

WARNING: Please consider reporting this to the maintainers

of com.jdojo.reflection.IllegalAccessJDKType

WARNING: Use --illegal-access=warn to enable warnings of

 further illegal reflective access operations

WARNING: All illegal access operations will be denied in a

future release

#2: num = 1969

#3: num = 1968

 Reflecting on Arrays
Java provides special APIs to work with arrays. The Class class lets you find out if a

Class reference represents an array by using its isArray() method. You can also create

an array and read and modify its element’s values using reflection. The java.lang.

reflect.Array class is used to dynamically create an array and manipulate its elements.

As stated before, you cannot reflect on the length field of an array using a normal

reflection procedure. However, the Array class provides the getLength() method to get

the length value of an array. Note that all methods in the Array class are static, and most

of them have the first argument as the array object’s reference on which they operate.

To create an array, use the newInstance() static method of the Array class. The

method is overloaded and has two versions:

• Object newInstance(Class<?> componentType, int arrayLength)

• Object newInstance(Class<?> componentType, int... dimensions)

One version of the method creates an array of the specified component type and the

array length. The other version creates an array of the specified component type and

dimensions. Note that the return type of the newInstance() method is Object. You need

to use an appropriate cast to convert it to the actual array type.

Chapter 2 refleCtion

136

If you want to create an array of int of length 5, you would write

int[] ids = (int[]) Array.newInstance(int.class, 5);

This statement has the same effect as the following statement:

int[] ids = new int[5];

If you want to create an array of int of dimension 5x8, you would write

int[][] matrix = (int[][]) Array.newInstance(

int.class, 5, 8);

Listing 2-25 illustrates how to create an array dynamically and manipulate its

elements.

Listing 2-25. Reflecting on Arrays

// ArrayReflection.java

package com.jdojo.reflection;

import java.lang.reflect.Array;

public class ArrayReflection {

 public static void main(String[] args) {

 try {

 // Create the array of int of length 2

 Object arrayObject = Array.newInstance(

 int.class, 2);

 // Print the values in array element. Default

 // values will be zero

 int n1 = Array.getInt(arrayObject, 0);

 int n2 = Array.getInt(arrayObject, 1);

 System.out.println("n1 = " + n1 +

 ", n2 = " + n2);

 // Set the values to both elements

 Array.set(arrayObject, 0, 101);

 Array.set(arrayObject, 1, 102);

 // Print the values in array element again

 n1 = Array.getInt(arrayObject, 0);

 n2 = Array.getInt(arrayObject, 1);

Chapter 2 refleCtion

137

 System.out.println("n1 = " + n1 +

 ", n2 = " + n2);

 } catch (NegativeArraySizeException

 | IllegalArgumentException

 | ArrayIndexOutOfBoundsException e) {

 System.out.println(e.getMessage());

 }

 }

}

n1 = 0, n2 = 0

n1 = 101, n2 = 102

Java does not support a truly multidimensional array. Rather, it supports an array of

arrays. The Class class contains a method called getComponentType(), which returns

the Class object for an array’s element type. Listing 2-26 illustrates how to get the

dimension of an array.

Listing 2-26. Getting the Dimension of an Array

// ArrayDimension.java

package com.jdojo.reflection;

public class ArrayDimension {

 public static void main(String[] args) {

 int[][][] intArray = new int[6][3][4];

 System.out.println("int[][][] dimension is " +

 getArrayDimension(intArray));

 }

 public static int getArrayDimension(Object array) {

 int dimension = 0;

 Class c = array.getClass();

 // Perform a check that the object is really

 // an array

 if (!c.isArray()) {

 throw new IllegalArgumentException(

 "Object is not an array.");

 }

Chapter 2 refleCtion

138

 while (c.isArray()) {

 dimension++;

 c = c.getComponentType();

 }

 return dimension;

 }

}

int[][][] dimension is 3

 Expanding an Array
After you create an array, you cannot change its length. You can create an array of

a bigger size and copy the old array elements to the new one at runtime. The Java

collection classes such as ArrayList apply this technique to let you add elements to

the collection without worrying about its length. You can use the combination of the

getComponentType() method of the Class class and the newInstance() method of the

Array class to create a new array of a given type. You can use the arraycopy() static

method of the System class to copy the old array elements to the new array. Listing 2-27

illustrates how to create an array of a particular type using reflection. All runtime checks

have been left out for clarity.

Listing 2-27. Expanding an Array Using Reflection

// ExpandingArray.java

package com.jdojo.reflection;

import java.lang.reflect.Array;

import java.util.Arrays;

public class ExpandingArray {

 public static void main(String[] args) {

 // Create an array of length 2

 int[] ids = {101, 102};

 System.out.println("Old array length: " +

 ids.length);

 System.out.println("Old array elements: " +

 Arrays.toString(ids));

Chapter 2 refleCtion

139

 // Expand the array by 1

 ids = (int[]) expandBy(ids, 1);

 // Set the third element to 103

 ids[2] = 103; // This is newly added element

 System.out.println("New array length: " +

 ids.length);

 System.out.println("New array elements: " +

 Arrays.toString(ids));

 }

 public static Object

 expandBy(Object oldArray, int increment) {

 // Get the length of old array using reflection

 int oldLength = Array.getLength(oldArray);

 int newLength = oldLength + increment;

 // Get the class of the old array

 Class<?> cls = oldArray.getClass();

 // Create a new array of the new length

 Object newArray = Array.newInstance(

 cls.getComponentType(), newLength);

 // Copy the old array elements to new array

 System.arraycopy(oldArray, 0, newArray,

 0, oldLength);

 return newArray;

 }

}

Old array length: 2

Old array elements: [101, 102]

New array length: 3

New array elements: [101, 102, 103]

 Who Should Use Reflection?
If you have used any integrated development environment (IDE) to develop a GUI

application using drag-and-drop features, you have already used an application that uses

reflection in one form or another. All GUI tools that let you set the properties of a control,

Chapter 2 refleCtion

140

say a button, at design time use reflection to get the list of the properties for that control.

Other tools such as class browsers and debuggers also use reflection. As an application

programmer, you will not use reflection much unless you are developing advanced

applications that use dynamism provided by the reflection API. It should be noted that

using too much reflection slows down the performance of your application.

 Summary
Reflection is the ability of a program to query and modify its state “as data” during the

execution of the program. Java represents the bytecode of a class as an object of the

Class class to facilitate reflection. The class fields, constructors, and methods can be

accessed as an object of the Field, Constructor, and Method classes, respectively.

Using a Field object, you can access and change the value of the field. Using a Method

object, you can invoke the method. Using a Constructor object, you can invoke a given

constructor of a class. Using the Array class, you can also create arrays of a specified type

and dimension using reflection and manipulate the elements of the arrays.

Java has been allowing access to rather inaccessible members such as a private field

of a class outside the class using reflection. This is called deep reflection. Before you

can access the inaccessible member, you need to call the setAccessible(true) on that

member, which could be a Field, a Method, or a Constructor. The setAccessible()

method throws a runtime exception if the accessibility cannot be enabled. JDK9 added

a trySetAccessible() method for the same purpose, which does not throw a runtime

exception. Rather, it returns true if accessibility is enabled and false otherwise.

Deep reflection in JDK9 and later across modules is prohibited by default. If a

module wants to allow deep reflection on types in a given package, the module must

open that package to at least the module that will use deep reflection. You can open a

package using the opens statement in a module declaration. You can declare a module as

an open module, which opens all packages in the module for deep reflection. If a named

module M uses reflection to access types in another module N, the module M implicitly

reads module N. All packages in an unnamed module open for deep reflection.

JDK9 and later allow deep reflection on JDK internal types by code only from the

unnamed module or unmodularized applications.

Chapter 2 refleCtion

141

 Exercises
Exercise 1

What is reflection?

Exercise 2

Name two Java packages that contain the reflection-related classes and interfaces.

Exercise 3

What does an instance of the Class class represent?

Exercise 4

List three ways to get the reference of an instance of the Class class.

Exercise 5

When do you use the forName() method of the Class class to get an instance of the

Class class?

Exercise 6

Name three built-in class loaders. How do you get references of these class loaders?

Exercise 7

If you get a reference of the Class class, how do you know if this reference represents

an interface?

Exercise 8

What do instances of the Field, Constructor, and Method classes represent?

Exercise 9

What is the difference between using the getFields() and getDeclaredFields()

methods of the Class class?

Exercise 10

You need to use setAccessible(true) or trySetAccessible() method of the

AccessibleObject class to make a Field, Constructor, and Method object accessible

even if they are inaccessible (e.g., they are declared private). What is the difference

between these two methods?

Exercise 11

Assume that you have two modules named R and S. Module R contains a public

p.Test class with a public method m(). The code in module S needs to use the class

p.Test to declare variables and create its objects. Module S also needs to use reflection

to access the public method m() of the p.Test class in module R. What is the minimum

you need to do while declaring module R, so module S can perform these tasks?

Chapter 2 refleCtion

142

Exercise 12

What is opening a package in a module? What is an open module?

Exercise 13

What is the difference between exporting and opening a package of a module? Give

an example when you will need to export and open the same package of a module.

Exercise 14

Consider the declarations of a module named jdojo.reflection.exercise.model

and a MagicNumber class in that module as follows:

// module-info.java

module jdojo.reflection.exercises.model {

 /* Add your module statements here */

}

// MagicNumber.java

package com.jdojo.reflection.exercises.model;

public class MagicNumber {

 private int number;

 public int getNumber() {

 return number;

 }

 public void setNumber(int number) {

 this.number = number;

 }

}

Modify the module declaration so that code in other modules can perform

deep reflection on the objects of the MagicNumber class. Create a class named

MagicNumberTest in a module named jdojo.reflection.exercises. The code in the

MagicNumberTest class should use reflection to create an object of the MagicNumber

class, set its private number field directly, and read the current value of the number field

using the getNumber() method.

Exercise 15

Can you access private members of JDK classes in Java 9 or later? If your answer is

yes, describe the rules and restrictions for such access.

Chapter 2 refleCtion

143

Exercise 16

Assume there are two modules, P and Q. Module P is an open module. Module Q

wants to perform deep reflection on types in module P. Is module Q required to read

module P in its module’s declaration?

Exercise 17

Assume there are two modules, M and N. Module M does not open any of its packages

to any modules, but it exports a com.jdojo.m to all other modules. Can module N use

reflection to access publically accessible members of the com.jdojo.m package of

module M?

Chapter 2 refleCtion

145
© Kishori Sharan, Peter Späth 2021
K. Sharan and P. Späth, More Java 17, https://doi.org/10.1007/978-1-4842-7135-3_3

CHAPTER 3

Generics
In this chapter, you will learn:

• What generics are

• How to define generic types, methods, and constructors

• How to define bounds for type parameters

• How to use wildcards as the actual type parameters

• How the compiler infers the actual type parameters for generic type uses

• Generics and their limitations in array creations

• How the incorrect use of generics may lead to heap pollution

All example programs in this chapter are a member of a jdojo.generics module, as

declared in Listing 3-1.

Listing 3-1. The Declaration of a jdojo.generics Module

// module-info.java

module jdojo.generics {

 exports com.jdojo.generics;

}

 What Are Generics?
Generics let you write true polymorphic code that works with any type.

Let’s discuss a simple example before I define what generics are and what they do for

you. Suppose you want to create a new class whose sole job is to store a reference to any

type, where “any type” means any reference type. Let’s call this class ObjectWrapper, as

shown in Listing 3-2.

https://doi.org/10.1007/978-1-4842-7135-3_3#DOI

146

Listing 3-2. A Wrapper Class to Store a Reference of Any Type

// ObjectWrapper.java

package com.jdojo.generics;

public class ObjectWrapper {

 private Object ref;

 public ObjectWrapper(Object ref) {

 this.ref = ref;

 }

 public Object get() {

 return ref;

 }

 public void set(Object ref) {

 this.ref = ref;

 }

}

As a Java developer, you would agree that you write this kind of code when you do

not know the type of the objects that you have to deal with. The ObjectWrapper class can

store a reference of any type in Java, such as String, Integer, Person, etc. How do you

use the ObjectWrapper class? The following is one of the ways to use it to work with the

String type:

ObjectWrapper stringWrapper = new ObjectWrapper("Hello");

stringWrapper.set("Another string");

String myString = (String) stringWrapper.get();

There’s one problem in this snippet of code. Even though you knew that you stored

(and wanted to) a string in the stringWrapper object, you had to cast the return value of

the get() method to a String type in (String) stringWrapper.get(). Consider writing

the following snippet of code:

ObjectWrapper stringWrapper = new ObjectWrapper("Hello");

stringWrapper.set(new Integer(101));

String myString =(String) stringWrapper.get();

Chapter 3 GeneriCs

147

This snippet of code compiles fine. However, the third statement throws a

ClassCastException at runtime because you stored an Integer in the second statement

and attempted to cast an Integer to a String in the third statement. First, it allowed you

to store an Integer in stringWrapper. Second, it did not complain about the code in the

third statement because it had no knowledge of your intent that you only wanted to use a

String with stringWrapper.

Java has made some progress with the way it helps developers write type-safe

programs. Wouldn’t it be nice if the ObjectWrapper class allowed you to specify that

you want to use this class only for a specific type, say, String this time and Integer the

next? Your wish is fulfilled by generics in Java. They let you specify a type parameter

with a type (class or interface). Such a type is called a generic type (more specifically

generic class or generic interface). The type parameter value could be specified when

you declare a variable of the generic type and create an object of your generic type. You

have seen specifying parameters for a method. This time, I am talking about specifying

parameters for types such as classes or interfaces.

Note a type with type parameters in its declaration is called a generic type.

Let’s rewrite the ObjectWrapper class to use generics naming the new class simply

Wrapper. The formal parameters of a generic type are specified in the generic type’s

declaration. Parameter names are valid Java identifiers and are specified in angle

brackets (< >) after the name of the parameterized type. You will use T as the type

parameter name for the Wrapper class:

public class Wrapper<T> {

}

It is an unwritten convention that type parameter names are one character and

to use T to indicate that the parameter is a type, E to indicate that the parameter is

an element, K to indicate that the parameter is a key, N to indicate the parameter is a

number, and V to indicate that the parameter is a value. In the previous example, you

could have used any name for the type parameter, like so:

public class Wrapper<Hello> {

}

public class Wrapper<MyType> {

}

Chapter 3 GeneriCs

148

Multiple type parameters are separated by a comma. The following declaration for

MyClass takes four type parameters named T, U, V, and W:

public class MyClass<T, U, V, W> {

}

You will be using your type parameter named T inside the class code in instance

variable declarations, constructors, the get() method, and the set() method. Right

now, T means any type for you, which will be known when you use this class. Listing 3-3

contains the complete code for the Wrapper class.

Listing 3-3. Using a Type Parameter to Define a Generic Class

// Wrapper.java

package com.jdojo.generics;

public class Wrapper<T> {

 private T ref;

 public Wrapper(T ref) {

 this.ref = ref;

 }

 public T get() {

 return ref;

 }

 public void set(T ref) {

 this.ref = ref;

 }

}

Are you confused about using T in Listing 3-3? Here, T means any class type or

interface type. It could be String, Object, com.jdojo.generics.Person, etc. If you

replace T with Object everywhere in this program and remove <T> from the class name,

it is the same code that you had for the ObjectWrapper class.

How do you use the Wrapper class? Since its class name is not just Wrapper, rather

it is Wrapper<T>, you may specify (but do not have to) the value for T. To store a String

reference in the Wrapper object, you create it as follows:

Wrapper<String> greetingWrapper =

 new Wrapper<String>("Hello");

Chapter 3 GeneriCs

149

How do you use the set() and get() methods of the Wrapper class? Since you have

specified the type parameter for class Wrapper<T> to be String, the set() and get()

methods will work only with String types. This is because you used T as an argument

type in the set() method and T as the return type in the get() method declarations.

Imagine replacing T in the class definition with String, and you should have no problem

understanding the following code:

greetingWrapper.set("Hi");

 // <- OK to pass a String

String greeting = greetingWrapper.get();

 // <- No need to cast

This time, you did not have to cast the return value of the get() method. The

compiler knows that greetingWrapper has been declared of type Wrapper<String>,

so its get() method returns a String. Let’s try to store an Integer object in

greetingWrapper:

// A compile-time error. You can use greetingWrapper

// only to store a String.

greetingWrapper.set(new Integer(101));

The statement will generate the following compile-time error:

error: incompatible types: Integer cannot be converted to

 String

 greetingWrapper.set(new Integer(101));

You cannot pass an Integer to the set() method. The compiler will generate an

error. If you want to use the Wrapper class to store an Integer, your code will be as

follows:

Wrapper<Integer> idWrapper =

 new Wrapper<Integer>(new Integer(101));

idWrapper.set(new Integer(897));

 // <- OK to pass an Integer

Integer id = idWrapper.get();

// A compile-time error. You can use idWrapper only

// with an Integer.

idWrapper.set("hello");

Chapter 3 GeneriCs

150

Assuming that a Person class exists that contains a constructor with two parameters,

you store a Person object in Wrapper as follows:

Wrapper<Person> personWrapper = new Wrapper<Person>(

 new Person(1, "Chris"));

personWrapper.set(new Person(2, "Laynie"));

Person laynie = personWrapper.get();

The parameter that is specified in the type declaration is called a formal type

parameter; for example, T is a formal type parameter in the Wrapper<T> class

declaration. When you replace the formal type parameter with the actual type (e.g.,

in Wrapper<String> you replace the formal type parameter T with String), it is

called a parameterized type. A reference type in Java, which accepts one or more

type parameters, is called a generic type. A generic type is mostly implemented in the

compiler. The JVM has no knowledge of generic types. All actual type parameters are

erased at compile time using a process known as erasure. Compile-time type-safety is

the benefit that you get when you use a parameterized generic type in your code without

the need to use casts.

Polymorphism is about writing code in terms of a type that also works with

many other types. In any introductory level book about Java, you learn how to write

polymorphic code using inheritance and interfaces. Inheritance in Java offers inclusion

polymorphism where you write code in terms of the base type, and the code also works

with all subtypes of that base type. In this case, you are forced to have all other types fall

under a single inheritance hierarchy. That is, all types for which the polymorphic code

works must inherit from the single base type. Interfaces in Java lift this restriction and

let you write code in terms of an interface. The code works with all types that implement

the interface. This time, all types for which the code works do not have to fall under one

type hierarchy. Still, you had one constraint that all those types must implement the

same interface. Generics in Java take you a step closer to writing “true” polymorphic

code. The code written using generics works for any type. Generics in Java do have some

restrictions as to what you can do with the generic type in your code. Showing you what

you can do with generics in Java and elaborating on the restrictions are the topics of

discussion in this chapter.

Chapter 3 GeneriCs

151

 Supertype-Subtype Relationship
Let’s play a trick. The following code creates two parameterized instances of the

Wrapper<T> class, one for the String type and one for the Object type:

Wrapper<String> stringWrapper =

 new Wrapper<String>("Hello");

stringWrapper.set("a string");

Wrapper<Object> objectWrapper =

 new Wrapper<Object>(new Object());

objectWrapper.set(new Object());

// Use a String object with objectWrapper

objectWrapper.set("a string"); // OK

It is fine to store a String object in objectWrapper. After all, if you intended to store

an Object in objectWrapper, a String is also an Object. Is the following assignment

allowed?

objectWrapper = stringWrapper;

No, this assignment is not allowed. That is, a Wrapper<String> is not assignment

compatible to a Wrapper<Object>. To understand why this assignment is not allowed,

let’s assume for a moment that it was allowed and you could write code like the

following:

// Now objectWrapper points to stringWrapper

objectWrapper = stringWrapper;

// We could store an Object in stringWrapper using

// objectWrapper

objectWrapper.set(new Object());

// The following statement will throw a runtime

// ClassCastException

String s = stringWrapper.get();

Do you see the danger of allowing an assignment like objectWrapper=

stringWrapper? The compiler cannot make sure that stringWrapper will store only a

reference of String type if this assignment was allowed.

Chapter 3 GeneriCs

152

Remember that a String is an Object because String is a subclass of Object.

However, a Wrapper<String> is not a Wrapper<Object>. The normal supertype/subtype

rules do not apply to parameterized types. Don’t worry about memorizing this rule if you

do not understand it. If you attempt such assignments, the compiler will tell you that you

can’t.

 Raw Types
The implementation of generic types in Java is backward compatible. If an existing non-

generic class is rewritten to take advantage of generics, the existing code that uses the

non-generic version of the class should keep working. The code may use (though it is

not recommended) a non-generic version of a generic class by just omitting references

to the generic type parameters. The non-generic version of a generic type is called a raw

type. Using raw types is discouraged. If you use raw types in your code, the compiler will

generate unchecked warnings, as shown in the following snippet of code:

// Use the Wrapper<T> generic type as a raw type Wrapper

Wrapper rawType = new Wrapper("Hello"); // An unchecked

 // warning

// Using the Wrapper<T> generic type as a parameterized

// type Wrapper<String>

Wrapper<String> genericType = new Wrapper<String>("Hello");

// Assigning the raw type to the parameterized type

genericType = rawType; // An unchecked warning

// Assigning the parameterized type to the raw type

rawType = genericType;

The compiler generates the following warnings when this snippet of code is

compiled:

warning: [unchecked] unchecked call to Wrapper(T) as a

 member of the raw type Wrapper

 Wrapper rawType = new Wrapper("Hello");

 ^

 where T is a type-variable:

 T extends Object declared in class Wrapper

Chapter 3 GeneriCs

153

warning: [unchecked] unchecked conversion

 genericType = rawType;

 ^

 required: Wrapper<String>

 found: Wrapper

2 warnings

 Unbounded Wildcards
Let’s start with an example. It will help you understand the need for as well as the use

of wildcards in generic types. Let’s build a utility class for the Wrapper class and call it

WrapperUtil. Add a static utility method called printDetails() to this class, which

will take an object of the Wrapper<T> class. How should you define the argument of this

method? The following is the first attempt:

public class WrapperUtil {

 public static

 void printDetails(Wrapper<Object> wrapper){

 // More code goes here

 }

}

Since your printDetails() method is supposed to print details about a Wrapper<T>

of any type, Object as the type parameter seems to be more suitable. Let’s use your new

printDetails() method, as shown:

Wrapper<Object> objectWrapper =

 new Wrapper<Object>(new Object());

WrapperUtil.printDetails(objectWrapper); // OK

Wrapper<String> stringWrapper =

 new Wrapper<String>("Hello");

WrapperUtil.printDetails(stringWrapper); // A compile-time

 // error

Chapter 3 GeneriCs

154

The compile-time error is as follows:

error: method printDetails in class WrapperUtil cannot be

 applied to given types;

 WrapperUtil.printDetails(stringWrapper);

 ^

 required: Wrapper<Object>

 found: Wrapper<String>

 reason: argument mismatch; Wrapper<String> cannot be

 converted to Wrapper<Object>

1 error

You are able to call the printDetails() method with the Wrapper<Object> type, but

not with the Wrapper<String> type because they are not assignment compatible, which

is contradictory to what your intuition tells you. To understand it fully, you need to know

about the wildcard type in generics. A wildcard type is denoted by a question mark, as in

<?>. For a generic type, a wildcard type is what an Object type is for a raw type. You can

assign a generic of known type to a generic of wildcard type. Here is the sample code:

// Wrapper of String type

Wrapper<String> stringWrapper = new Wrapper<String>("Hi");

// You can assign a Wrapper<String> to Wrapper<?> type

Wrapper<?> wildCardWrapper = stringWrapper;

The question mark in a wildcard generic type (e.g., <?>) denotes an unknown

type. When you declare a parameterized type using a wildcard (means unknown) as a

parameter type, it means that it does not know about its type:

// wildCardWrapper has unknown type

Wrapper<?> wildCardWrapper;

// Better to name it as an unknownWrapper

Wrapper<?> unknownWrapper;

Can you create a Wrapper<T> object of an unknown type? Let’s assume that John

cooks something for you. He packs the food in a packet and hands it over to you. You

hand over the packet to Donna. Donna asks you what is inside the packet. Your answer is

that you do not know. Can John answer the same way you did? No. He must know what

he cooked because he was the person who cooked the food. Even if you did not know

Chapter 3 GeneriCs

155

what was inside the packet, you had no problem in carrying it and giving it to Donna.

What would be your answer if Donna asked you to give her the vegetables from the

packet? You would say that you do not know if vegetables are inside the packet.

Here are the rules for using a wildcard (unknown) generic type. Since it does not

know its type, you cannot use it to create an object of its unknown type. The following

code is illegal:

// Cannot use <?> with new operator. It is a compile-time

// error.

new Wrapper<?>("");

error: unexpected type

 new Wrapper<?>("");

 ^

 required: class or interface without bounds

 found: ?

1 error

As you were holding the packet of unknown food type (John knew the type of food

when he cooked it), a wildcard generic type can refer to a known generic type object, as

shown:

Wrapper<?> unknownWrapper = new Wrapper<String>("Hello");

There is a complicated list of rules as to what a wildcard generic type reference can

do with the object. However, there is a simple rule of thumb to remember. The purpose

of using generics is to have compile-time type-safety. As long as the compiler is satisfied

that the operation will not produce any surprising results at runtime, it allows the

operation on the wildcard generic type reference.

Let’s apply the rule of thumb to your unknownWrapper reference variable. One

thing that this unknownWrapper variable is sure about is that it refers to an object of the

Wrapper<T> class of a known type. However, it does not know what that known type is.

Can you use the following get() method? The following statement generates a

compile- time error:

Chapter 3 GeneriCs

156

String str = unknownWrapper.get();

error: incompatible types: CAP#1 cannot be converted

 to String

 String str = unknownWrapper.get();

 ^

 where CAP#1 is a fresh type-variable:

 CAP#1 extends Object from capture of ?

1 error

The compiler knows that the get() method of the Wrapper<T> class returns an object

of type T. However, for the unknownWrapper variable, type T is unknown. Therefore,

the compiler cannot ensure that the method call, unknownWrapper.get(), will return

a String and its assignment to str variable is fine at runtime. All you have to do is

convince the compiler that the assignment will not throw a ClassCastException at

runtime. Will the following line of code compile?

Object obj = unknownWrapper.get(); // OK

This code will compile because the compiler is convinced that this statement will

not throw a ClassCastException at runtime. It knows that the get() method returns

an object of a type, which is not known to the unknownWrapper variable. No matter what

type of object the get() method returns, it will always be assignment compatible with

the Object type. After all, all reference types in Java are subtypes of the Object type. Will

the following snippet of code compile?

unknownWrapper.set("Hello"); // A compile-time error

unknownWrapper.set(new Integer()); // A compile-time error

unknownWrapper.set(new Object()); // A compile-time error

unknownWrapper.set(null); // OK

Were you surprised by errors in this snippet of code? You will find out that it is not

as surprising as it seems. The set(T a) method accepts the generic type argument. This

type, T, is not known to unknownWrapper, and therefore the compiler cannot make sure

that the unknown type is a String type, an Integer type, or an Object type. This is why

the first three calls to set() are rejected by the compiler. Why is the fourth call to the

set() method correct? A null is assignment compatible to any reference type in Java.

The compiler thought that no matter what type T would be in the set(T a) method for

Chapter 3 GeneriCs

157

the object to which unknownWrapper reference variable is pointing to, a null can always

be safe to use. The following is your printDetails() method’s code. If you pass a null

Wrapper object to this method, it will throw a NullPointerException:

public class WrapperUtil {

 public static void printDetails(Wrapper<?> wrapper) {

 // Can assign get() return value to an Object

 Object value = wrapper.get();

 String className = null;

 if (value != null) {

 className = value.getClass().getName();

 }

 System.out.println("Class: " + className);

 System.out.println("Value: " + value);

 }

}

Note Using only a question mark as a parameter type (<?>) is known as an
unbounded wildcard. it places no bounds as to what type it can refer. You can
also place an upper bound or a lower bound with a wildcard. i discuss bounded
wildcards in the next two sections.

 Upper-Bounded Wildcards
Suppose you want to add a method to your WrapperUtil class. The method should

accept two numbers that are wrapped in your Wrapper objects, and it will return their

sum. The wrapped objects may be an Integer, Long, Byte, Short, Double, or Float. Your

first attempt is to write the sum() method as shown:

public static double sum(Wrapper<?> n1, Wrapper<?> n2) {

 //Code goes here

}

Chapter 3 GeneriCs

158

There are some obvious problems with this method signature. The parameters

n1 and n2 could be of any parameterized type of Wrapper<T> class. For example, the

following call would be a valid call for the sum() method:

// Try adding an Integer and a String

sum(new Wrapper<Integer>(new Integer(125)),

 new Wrapper<String>("Hello"));

Computing the sum of an Integer and a String does not make sense. However, the

code will compile, and you should be ready to get some runtime exceptions depending

on the implementation of the sum() method. You must restrict this kind of code from

compiling. It should accept two Wrapper objects of type Number or its subclasses, not just

anything. Therefore, you know the upper bound of the type of the actual parameter that

the Wrapper object should have. The upper bound is the Number type. If you pass any

other type, which is a subclass of the Number type, it is fine. However, anything that is not

a Number type or its subclass type should be rejected at compile time. You express the

upper bound of a wildcard as

<? extends T>

Here, T is a type. <? extends T> means anything that is of type T or its subclass is

acceptable. Using your upper bound as Number, you can define your method as

public static double sum(Wrapper<? extends Number> n1,

 Wrapper<? extends Number> n2) {

 Number num1 = n1.get();

 Number num2 = n2.get();

 double sum = num1.doubleValue() + num2.doubleValue();

 return sum;

}

The following snippet of code inside the method compiles fine:

Number num1 = n1.get();

Number num2 = n2.get();

No matter what you pass for n1 and n2, they will always be assignment compatible

with Number because the compiler will make sure that the parameters passed to the

Chapter 3 GeneriCs

159

sum() method follow the rules specified in its declaration of <? extends Number>. The

attempt to compute the sum of an Integer and a String will be rejected by the compiler.

Consider the following snippet of code:

Wrapper<Integer> intWrapper =

 new Wrapper<Integer>(new Integer(10));

Wrapper<? extends Number> numberWrapper = intWrapper;

 // <- OK

numberWrapper.set(new Integer(1220));

 // <- A compile-time error

numberWrapper.set(new Double(12.20));

 // <- A compile-time error

Can you figure out the problem with this snippet of code? The type of numberWrapper

is <? extends Number>, which means it can refer to (or it is assignment compatible with)

anything that is a subtype of the Number class. Since Integer is a subclass of Number,

the assignment of intWrapper to numberWrapper is allowed. When you try to use the

set() method on numberWrapper, the compiler starts complaining because it cannot

make sure at compile time that numberWrapper is a type of Integer or Double, which are

subtypes of a Number. Be careful with this kind of compile-time error when working with

generics. On the surface, it might look obvious to you, and you would think that code

should compile and run fine. Unless the compiler ensures that the operation is type-safe,

it will not allow you to proceed. After all, compile-time and runtime type-safety is the

primary goal of generics!

 Lower-Bounded Wildcards
Specifying a lower-bounded wildcard is the opposite of specifying an upper-bounded

wildcard. The syntax for using a lower-bounded wildcard is <? super T>, which means

“anything that is a supertype of T.” Let’s add another method to the WrapperUtil class.

You will call the new method copy(), and it will copy the value from a source wrapper

object to a destination wrapper object. Here is the first attempt. The <T> is the formal

type parameter for the copy() method. It specifies that the source and dest parameters

must be of the same type. I explain generic methods in detail in the next section.

Chapter 3 GeneriCs

160

public class WrapperUtil {

 public static <T> void

 copy(Wrapper<T> source, Wrapper<T> dest) {

 T value = source.get();

 dest.set(value);

 }

}

Copying the content of a Wrapper<String> to a Wrapper<Object> using your copy()

method will not work:

Wrapper<Object> objectWrapper =

 new Wrapper<Object>(new Object());

Wrapper<String> stringWrapper =

 new Wrapper<String>("Hello");

WrapperUtil.copy(stringWrapper, objectWrapper);

 // <- A compile-time error

This code will generate a compile-time error because the copy() method requires

the source and the dest arguments be of the same type. However, for all practical

purposes, a String is always an Object. Here, you need to use a lower-bounded

wildcard, as shown:

public class WrapperUtil {

 // New definition of the copy() method

 public static <T> void

 copy(Wrapper<T> source, Wrapper<? super T> dest){

 T value = source.get();

 dest.set(value);

 }

}

Now you are saying that the dest argument of the copy() method could be either T,

same as source, or any of its supertype. You can use the copy() method to copy the

contents of a Wrapper<String> to a Wrapper<Object> as follows:

Chapter 3 GeneriCs

161

Wrapper<Object> objectWrapper =

 new Wrapper<Object>(new Object());

Wrapper<String> stringWrapper =

 new Wrapper<String>("Hello");

WrapperUtil.copy(stringWrapper, objectWrapper);

 // <- OK with the new copy() method

Since Object is the supertype of String, the new copy() method will work. However,

you cannot use it to copy from an Object type wrapper to a String type wrapper,

because “an Object is a String” is not always true. Listing 3-4 shows the complete code

for the WrapperUtil class.

Listing 3-4. A WrapperUtil Utility Class That Works with Wrapper Objects

// WrapperUtil.java

package com.jdojo.generics;

public class WrapperUtil {

 public static void printDetails(Wrapper<?> wrapper) {

 // Can assign get() return value to Object

 Object value = wrapper.get();

 String className = null;

 if (value != null) {

 className = value.getClass().getName();

 }

 System.out.println("Class: " + className);

 System.out.println("Value: " + value);

 }

 public static double sum(Wrapper<? extends Number> n1,

 Wrapper<? extends Number> n2) {

 Number num1 = n1.get();

 Number num2 = n2.get();

 double sum = num1.doubleValue() +

 num2.doubleValue();

 return sum;

 }

Chapter 3 GeneriCs

162

 public static <T> void copy(Wrapper<T> source,

 Wrapper<? super T> dest) {

 T value = source.get();

 dest.set(value);

 }

}

Listing 3-5 shows you how to use the Wrapper and WrapperUtil classes.

Listing 3-5. Using the WrapperUtil Class

// WrapperUtilTest.java

package com.jdojo.generics;

public class WrapperUtilTest {

 public static void main(String[] args) {

 Wrapper<Integer> n1 = new Wrapper<>(10);

 Wrapper<Double> n2 = new Wrapper<>(15.75);

 // Print the details

 WrapperUtil.printDetails(n1);

 WrapperUtil.printDetails(n2);

 // Add numeric values in two WrapperUtil

 double sum = WrapperUtil.sum(n1, n2);

 System.out.println("sum: " + sum);

 // Copy the value of a Wrapper<Double> to a

 // Wrapper<Number>

 Wrapper<Number> holder = new Wrapper<>(45);

 System.out.println("Original holder: " +

 holder.get());

 WrapperUtil.copy(n2, holder);

 System.out.println("After copy holder: " +

 holder.get());

 }

}

Chapter 3 GeneriCs

163

Class: java.lang.Integer

Value: 10

Class: java.lang.Double

Value: 15.75

sum: 25.75

Original holder: 45

After copy holder: 15.75

 Generic Methods and Constructors
You can define type parameters in a method declaration. They are specified in angle

brackets before the return type of the method. The type that contains the generic method

declaration does not have to be a generic type, so you can have generic methods in a

non-generic type. It is also possible for a type and its methods to define different type

parameters.

Note type parameters defined for a generic type are not available in static
methods of that type. therefore, if a static method needs to be generic, it must
define its own type parameters. if a method needs to be generic, define just that
method as generic rather than defining the entire type as generic.

The following snippet of code defines a generic type Test with its type parameter

named T. It also defines a generic instance method m1() that defines its own generic type

parameter named V. The method also uses the type parameter T, which is defined by

its class. Note the use of <V> before the return type void of the m1() method. It defines a

new generic type named V for the method.

public class Test<T> {

 public <V> void m1(Wrapper<V> a, Wrapper<V> b, T c) {

 // Do something

 }

}

Chapter 3 GeneriCs

164

Can you think of the implication of defining and using the generic type parameter

V for the m1() method? Look at its use in defining the first and second parameters of

the method as Wrapper<V>. It forces the first and the second parameters to be of the

same type. The third argument must be of the same type T, which is the type of the class

instantiation.

How do you specify the generic type for a method when you want to call the method?

Usually, you do not need to specify the actual type parameter when you call the method.

The compiler figures it out for you using the value you pass to the method. However, if

you ever need to pass the actual type parameter for the method’s formal type parameter,

you must specify it in angle brackets (< >) between the dot and the method name in the

method call, as shown:

Test<String> t = new Test<String>();

Wrapper<Integer> iw1 =

 new Wrapper<Integer>(new Integer(201));

Wrapper<Integer> iw2 =

 new Wrapper<Integer>(new Integer(202));

// Specify that Integer is the actual type for the type

// parameter for m1()

t.<Integer>m1(iw1, iw2, "hello");

// Let the compiler figure out the actual type parameters

// using types for iw1 and iw2

t.m1(iw1, iw2, "hello"); // OK

Listing 3-4 demonstrated how to declare a generic static method. You cannot refer to

the type parameters of the containing class inside the static method. A static method can

refer only to its own declared type parameters.

Here is the copy of your copy() static method from the WrapperUtil class. It defines

a type parameter T, which is used to constrain the type of arguments source and dest:

public static <T> void copy(Wrapper<T> source,

 Wrapper<? super T> dest) {

 T value = source.get();

 dest.set(value);

}

Chapter 3 GeneriCs

165

The compiler will figure out the actual type parameter for a method whether the

method is non-static or static. However, if you want to specify the actual type parameter

for a static method call, you can do so as follows:

WrapperUtil.<Integer>copy(iw1, iw2);

You can also define type parameters for constructors the same way as you do for

methods. The following snippet of code defines a type parameter U for the constructor

of class Test. It places a constraint that the constructor’s type parameter U must be the

same or a subtype of the actual type of its class type parameter T:

public class Test<T> {

 public <U extends T> Test(U k) {

 // Do something

 }

}

The compiler will figure out the actual type parameter passed to a constructor by

examining the arguments you pass to the constructor. If you want to specify the actual

type parameter value for the constructor, you can specify it in angle brackets between the

new operator and the name of the constructor, as shown in the following snippet of code:

// Specify the actual type parameter for the constructor

// as Double

Test<Number> t1 = new <Double>Test<Number>(

 new Double(12.89));

// Let the compiler figure out that we are using Integer

// as the actual type parameter for the constructor

Test<Number> t2 = new Test<Number>(new Integer(123));

 Type Inference in Generic Object Creation
In many cases, the compiler can infer the value for the type parameter in an object

creation expression when you create an object of a generic type. Note that the type

inference support in the object creation expression is limited to the situations where the

type is obvious. Consider the following statement:

List<String> list = new ArrayList<String>();

Chapter 3 GeneriCs

166

With the declaration of list as List<String>, it is obvious that you want to create

an ArrayList with the type parameter as <String>. In this case, you can specify empty

angle brackets, <> (known as the diamond operator or simply the diamond), as the type

parameter for ArrayList. You can rewrite this statement as shown:

List<String> list = new ArrayList<>();

Note that if you do not specify a type parameter for a generic type in an object

creation expression, the type is the raw type, and the compiler generates unchecked

warnings. For example, the following statement will compile with an unchecked

warning:

// Using ArrayList as a raw type, not a generic type

List<String> list = new ArrayList(); // Generates an

 // unchecked warning

warning: [unchecked] unchecked conversion

 List<String> list = new ArrayList();

 ^

 required: List<String>

 found: ArrayList

1 warning

Sometimes, the compiler cannot correctly infer the parameter type of a type in

an object creation expression. In those cases, you need to specify the parameter type

instead of using the diamond operator (<>). Otherwise, the compiler will infer a wrong

type, which will generate an error.

When the diamond operator is used in an object creation expression, the compiler

uses a four-step process to infer the parameter type for the parameterized type. Let’s

consider a typical object creation expression:

T1<T2> var = new T3<>(constructor-arguments);

 1. First, it tries to infer the type parameter from the static type of the

constructor arguments. Note that constructor arguments may be

empty, for example, new ArrayList<>(). If the type parameter is

inferred in this step, the process continues to the next step.

Chapter 3 GeneriCs

167

 2. It uses the left side of the assignment operator to infer the type. In

the previous statement, it will infer T2 as the type if the constructor

arguments are empty. Note that an object creation expression may

not be part of an assignment statement. In such cases, it will use

the next step.

 3. If the object creation expression is used as an actual parameter for

a method call, the compiler tries to infer the type by looking at the

type of the formal parameter for the method being called.

 4. If all else fails and it cannot infer the type using these steps, it

infers Object as the type parameter.

Let’s discuss a few examples that involve all steps in the type inference process.

Create the two lists, list1 of List<String> type and list2 of List<Integer> type:

import java.util.Arrays;

import java.util.List;

// More code goes here...

List<String> list1 = Arrays.asList("A", "B");

List<Integer> list2 = Arrays.asList(9, 19, 1969);

Consider the following statement that uses the diamond operator:

List<String> list3 = new ArrayList<>(list1);

 // <- Inferred type is String

The compiler used the constructor argument list1 to infer the type. The static type

of list1 is List<String>, so the type String was inferred by the compiler. The previous

statement compiles fine. The compiler did not use the left side of the assignment

operator, List<String> list3, during the inference process. You may not trust this

argument. Consider the following statement to prove this:

List<String> list4 = new ArrayList<>(list2);

 // <- A compile-time error

required: List<String>

found: ArrayList<Integer>

1 error

Chapter 3 GeneriCs

168

Do you believe it now? The constructor argument is list2 whose static type is

List<Integer>. The compiler inferred the type as Integer and replaced ArrayList<>

with ArrayList<Integer>. The type of variable list4 is List<String>, which is not

assignment compatible with the ArrayList<Integer>, which resulted in the compile-

time error.

Consider the following statement:

List<String> list5 = new ArrayList<>();

 // <- Inferred type is String

This time, there is no constructor argument. The compiler uses the second step to

look at the left side of the assignment operator to infer the type. On the left side, it finds

List<String>, and it correctly infers the type as String. Consider a process() method

that is declared as follows:

public static void process(List<String> list) {

 // Code goes here

}

The following statement makes a call to the process() method, and the inferred type

parameter is String:

// The inferred type is String

process(new ArrayList<>());

The compiler looks at the type of the formal parameter of the process() method,

finds List<String>, and infers the type as String.

Note Using the diamond operator saves some typing. Use it when the type
inference is obvious. however, it is better, for readability, to specify the type,
instead of the diamond operator, in a complex object creation expression. always
choose readability over brevity.

JDK9 added support for the diamond operator in anonymous classes if the inferred

types are denotable. You cannot use the diamond operator with anonymous classes—

even in JDK9 or later—if the inferred types are non-denotable. The Java compiler

Chapter 3 GeneriCs

169

uses types that cannot be written in Java programs. Types that can be written in Java

programs are known as denotable types. Types that the compiler knows but cannot

be written in Java programs are known as non-denotable types. For example, String

is a denotable type because you can use it in programs to denote a type; however,

Serializable & CharSequence is not a denotable type, even though it is a valid type

for the compiler. It is an intersection type that represents a type that implements both

interfaces, Serializable and CharSequence. Intersection types are allowed in generic

type definitions, but you cannot declare a variable using this intersection type:

// Not allowed in Java code. Cannot declare a variable

// of an intersection type.

Serializable & CharSequence var;

// Allowed in Java code

class Magic<T extends Serializable & CharSequence> {

 // More code goes here

}

Java contains a generic Callable<V> interface in the java.util.concurrent

package. It is declared as follows:

public interface Callable<V> {

 V call() throws Exception;

}

In JDK9 and later, the compiler will infer the type parameter for the anonymous class

as Integer in the following snippet of code:

// A compile-time error in JDK8, but allowed in JDK9.

Callable<Integer> c = new Callable<>() {

 @Override

 public Integer call() {

 return 100;

 }

};

Chapter 3 GeneriCs

170

 No Generic Exception Classes
Exceptions are thrown at runtime. The compiler cannot ensure the type-safety of

exceptions at runtime if you use a generic exception class in a catch clause, because the

erasure process erases the mention of any type parameter during compilation. This is

the reason that it is a compile-time error to attempt to define a generic class, which is a

direct or indirect subclass of java.lang.Throwable.

 No Generic Anonymous Classes
An anonymous class is a one-time class. You need a class name to specify the actual

type parameter. An anonymous class does not have a name. Therefore, you cannot

have a generic anonymous class. However, you can have generic methods inside an

anonymous class. Your anonymous class can inherit a generic class. An anonymous

class can implement generic interfaces. Any class, except an exception type, enums, and

anonymous inner classes, can have type parameters.

 Generics and Arrays
Let’s look at the following code for a class called GenericArrayTest:

public class GenericArrayTest<T> {

 private T[] elements;

 public GenericArrayTest(int howMany) {

 elements = new T[howMany]; // A compile-time error

 }

 // More code goes here

}

The GenericArrayTest class declares a type parameter T. In the constructor, it

attempts to create an array of the generic type. You cannot compile the previous code.

The compiler will complain about the following statement:

elements = new T[howMany]; // A compile-time error

Chapter 3 GeneriCs

171

Recall that all references to the generic type parameter are erased from the code

when a generic class or code using it is compiled. An array needs to know its type when

it is created, so that it can perform a check at runtime when an element is stored in it to

make sure that the element is assignment compatible with the array type. An array’s type

information will not be available at runtime if you use a type parameter to create the

array. This is the reason that the statement is not allowed.

You cannot create an array of a generic type because the compiler cannot ensure the

type-safety of the assignment to the array element. You cannot write the following code:

Wrapper<String>[] gsArray = null;

// Cannot create an array of generic type

gsArray = new Wrapper<String>[10]; // A compile-time error

It is allowed to create an array of unbounded wildcard generic types, as shown:

Wrapper<?>[] anotherArray = new Wrapper<?>[10]; // Ok

Suppose you want to use an array of a generic type. You can do so by using the

newInstance() method of the java.lang.reflect.Array class as follows. You will have

to deal with the unchecked warnings at compile time because of the cast used in the

array creation statement. The following snippet of code shows that you can still bypass

the compile-time type-safety check when you try to sneak in an Object into an array of

Wrapper<String>. However, this is the consequence you have to live with when using

generics, which does not carry its type information at runtime. Java generics are as skin-

deep as you can imagine.

Wrapper<String>[] a = (Wrapper<String>[]) Array.

 newInstance(Wrapper.class, 10);

Object[] objArray = (Object[]) a;

objArray[0] = new Object();

 // <- Will throw a java.lang.

 // ArrayStoreExceptionxception

a[0] = new Wrapper<String>("Hello");

 // <- OK. Checked by compiler

Chapter 3 GeneriCs

172

 Runtime Class Type of Generic Objects
What is the class type of the object for a parameterized type? Consider the program in

Listing 3-6.

Listing 3-6. All Objects of a Parameterized Type Share the Same Class at

Runtime

// GenericsRuntimeClassTest.java

package com.jdojo.generics;

public class GenericsRuntimeClassTest {

 public static void main(String[] args) {

 Wrapper<String> a =

 new Wrapper<String>("Hello");

 Wrapper<Integer> b =

 new Wrapper<Integer>(new Integer(123));

 Class aClass = a.getClass();

 Class bClass = b.getClass();

 System.out.println("Class for a: " +

 aClass.getName());

 System.out.println("Class for b: " +

 bClass.getName());

 System.out.println("aClass == bClass: " +

 (aClass == bClass));

 }

}

Class for a: com.jdojo.generics.Wrapper

Class for b: com.jdojo.generics.Wrapper

aClass == bClass: true

The program creates objects of the Wrapper<String> and Wrapper<Integer>. It

prints the class names for both objects, and they are the same. The output shows that all

parameterized objects of the same generic type share the same class object at runtime.

As mentioned earlier, the type information you supply to the generic type is removed

from the code during compilation. The compiler changes the Wrapper<String> a;

statement to Wrapper a;. For the JVM, it’s business as usual (before generics)!

Chapter 3 GeneriCs

173

 Heap Pollution
Representing a type at runtime is called reification. A type that can be represented at

runtime is called a reifiable type. A type that is not completely represented at runtime

is called a non-reifiable type. Most generic types are non-reifiable because generics are

implemented using erasure, which removes the type’s parameter information at compile

time. For example, when you write Wrapper<String>, the compiler removes the type

parameter <String>, and the runtime sees only Wrapper instead of Wrapper<String>.

Heap pollution is a situation that occurs when a variable of a parameterized type

refers to an object not of the same parameterized type. The compiler issues an unchecked

warning if it detects possible heap pollution. If your program compiles without any

unchecked warnings, heap pollution will not occur. Consider the following snippet of code:

Wrapper nWrapper = new Wrapper<Integer>(101); // #1

// Unchecked warning at compile-time and heap pollution

// at runtime

Wrapper<String> sWrapper = nWrapper; // #2

String str = sWrapper.get(); // #3

 // ClassCastException

The first statement (labeled #1) compiles fine. The second statement (labeled #2)

generates an unchecked warning because the compiler cannot determine if nWrapper

is of the type Wrapper<String>. Since parameter type information is erased at compile

time, the runtime has no way of detecting this type mismatch. The heap pollution in the

second statement makes it possible to get a ClassCastException in the third statement

(labeled #3) at runtime. If the second statement was not allowed, the third statement will

not cause a ClassCastException.

Heap pollution may also occur because of an unchecked cast operation. Consider

the following snippet of code:

Wrapper<? extends Number> nW = new Wrapper<Long>(1L); // #1

// Unchecked cast and unchecked warning occurs when the

// following statement #2 is compiled. Heap pollution

// occurs, when it is executed.

Wrapper<Short> sw = (Wrapper<Short>) nW; // #2

short s = sw.get(); // #3

 // ClassCastException

Chapter 3 GeneriCs

174

The statement labeled #2 uses an unchecked cast. The compiler issues an unchecked

warning. At runtime, it leads to heap pollution. As a result, the statement labeled #3

generates a runtime ClassCastException.

 Varargs Methods and Heap Pollution Warnings
Java implements the varargs parameter of a varargs method by converting the varargs

parameter into an array. If a varargs method uses a generic type varargs parameter, Java

cannot guarantee the type-safety. A non-reifiable generic type varargs parameter may

possibly lead to heap pollution. Consider the following snippet of code that declares a

process() method with a parameterized type parameter. The comments in the method’s

body indicate the heap pollution and other types of problems:

public static void process(Wrapper<Long>...nums) {

 Object[] obj = nums; // Heap pollution

 obj[0] = new Wrapper<>("Hello"); // An array

 // corruption

 Long lv = nums[0].get(); // A ClassCastException

 // Other code goes here

}

Note You need to use the -Xlint:unchecked,varargs option with the javac
compiler to see the unchecked and varargs warnings.

When the process() method is compiled, the compiler removes the type

information <Long> from its parameterized type parameter and changes its signature

to process(Wrapper[] nums). When you compile the declaration of the process()

method, you get the following unchecked warning:

warning: [unchecked] Possible heap pollution from

 parameterized vararg type Wrapper<Long>

 public static void process(Wrapper<Long>...nums) {

 ^

1 warning

Chapter 3 GeneriCs

175

Consider the following snippet of code that calls the process() method:

Wrapper<Long> v1 = new Wrapper<>(10L);

Wrapper<Long> v2 = new Wrapper<>(11L);

process(v1, v2); // An unchecked warning

When this snippet of code is compiled, it generates the following compiler

unchecked warning:

warning: [unchecked] unchecked generic array creation for

 varargs parameter of type

Wrapper<Long>[]

 process(v1, v2);

 ^

1 warning

Warnings are generated at the method declaration as well as at the location of the

method call. If you create such a method, it is your responsibility to ensure that heap

pollution does not occur inside your method’s body.

If you create a varargs method with a non-reifiable type parameter, you can suppress

the unchecked warnings at the location of the method’s declaration as well as the

method’s call by using the @SafeVarargs annotation. By using @SafeVarargs, you are

asserting that your varargs method with non-reifiable type parameter is safe to use.

The following snippet of code uses the @SafeVarargs annotation with the process()

method:

@SafeVarargs

public static void process(Wrapper<Long>...nums) {

 Object[] obj = nums;

 // <- Heap pollution

 obj[0] = new Wrapper<String>("Hello");

 // <- An array corruption

 Long lv = nums[0].get();

 // <- A ClassCastException

 // Other code goes here

}

Chapter 3 GeneriCs

176

When you compile this declaration of the process() method, you do not get an

unchecked warning. However, you get the following varargs warning because the

compiler sees possible heap pollution when the varargs parameter nums is assigned to

the Object array obj:

warning: [varargs] Varargs method could cause heap

 pollution from non-reifiable varargs

parameter nums

 Object[] obj = nums;

 ^

1 warning

You can suppress the unchecked and varargs warnings for a varargs method with a

non-reifiable type parameter by using the @SuppressWarnings annotation as follows:

@SuppressWarnings({"unchecked", "varargs"})

public static void process(Wrapper<Long>...nums) {

 // Code goes here

}

Note that when you use the @SuppressWarnings annotation with a varargs method, it

suppresses warnings only at the location of the method’s declaration, not at the locations

where the method is called.

 Summary
Generics are the Java language features that allow you to declare types (classes and

interfaces) that use type parameters. Type parameters are specified when the generic

type is used. The type when used with the actual type parameter is known as a

parameterized type. When a generic type is used without specifying its type parameters,

it is called a raw type. For example, if Wrapper<T> is a generic class, Wrapper<String> is

a parameterized type with String as the actual type parameter and Wrapper as the raw

type. Type parameters can also be specified for constructors and methods. Generics

allow you to write true polymorphic code in Java code using a type parameter that works

for all types.

Chapter 3 GeneriCs

177

By default, a type parameter is unbounded, meaning that you can specify any

type for the type parameter. For example, if a class is declared with a type parameter

<T>, you can specify any type available in Java, such as <String>, <Object>, <Person>,

<Employee>, <Integer>, etc., as the actual type for T. Type parameters in a type

declaration can also be specified as having upper bounds or lower bounds. The

declaration Wrapper<U extends Person> is an example of specifying an upper bound

for the type parameter U that specifies that U can be of a type that is Person or a subtype

of Person. The declaration Wrapper<?super Person> is an example of specifying a lower

bound; it specifies that the type parameter is the type Person or a supertype of Person.

Java also lets you specify the wildcard, which is a question mark, as the actual type

parameter. A wildcard as the actual parameter means the actual type parameter is

unknown; for example, Wrapper<?> means that the type parameter T for the generic type

Wrapper<T> is unknown.

The compiler attempts to infer the type of an expression using generics, depending

on the context in which the expression is used. If the compiler cannot infer the type, it

generates a compile-time error, and you will need to specify the type explicitly.

The supertype-subtype relationship does not exist with parameterized types. For

example, Wrapper<Long> is not a subtype of Wrapper<Number>.

The generic type parameters are erased by the compiler using a process called

type erasure. Therefore, the generic type parameters are not available at runtime. For

example, the runtime type of Wrapper<Long> and Wrapper<String> are the same, which

is Wrapper.

 Exercises
Exercise 1

What are generics (or generic types), parameterized types, and raw types? Give an

example of a generic type and its parameterized type.

Exercise 2

The Number class is the superclass of the Long class. The following snippet of code

does not compile. Explain.

List<Number> list1= new ArrayList<>();

List<Long> list2= new ArrayList<>();

list1 = list2; // A compile-time error

Chapter 3 GeneriCs

178

Exercise 3

Write the output when the following ClassNamePrinter class is run. Rewrite the

code for the print() method of this class after the compiler erases the type parameter T

during compilation:

// ClassNamePrinter.java

package com.jdojo.generics.exercises;

public class ClassNamePrinter {

 public static void main(String[] args) {

 ClassNamePrinter.print(10);

 ClassNamePrinter.print(10L);

 ClassNamePrinter.print(10.2);

 }

 public static <T extends Number> void

 print(T obj) {

 String className = obj.getClass().

 getSimpleName();

 System.out.println(className);

 }

}

Exercise 4

What are unbounded wildcards? Why does the following snippet of code not

compile?

List<?> list = new ArrayList<>();

list.add("Hello"); // A compile-time error

Exercise 5

Consider the following incomplete declaration of the Util class:

// Util.java

package com.jdojo.generics.exercises;

import java.lang.reflect.Array;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.List;

Chapter 3 GeneriCs

179

public class Util {

 public static void main(String[] args) {

 Integer[] n1 = {1, 2};

 Integer[] n2 = {3, 4};

 Integer[] m = merge(n1, n2);

 System.out.println(Arrays.toString(m));

 String[] s1 = {"one", "two"};

 String[] s2 = {"three", "four"};

 String[] t = merge(s1, s2);

 System.out.println(Arrays.toString(t));

 List<Number> list = new ArrayList<>();

 add(list, 10, 20, 30L, 40.5F, 50.9);

 System.out.println(list);

 }

 public static <T> T[] merge(T[] a, T[] b) {

 }

 public static /* Add type parameters here */ void

 add(List<T> list, U... elems) {

 /* Your code to add elems to list goes here */

 }

}

Complete the body of the merge() method, so it can concatenate the two arrays

passed in as its parameters and return the concatenated array. Complete the add()

method by specifying its type parameters and adding the code in its body. The first

parameter to the method is a parameterized List<T>, and the second parameter is a

varargs parameter of the type T or its descendant. That is, the second parameter type

is any type whose objects can be added to the List<T>. Running the Util class should

produce the following output:

[1, 2, 3, 4]

[one, two, three, four]

[10, 20, 30, 40.5, 50.9]

Chapter 3 GeneriCs

180

Exercise 6

Create a generic Stack<E> class. Its objects represent a stack that can store elements

of its type parameter E. The following is a template for the class. You need to provide

implementation for all its methods. Write test code to test all methods. Method names

are standard method names for a stack. Any illegal access to the stack should throw a

runtime exception.

// Stack.java

package com.jdojo.generics.exercises;

import java.util.LinkedList;

import java.util.List;

public class Stack<E> {

 // Use LinkedList instead of ArrayList

 private final List<E> stack = new LinkedList<>();

 public void push(E e) {}

 public E pop() { }

 public E peek() { }

 public boolean isEmpty() { }

 public int size() { }

}

Exercise 7

What is heap pollution? What types of warnings does the compiler generate when

it detects a possibility of heap pollution? How do you print such warnings during

compilation? How do you suppress such warnings?

Exercise 8

Describe the reasons that the following declaration of the Test class does not

compile:

public class Test {

 public <T> void test(T t) {

 // More code goes here

 }

 public <U> void test(U u) {

 // More code goes here

 }

Chapter 3 GeneriCs

181

}public class Test {

 public <T> void test(T t) {

 // More code goes here

 }

 public <U> void test(U u) {

 // More code goes here

 }

}

Chapter 3 GeneriCs

183
© Kishori Sharan, Peter Späth 2021
K. Sharan and P. Späth, More Java 17, https://doi.org/10.1007/978-1-4842-7135-3_4

CHAPTER 4

Lambda Expressions
In this chapter, you will learn:

• What lambda expressions are

• Why we need lambda expressions

• The syntax for defining lambda expressions

• Target typing for lambda expressions

• Commonly used built-in functional interfaces

• Method and constructor references

• Lexical scoping of lambda expressions

All example programs in this chapter are a member of a jdojo.lambda module, as

declared in Listing 4-1.

Listing 4-1. The Declaration of a jdojo.lambda Module

// module-info.java

module jdojo.lambda {

 exports com.jdojo.lambda;

}

 What Is a Lambda Expression?
A lambda expression is an unnamed block of code (or an unnamed function) with a list

of formal parameters and a body. Sometimes, a lambda expression is simply called a

lambda. The body of a lambda expression can be a block statement or an expression.

https://doi.org/10.1007/978-1-4842-7135-3_4#DOI

184

An arrow (->) is used to separate the list of parameters and the body. The term “lambda”

has its origin in Lambda calculus that uses the Greek letter lambda (lambda) to denote a

function abstraction. The following are some examples of lambda expressions in Java:

// Takes an int parameter and returns the parameter value

// incremented by 1

(int x) -> x + 1

// Takes two int parameters and returns their sum

(int x, int y) -> x + y

// Takes two int parameters and returns the maximum of

// the two

(int x, int y) -> { int max = x > y ? x : y;

 return max;

 }

// Takes no parameters and returns void

() -> { }

// Takes no parameters and returns a string "OK"

() -> "OK"

// Takes a String parameter and prints it on the standard

// output

(String msg) -> { System.out.println(msg); }

// Takes a parameter and prints it on the standard output

msg -> System.out.println(msg)

// Takes a String parameter and returns its length

(String str) -> str.length()

At this point, you will not be able to understand the syntax of lambda expressions

completely. I cover the syntax in detail shortly. For now, just get the feel of it, keeping

in mind that the syntax for lambda expressions is similar to the syntax for declaring

methods.

Note A lambda expression is not a method, although its declaration looks similar
to a method. As the name suggests, a lambda expression is an expression that
represents an instance of a functional interface.

ChApter 4 LAmbdA expressions

185

Every expression in Java has a type, and so does a lambda expression. The type of

a lambda expression is a functional interface type. When the abstract method of the

functional interface is called, the body of the lambda expression is executed. Consider

the lambda expression that takes a String parameter and returns its length:

(String str) -> str.length()

What is the type of this lambda expression? The answer is that we do not know. By

looking at the lambda expression, all you can say is that it takes a String parameter

and returns an int, which is the length of the String parameter. Its type can be any

functional interface type with an abstract method that takes a String as a parameter and

returns an int. The following is an example of such a functional interface:

@FunctionalInterface

interface StringToIntMapper {

 int map(String str);

}

The lambda expression represents an instance of the StringToIntMapper functional

interface when it appears in the assignment statement, like so:

StringToIntMapper mapper =

 (String str) -> str.length();

In this statement, the compiler finds that the right side of the assignment operator

is a lambda expression. To infer its type, it looks at the left side of the assignment

operator that expects an instance of the StringToIntMapper interface; it verifies

that the lambda expression conforms to the declaration of the map() method in the

StringToIntMapper interface; finally, it infers that the type of the lambda expression is

the StringToIntMapper interface type. When you call the map() method on the mapper

variable passing a String, the body of the lambda expression is executed as shown in the

following snippet of code:

StringToIntMapper mapper = (String str) -> str.length();

String name = "Kristy";

int mappedValue = mapper.map(name);

System.out.println("name=" + name +

 ", mapped value=" + mappedValue);

name=Kristy, mapped value=6

ChApter 4 LAmbdA expressions

186

So far, you have not seen anything that you could not do in Java without using

lambda expressions. The following snippet of code uses an anonymous class to achieve

the same result as the lambda expression used in the previous example:

StringToIntMapper mapper = new StringToIntMapper() {

 @Override

 public int map(String str) {

 return str.length();

 }

};

String name = "Kristy";

int mappedValue = mapper.map(name);

System.out.println("name=" + name +

 ", mapped value=" + mappedValue);

name=Kristy, mapped value=6

At this point, a lambda expression may seem to be a concise way of writing an

anonymous class, which is true as far as the syntax goes. There are some subtle

differences in semantics between the two. I discuss those differences when I discuss

more details later.

Note Java is a strongly typed language, which means that the compiler must
know the type of all expressions used in a Java program. A lambda expression
by itself does not have a type, and, therefore, it cannot be used as a standalone
expression. the type of a lambda expression is always inferred by the compiler by
the context in which it is used.

 Why Do We Need Lambda Expressions?
Java has supported object-oriented programming since the beginning. In object-oriented

programming, the program logic is based on mutable objects. Methods of classes

contain the logic. Methods are invoked on objects, which typically modify objects’

states. In object-oriented programming, the order of method invocation matters as each

method invocation may potentially modify the state of the object, thus producing side

ChApter 4 LAmbdA expressions

187

effects. Static analysis of the program logic is difficult as the program state depends on

the order in which the code will be executed. Programming with mutating objects also

poses a challenge in concurrent programming in which multiple parts of the program

may attempt to modify the state of the same object concurrently.

As the processing power of computers has increased in recent years, so has the

amount of data to be processed. Nowadays, it is common to process data as big as

terabytes in size, requiring the need for parallel programming. Now it is common for

computers to have a multicore processor that gives users the opportunity to run software

programs faster; at the same time, this poses a challenge to programmers to write more

parallel programs, taking advantage of all the available cores in the processor. Java has

supported concurrent programming since the beginning. It added support for parallel

programming in Java 7 through the fork/join framework, which was not easy to use.

Functional programming, which is based on Lambda calculus, existed long before

object-oriented programming. It is based on the concept of functions, a block of code

that accepts values, known as parameters, and the block of code is executed to compute

a result. A function represents a functionality or operation. Functions do not modify

data, including its input, thus producing no side effects; for this reason, the order of

the execution of functions does not matter in functional programming. In functional

programming, a higher-order function is an anonymous function that can be treated as

a data object. That is, it can be stored in a variable and passed around from one context

to another. It might be invoked in a context that did not necessarily define it. Note that

a higher-order function is an anonymous function, so the invoking context does not

have to know its name. A closure is a higher-order function packaged with its defining

environment. A closure carries with it the variables in scope when it was defined, and it

can access those variables even when it is invoked in a context other than the context in

which those variables were defined.

In recent years, functional programming has become popular because of

its suitability in concurrent, parallel, and event-driven programming. Modern

programming languages such as C#, Groovy, Python, and Scala support functional

programming. Java did not want to be left behind, and, hence, it introduced lambda

expressions to support functional programming, which can be mixed with its already

popular object-oriented features to develop robust, concurrent, parallel programs. Java

adopted the syntax for lambda expressions that is very similar to the syntax used in other

programming languages, such as C# and Scala.

ChApter 4 LAmbdA expressions

188

In object-oriented programming, a function is called a method, and it is always

part of a class. If you wanted to pass functionality around in Java, you needed to create

a class, add a method to the class to represent the functionality, create an object of the

class, and pass the object around. A lambda expression in Java is like a higher-order

function in functional programming, which is an unnamed block of code representing a

functionality that can be passed around like data. A lambda expression may capture the

variables in its defining scope, and it may access those variables later in a context that

did not define the captured variable. These features let you use lambda expressions to

implement closures in Java.

So why and where do we need lambda expressions? Anonymous classes use a

bulky syntax. Lambda expressions use a very concise syntax to achieve the same

result. Lambda expressions are not a complete replacement for anonymous classes.

You will still need to use anonymous classes in a few situations. Just to appreciate the

conciseness of the lambda expressions, compare the following two statements from the

previous section that create an instance of the StringToIntMapper interface; one uses an

anonymous class, taking six lines of code, and another uses a lambda expression, taking

just one line of code:

// Using an anonymous class

StringToIntMapper mapper = new StringToIntMapper() {

 @Override

 public int map(String str) {

 return str.length();

 }

};

// Using a lambda expression

StringToIntMapper mapper = (String str) -> str.length();

 Syntax for Lambda Expressions
A lambda expression describes an anonymous function. The general syntax for using

lambda expressions is very similar to declaring a method. The general syntax is

(<LambdaParametersList>) -> { <LambdaBody> }

ChApter 4 LAmbdA expressions

189

A lambda expression consists of a list of parameters and a body separated by an

arrow (->). The list of parameters is declared the same way as the list of parameters for

methods. The list of parameters is enclosed in parentheses, as is done for methods. The

body of a lambda expression is a block of code enclosed in braces. Like a method’s body,

the body of a lambda expression may declare local variables; use statements including

break, continue, and return; throw exceptions; etc. Unlike a method, a lambda

expression does not have the following four parts:

• A lambda expression does not have a name.

• A lambda expression does not have a return type. It is inferred by the

compiler from the context of its use and from its body.

• A lambda expression does not have a throws clause. It is inferred

from the context of its use and its body.

• A lambda expression cannot declare type parameters. That is, a

lambda expression cannot be generic.

Table 4-1 contains some examples of lambda expressions and equivalent methods. I

have given a suitable name to methods as you cannot have a method without a name in

Java. The compiler infers the return type of lambda expressions.

Table 4-1. Examples of Lambda Expressions and Equivalent Methods

Lambda Expression Equivalent Method

(int x, int y) -> {

 return x + y;

}

int sum(int x, int y) {

 return x + y;

}

(Object x) -> {

 return x;

}

Object identity(Object x)

 return x;

}

(continued)

ChApter 4 LAmbdA expressions

190

One of the goals of lambda expressions is to keep its syntax concise and let the

compiler infer the details. The following sections discuss the shorthand syntax for

declaring lambda expressions.

 Omitting Parameter Types
You can omit the declared type of the parameters. The compiler will infer the types of

parameters from the context in which the lambda expression is used:

// Types of parameters are declared
(int x, int y) -> { return x + y; }
// Types of parameters are omitted

(x, y) -> { return x + y; }

Lambda Expression Equivalent Method

(int x, int y) -> {

 if (x > y)

 return x;

 } else {

 return y;

 }

}

int getMax(int x, int y) {

 if (x > y)

 return x;

 } else {

 return y;

 }

}

(String msg) -> {

 System.out.println(msg);

}

void print(String msg) {

 System.out.println(msg);

}

() -> {

 System.out.println(LocalDate.

now());

}

void printCurrentDate() {

 System.out.println(LocalDate.

now());

}

() -> {

 // No code goes here

}

void doNothing() {

 // No code goes here

}

Table 4-1. (continued)

ChApter 4 LAmbdA expressions

191

If you omit the types of parameters, you must omit it for all parameters or for none.

You cannot omit for some and not for others. The following lambda expression will not

compile because it declares the type of one parameter and omits for the other:

// A compile-time error

(int x, y) -> { return x + y; }

Note A lambda expression that does not declare the types of its parameters is
known as an implicit lambda expression or an implicitly typed lambda expression.
A lambda expression that declares the types of its parameters is known as an
explicit lambda expression or an explicitly typed lambda expression.

 Using Local Variable Syntax for Parameters
You can use the local variable syntax for the parameters in a lambda expression:

// A compile-time error

(var x, var y) -> { return x + y; }

The compiler will infer the types of parameters from the context in which the lambda

expression is used, and it will remember each variable’s type. The local variable syntax

for lambda expression parameters was added to Java in JDK11.

 Declaring a Single Parameter
Sometimes, a lambda expression takes only one parameter. You can omit the parameter

type for a single parameter lambda expression as you can do for a lambda expression

with multiple parameters. You can also omit the parentheses if you omit the parameter

type in a single parameter lambda expression. The following are three ways to declare a

lambda expression with a single parameter:

// Declares the parameter type

(String msg) -> { System.out.println(msg); }

// Omits the parameter type

(msg) -> { System.out.println(msg); }

// Omits the parameter type and parentheses

msg -> { System.out.println(msg); }

ChApter 4 LAmbdA expressions

192

The parentheses can be omitted only if the single parameter also omits its type. The

following lambda expression will not compile:

// Omits parentheses, but not the parameter type, which is not allowed.

String msg -> { System.out.println(msg); }

 Declaring No Parameters
If a lambda expression does not take any parameters, you need to use empty

parentheses:

// Takes no parameters

() -> { System.out.println("Hello"); }

It is not allowed to omit the parentheses when the lambda expression takes no

parameter. The following declaration will not compile:

-> { System.out.println("Hello"); }

 Parameters with Modifiers
You can use modifiers, such as final, in the parameter declaration for explicit lambda

expressions. The following two lambda expressions are valid:

(final int x, final int y) -> { return x + y; }

(int x, final int y) -> { return x + y; }

The following lambda expression will not compile because it uses the final modifier

in parameter declarations, but omits the parameter type:

(final x, final y) -> { return x + y; }

 Declaring the Body of Lambda Expressions
The body of a lambda expression can be a block statement or a single expression. A block

statement is enclosed in braces; a single expression is not enclosed in braces.

The body of a lambda expression is executed the same way as a method’s body. A

return statement or the end of the body returns the control to the caller of the lambda

expression.

ChApter 4 LAmbdA expressions

193

When an expression is used as the body, it is evaluated and returned to the caller.

If the expression evaluates to void, nothing is returned to the caller. The following

two lambda expressions are the same; one uses a block statement and the other an

expression:

/ Uses a block statement. Takes two int parameters and

// returns their sum.

(int x, int y) -> { return x + y; }

// Uses an expression. Takes two int parameters and

// returns their sum.

(int x, int y) -> x + y

The following two lambda expressions are the same; one uses a block statement as

the body and the other an expression that evaluates to void:

// Uses a block statement

(String msg) -> { System.out.println(msg); }

// Uses an expression

(String msg) -> System.out.println(msg)

 Target Typing
Every lambda expression has a type, which is a functional interface type. In other words,

a lambda expression represents an instance of a functional interface. Consider the

following lambda expression:

(x, y) -> x + y

What is the type of this lambda expression? In other words, an instance of which

functional interface does this lambda expression represent? We do not know the type of

this lambda expression at this point. All we can say about this lambda expression with

confidence is that it takes two parameters named x and y. We cannot tell its return type

as the expression x + y, depending on the type of x and y, may evaluate to a number

(int, long, float, or double) or a String. This is an implicit lambda expression, and,

therefore, the compiler has to infer the types of two parameters using the context in

which the expression is used. This lambda expression may be of different functional

interface types depending on the context in which it is used.

ChApter 4 LAmbdA expressions

194

There are two types of expressions in Java:

• Standalone expressions

• Poly expressions

A standalone expression is an expression whose type can be determined without

knowing the context of its use. The following are examples of standalone expressions:

// The type of expression is String

new String("Hello")

// The type of expression is String (a String literal

// is also an expression)

"Hello"

// The type of expression is ArrayList<String>

new ArrayList<String>()

A poly expression is an expression that has different types in different contexts. The

compiler determines the type. The contexts that allow the use of poly expressions are

known as poly contexts. All lambda expressions in Java are poly expressions. You must

use it in a context to know its type. For example, the expression new ArrayList<>() is

a poly expression. You cannot tell its type unless you provide the context of its use. This

expression is used in the following two contexts to represent two different types:

// The type of new ArrayList<>() is ArrayList<Long>

ArrayList<Long> idList = new ArrayList<>();

// The type of new ArrayList<>() is ArrayList<String>

ArrayList<String> nameList = new ArrayList<>();

The compiler infers the type of a lambda expression. The context in which a lambda

expression is used expects a type, which is called the target type. The process of inferring

the type of a lambda expression from the context is known as target typing. Consider

the following pseudocode for an assignment statement, where a variable of type T is

assigned a lambda expression:

T t = <LambdaExpression>;

The target type of the lambda expression in this context is T. The compiler uses the

following rules to determine whether the <LambdaExpression> is assignment compatible

with its target type T:

ChApter 4 LAmbdA expressions

195

• T must be a functional interface type.

• The lambda expression has the same number and type of

parameters as the abstract method of T. For an implicit lambda

expression, the compiler will infer the types of parameters from the

abstract method of T.

• The type of the returned value from the body of the lambda

expression is assignment compatible to the return type of the abstract

method of T.

• If the body of the lambda expression throws any checked exceptions,

those exceptions must be compatible with the declared throws

clause of the abstract method of T. It is a compile-time error to throw

checked exceptions from the body of a lambda expression, if its target

type’s method does not contain a throws clause.

Let’s look at a few examples of target typing. Consider two functional interfaces,

Adder and Joiner, as shown in Listings 4-2 and 4-3, respectively.

Listing 4-2. A Functional Interface Named Adder

// Adder.java

package com.jdojo.lambda;

@FunctionalInterface

public interface Adder {

 double add(double n1, double n2);

}

Listing 4-3. A Functional Interface Named Joiner

// Joiner.java

package com.jdojo.lambda;

@FunctionalInterface

public interface Joiner {

 String join(String s1, String s2);

}

ChApter 4 LAmbdA expressions

196

The add() method of the Adder interface adds two numbers. The join() method

of the Joiner interface concatenates two strings. Both interfaces are used for trivial

purposes; however, they will serve the purpose of demonstrating the target typing for

lambda expressions very well. Consider the following assignment statement:

Adder adder = (x, y) -> x + y;

The type of the adder variable is Adder. The lambda expression is assigned to

the variable adder, and, therefore, the target type of the lambda expression is Adder.

The compiler verifies that Adder is a functional interface. The lambda expression is

an implicit lambda expression. The compiler finds that the Adder interface contains

a double add(double, double) abstract method. It infers the types for x and y

parameters as double and double, respectively. At this point, the compiler treats this

statement as shown:

Adder adder = (double x, double y) -> x + y;

If you write

Adder adder = (var x, var y) -> x + y;

the compiler will again know from the context that x and y are doubles. So we again have

an implicit lambda expression. Compared to completely omitting the types the var name

syntax a little better expresses that for the lambda expressions local variables get created,

even though we are not interested in actually declaring the types.

The compiler now verifies the compatibility of the returned value from the lambda

expression and the return type of the add() method. The return type of the add()

method is double. The lambda expression returns x + y, which would be of a double as

the compiler already knows that the types of x and y are double. The lambda expression

does not throw any checked exceptions. Therefore, the compiler does not have to verify

anything for that. At this point, the compiler infers that the type of the lambda expression

is the type Adder.

Apply the rules of target typing for the following assignment statement:

Joiner joiner = (x, y) -> x + y;

This time, the compiler infers the type for the lambda expression as Joiner. Do you

see an example of a poly expression where the same lambda expression (x, y) -> x + y

is of the type Adder in one context and of the type Joiner in another?

Listing 4-4 shows how to use these lambda expressions in a program.

ChApter 4 LAmbdA expressions

197

Listing 4-4. Examples of Using Lambda Expressions

// TargetTypeTest.java

package com.jdojo.lambda;

public class TargetTypeTest {

 public static void main(String[] args) {

 // Creates an Adder using a lambda expression

 Adder adder = (x, y) -> x + y;

 // Creates a Joiner using a lambda expression

 Joiner joiner = (x, y) -> x + y;

 // Adds two doubles

 double sum1 = adder.add(10.34, 89.11);

 // Adds two ints

 double sum2 = adder.add(10, 89);

 // Joins two strings

 String str = joiner.join("Hello", " lambda");

 System.out.println("sum1 = " + sum1);

 System.out.println("sum2 = " + sum2);

 System.out.println("str = " + str);

 }

}

sum1 = 99.45

sum2 = 99.0

str = Hello lambda

I now discuss the target typing in the context of method calls. You can pass lambda

expressions as arguments to methods. Consider the code for the LambdaUtil class shown

in Listing 4-5.

Listing 4-5. A LambdaUtil Class That Uses Functional Interfaces As an Argument

in Methods

// LambdaUtil.java

package com.jdojo.lambda;

ChApter 4 LAmbdA expressions

198

public class LambdaUtil {

 public void testAdder(Adder adder) {

 double x = 190.90;

 double y = 8.50;

 double sum = adder.add(x, y);

 System.out.print("Using an Adder:");

 System.out.println(x + " + " + y + " = " + sum);

 }

 public void testJoiner(Joiner joiner) {

 String s1 = "Hello";

 String s2 = "World";

 String s3 = joiner.join(s1,s2);

 System.out.print("Using a Joiner:");

 System.out.println("\"" + s1 + "\" + \"" + s2 +

 "\" = \"" + s3 + "\"");

 }

}

The LambdaUtil class contains two methods: testAdder() and testJoiner(). One

method takes an Adder as an argument and another a Joiner as an argument. Both

methods have simple implementations. Consider the following snippet of code:

LambdaUtil util = new LambdaUtil();

util.testAdder((x, y) -> x + y);

The first statement creates an object of the LambdaUtil class. The second statement

calls the testAdder() method on the object, passing a lambda expression of (x, y) ->

x + y. The compiler must infer the type of the lambda expression. The target type of the

lambda expression is the type Adder because the argument type of the testAdder(Adder

adder) is Adder. The rest of the target typing process is the same as you saw in the

assignment statement before. Finally, the compiler infers that the type of the lambda

expression is Adder.

The program in Listing 4-6 creates an object of the LambdaUtil class and calls the

testAdder() and testJoiner() methods.

ChApter 4 LAmbdA expressions

199

Listing 4-6. Using Lambda Expressions As Method Arguments

// LambdaUtilTest.java

package com.jdojo.lambda;

public class LambdaUtilTest {

 public static void main(String[] args) {

 LambdaUtil util = new LambdaUtil();

 // Call the testAdder() method

 util.testAdder((x, y) -> x + y);

 // Call the testJoiner() method

 util.testJoiner((x, y) -> x + y);

 // Call the testJoiner() method. The Joiner will

 // add a space between the two strings

 util.testJoiner((x, y) -> x + " " + y);

 // Call the testJoiner() method. The Joiner will

 // reverse the strings and join resulting

 // strings in reverse order adding a comma in

 //between

 util.testJoiner((x, y) -> {

 StringBuilder sbx = new StringBuilder(x);

 StringBuilder sby = new StringBuilder(y);

 sby.reverse().append(",").

 append(sbx.reverse());

 return sby.toString();

 });

 }

}

Using an Adder:190.9 + 8.5 = 199.4

Using a Joiner:"Hello" + "World" = "HelloWorld"

Using a Joiner:"Hello" + "World" = "Hello World"

Using a Joiner:"Hello" + "World" = "dlroW,olleH"

Notice the output of the LambdaUtilTest class. The testJoiner() method was

called three times, and every time it printed a different result of joining the two strings

“Hello” and “World”. This is possible because different lambda expressions were passed

to this method. At this point, you can say that you have parameterized the behavior of

ChApter 4 LAmbdA expressions

200

the testJoiner() method. That is, how the testJoiner() method behaves depends on

its parameter. Changing the behavior of a method through its parameters is known as

behavior parameterization. This is also known as passing code as data because you pass

code (logic, functionality, or behavior) encapsulated in lambda expressions to methods

as if it were data.

It is not always possible for the compiler to infer the type of a lambda expression. In

some contexts, there is no way the compiler can infer the type of a lambda expression;

those contexts do not allow the use of lambda expressions. Some contexts may allow

using lambda expressions, but the use itself may be ambiguous to the compiler; one

such case is passing lambda expressions to overloaded methods.

Consider the code for the LambdaUtil2 class shown in Listing 4-7. The code for this

class is the same as for the LambdaUtil class in Listing 4-5, except that this class changed

the names of the two methods to the same name, test(), making it an overloaded method.

Listing 4-7. A LambdaUtil2 Class That Uses Functional Interfaces As an

Argument in Methods

// LambdaUtil2.java

package com.jdojo.lambda;

public class LambdaUtil2 {

 public void test(Adder adder) {

 double x = 190.90;

 double y = 8.50;

 double sum = adder.add(x, y);

 System.out.print("Using an Adder:");

 System.out.println(x + " + " + y + " = " + sum);

 }

 public void test(Joiner joiner) {

 String s1 = "Hello";

 String s2 = "World";

 String s3 = joiner.join(s1,s2);

 System.out.print("Using a Joiner:");

 System.out.println("\"" + s1 + "\" + \"" + s2 +

 "\" = \"" + s3 + "\"");

 }

}

ChApter 4 LAmbdA expressions

201

Consider the following snippet of code:

LambdaUtil2 util = new LambdaUtil2();

util.test((x, y) -> x + y); // A compile-time error

The second statement results in the following compile-time error:

Reference to test is ambiguous. Both method test(Adder) in

LambdaUtil2 and method test(Joiner) in LambdaUtil2 match.

The call to the test() method fails because the lambda expression is implicit, and

it matches both versions of the test() method. The compiler does not know which

method to use: test(Adder adder) or test(Joiner joiner). In such circumstances,

you need to help the compiler by providing some more information. The following are

some of the ways to help the compiler resolve the ambiguity:

• If the lambda expression is implicit, make it explicit by specifying the

type of the parameters.

• Use a cast.

• Do not use the lambda expression directly as the method argument.

First, assign it to a variable of the desired type, and then pass the

variable to the method.

Let’s discuss all three ways to resolve the compile-time error. The following snippet

of code changes the lambda expression to an explicit lambda expression:

LambdaUtil2 util = new LambdaUtil2();

util.test((double x, double y) -> x + y);

// <- OK. Will call test(Adder adder)

Specifying the type of parameters in the lambda expression resolved the issue. The

compiler has two candidate methods: test(Adder adder) and test(Joiner joiner).

With the (double x, double y) parameter information, only the test(Adder adder)

method matches.

The following snippet of code uses a cast to cast the lambda expression to the type

Adder:

LambdaUtil2 util = new LambdaUtil2();

util.test((Adder)(x, y) -> x + y);

// <- OK. Will call test(Adder adder)

ChApter 4 LAmbdA expressions

202

Using a cast tells the compiler that the type of the lambda expression is Adder and,

therefore, helps it choose the test(Adder adder) method.

Consider the following snippet of code that breaks down the method call into two

statements:

LambdaUtil2 util = new LambdaUtil2();

Adder adder = (x, y) -> x + y;

util.test(adder);

// <- OK. Will call test(Adder adder)

The lambda expression is assigned to a variable of type Adder, and the variable

is passed to the test() method. Again, it helps the compiler choose the test(Adder

adder) method based on the compile-time type of the adder variable.

The program in Listing 4-8 is similar to the one shown in Listing 4-6, except that it

uses the LambdaUtil2 class. It uses explicit lambda expressions and a cast to resolve the

ambiguous matches for lambda expressions.

Listing 4-8. Resolving Ambiguity During Target Typing

// LambdaUtil2Test.java

package com.jdojo.lambda;

public class LambdaUtil2Test {

 public static void main(String[] args) {

 LambdaUtil2 util = new LambdaUtil2();

 // Calls the testAdder() method

 util.test((double x, double y) -> x + y);

 // Calls the testJoiner() method

 util.test((String x, String y) -> x + y);

 // Calls the testJoiner() method. The Joiner will

 // add a space between the two strings

 util.test((Joiner) (x, y) -> x + " " + y);

 // Calls the testJoiner() method. The Joiner will

 // reverse the strings and join resulting strings

 // in reverse order adding a comma in between

 util.test((Joiner) (x, y) -> {

 StringBuilder sbx = new StringBuilder(x);

 StringBuilder sby = new StringBuilder(y);

ChApter 4 LAmbdA expressions

203

 sby.reverse().append(",").

 append(sbx.reverse());

 return sby.toString();

 });

 }

}

Using an Adder:190.9 + 8.5 = 199.4

Using a Joiner:"Hello" + "World" = "HelloWorld"

Using a Joiner:"Hello" + "World" = "Hello World"

Using a Joiner:"Hello" + "World" = "dlroW,olleH"

Lambda expressions can be used only in the following contexts:

• Assignment context: A lambda expression may appear to the right

side of the assignment operator in an assignment statement. For

example:

ReferenceType variable1 = LambdaExpression;

• Method invocation context: A lambda expression may appear as an

argument to a method or constructor call. For example:

util.testJoiner(LambdaExpression);

• Return context: A lambda expression may appear in a return

statement inside a method, as its target type is the declared return

type of the method. For example:

return LambdaExpression;

• Cast context: A lambda expression may be used if it is preceded by a

cast. The type specified in the cast is its target type. For example:

(Joiner) LambdaExpression;

ChApter 4 LAmbdA expressions

204

 Functional Interfaces
A functional interface is simply an interface that has exactly one abstract method.

The following types of methods in an interface do not count for defining a functional

interface:

• Default methods

• static methods

• Public methods inherited from the Object class

Note that an interface may have more than one abstract method and can still be a

functional interface if all but one of them is a redeclaration of the methods in the Object

class. Consider the declaration of the Comparator class that is in the java.util package,

as shown:

package java.util;

@FunctionalInterface

public interface Comparator<T> {

 // An abstract method declared in the interface

 int compare(T o1, T o2);

 // Re-declaration of the equals() method in the

 // Object class

 boolean equals(Object obj);

 // Many more static and default methods that are

 // not shown here.

}

The Comparator interface contains two abstract methods: compare() and equals().

The equals() method in the Comparator interface is a redeclaration of the equals()

method of the Object class, and therefore it does not count against the one abstract

method requirement for it to be a functional interface. The Comparator interface

contains several default and static methods that are not shown here.

A lambda expression is used to represent an unnamed function as used in functional

programming. A functional interface represents one type of functionality/operation in

terms of its lone abstract method. This commonality is the reason why the target type of

a lambda expression is always a functional interface.

ChApter 4 LAmbdA expressions

205

 Using the @FunctionalInterface Annotation
The declaration of a functional interface may optionally be annotated with the

annotation @FunctionalInterface, which is in the java.lang package. So far, all

functional interfaces declared in this chapter, such as Adder and Joiner, have been

annotated with @FunctionalInterface. The presence of this annotation tells the

compiler to make sure that the declared type is a functional interface. If the

annotation @FunctionalInterface is used on a non-functional interface or other types

such as classes, a compile-time error occurs. If you do not use the annotation

@FunctionalInterface on an interface with one abstract method, the interface is still

a functional interface, and it can be the target type for lambda expressions. Using this

annotation gives you an additional assurance from the compiler. The presence of the

annotation also protects you from inadvertently changing a functional interface into a

non-functional interface, as the compiler will catch it.

The following declaration for an Operations interface will not compile, as the

interface declaration uses the @FunctionalInterface annotation, and it is not a

functional interface (defines two abstract methods):

@FunctionalInterface

public interface Operations {

 double add(double n1, double n2);

 double mult(double n1, double n2);

}

To compile the Operations interface, either remove one of the two abstract methods

or remove the @FunctionalInterface annotation. The following declaration for a Test

class will not compile, as @FunctionalInterface cannot be used on a type other than a

functional interface:

@FunctionalInterface

public class Test {

 // Code goes here

}

ChApter 4 LAmbdA expressions

206

 Generic Functional Interface
A functional interface can have type parameters. That is, a functional interface can be

generic. An example of a generic functional parameter is the Comparator interface with

one type parameter T:

@FunctionalInterface

public interface Comparator<T> {

 int compare(T o1, T o2);

}

A functional interface may have a generic abstract method. That is, the abstract

method may declare type parameters. The following is an example of a non-generic

functional interface called Processor whose abstract method process() is generic:

@FunctionalInterface

public interface Processor {

 <T> void process(T[] list);

}

A lambda expression cannot declare type parameters, and, therefore, it cannot have

a target type whose abstract method is generic. For example, you cannot represent the

Processor interface using a lambda expression. In such cases, you need to use a method

reference, which I discuss in the next section, or an anonymous class.

Let’s look at a short example of a generic functional interface and instantiate it using

lambda expressions. Listing 4-9 shows the code for a functional interface named Mapper.

Listing 4-9. A Mapper Functional Interface

// Mapper.java

package com.jdojo.lambda;

@FunctionalInterface

public interface Mapper<T> {

 // An abstract method

 int map(T source);

 // A generic static method

ChApter 4 LAmbdA expressions

207

 public static <U> int[] mapToInt(U[] list,

 Mapper<? super U> mapper) {

 int[] mappedValues = new int[list.length];

 for (int i = 0; i < list.length; i++) {

 // Map the object to an int

 mappedValues[i] = mapper.map(list[i]);

 }

 return mappedValues;

 }

}

Mapper is a generic functional interface with a type parameter T. Its abstract method

map() takes an object of type T as a parameter and returns an int. The mapToInt()

method is a generic static method that accepts an array of type U and a Mapper of a type

that is U itself or a supertype of U. The method returns an int array whose elements

contain the mapped value for the corresponding elements passed as an array.

The program in Listing 4-10 shows how to use lambda expressions to instantiate

the Mapper<T> interface. The program maps a String array and an Integer array to int

arrays.

Listing 4-10. Using the Mapper Functional Interface

// MapperTest.java

package com.jdojo.lambda;

public class MapperTest {

 public static void main(String[] args) {

 // Map names using their length

 System.out.println(

 "Mapping names to their lengths:");

 String[] names = {"David", "Li", "Doug"};

 int[] lengthMapping = Mapper.mapToInt(names,

 (String name) -> name.length());

 printMapping(names, lengthMapping);

 System.out.println("\nMapping integers to " +

 "their squares:");

 Integer[] numbers = {7, 3, 67};

ChApter 4 LAmbdA expressions

208

 int[] countMapping = Mapper.mapToInt(numbers,

 (Integer n) -> n * n);

 printMapping(numbers, countMapping);

 }

 public static void printMapping(Object[] from,

 int[] to) {

 for (int i = 0; i < from.length; i++) {

 System.out.println(from[i] + " mapped to " +

 to[i]);

 }

 }

}

Mapping names to their lengths:

David mapped to 5

Li mapped to 2

Doug mapped to 4

Mapping integers to their squares:

7 mapped to 49

3 mapped to 9

67 mapped to 4489

 Intersection Type and Lambda Expressions
It is possible to declare an intersection type that is an intersection (or subtype) of

multiple types (since Java 8). An intersection type may appear as the target type in a cast.

An ampersand (&) is used between two types, such as (Type1 & Type2 & Type3), and

it represents a new type that is an intersection of Type1, Type2, and Type3. Consider a

marker interface called Sensitive, shown in Listing 4-11.

Listing 4-11. A Marker Interface Named Sensitive

// Sensitive.java

package com.jdojo.lambda;

public interface Sensitive {

 // It is a marker interface. So, no methods exist.

}

ChApter 4 LAmbdA expressions

209

Suppose you have a lambda expression assigned to a variable of the Sensitive type:

Sensitive sen = (x, y) -> x + y;

// <- A compile-time error

This statement does not compile. The target type of a lambda expression must be

a functional interface; Sensitive is not a functional interface. However, you should be

able to make such an assignment, as a marker interface does not contain any methods.

In such cases, you need to use a cast with an intersection type that creates a new

synthetic type that is a subtype of all types. The following statement will compile:

Sensitive sen = (Sensitive & Adder) (x, y) -> x + y;

// <- OK

The intersection type Sensitive & Adder is still a functional interface, and,

therefore, the target type of the lambda expression is a functional interface with one

method from the Adder interface.

In Java, you can convert an object to a stream of bytes and restore the object back

later. This is called serialization. A class must implement the java.io.Serializable

marker interface for its objects to be serialized. If you want a lambda expression to be

serialized, you will need to use a cast with an intersection type. The following statement

assigns a lambda expression to a variable of the Serializable interface:

Serializable ser = (Serializable & Adder) (x, y) -> x + y;

 Commonly Used Functional Interfaces
The java.util.function package contains many useful functional interfaces. They are

listed in Table 4-2.

ChApter 4 LAmbdA expressions

210

The table shows only the generic versions of the functional interfaces. Several

specialized versions of these interfaces exist. They have been specialized for frequently

used primitive data types; for example, IntConsumer is a specialized version of

Table 4-2. Functional Interfaces Declared in the java.util.function Package

Interface Name Method Description

Function<T,R> R apply(T t) represents a function that takes an

argument of type T and returns a result of

type R.

BiFunction<T,U,R> R apply(T t, U u) represents a function that takes two

arguments of types T and U and returns a

result of type R.

Predicate<T> boolean test(T t) in mathematics, a predicate is a boolean-

valued function that takes an argument

and returns true or false. the function

represents a condition that returns true or

false for the specified argument.

BiPredicate<T,U> boolean test(T t, U u) represents a predicate with two arguments.

Consumer<T> void accept(T t) represents an operation that takes an

argument, operates on it to produce some

side effects, and returns no result.

BiConsumer<T,U> void accept(T t, U u) represents an operation that takes two

arguments, operates on them to produce

some side effects, and returns no result.

Supplier<T> T get() represents a supplier that returns a value.

UnaryOperator<T> T apply(T t) inherits from Function<T,T>. represents a

function that takes an argument and returns

a result of the same type.

BinaryOperator<T> T apply(T t1, T t2) inherits from BiFunction<T,T,T>.

represents a function that takes two

arguments of the same type and returns a

result of the same.

ChApter 4 LAmbdA expressions

211

Consumer<T>. Some interfaces in the table contain convenience default and static

methods. The table lists only the abstract method, not the default and static methods.

 Using the Function<T,R> Interface
Six specializations of the Function<T,R> interface exist:

• IntFunction<R>

• LongFunction<R>

• DoubleFunction<R>

• ToIntFunction<T>

• ToLongFunction<T>

• ToDoubleFunction<T>

IntFunction<R>, LongFunction<R>, and DoubleFunction<R> take an int, a long, and

a double as an argument, respectively, and return a value of type R. ToIntFunction<T>,

ToLongFunction<T>, and ToDoubleFunction<T> take an argument of type T and return

an int, a long, and a double, respectively. Similar specialized functions exist for other

types of generic functions listed in the table.

Note Your com.jdojo.lambda.Mapper<T> interface represents the same
function type as ToIntFunction<T> in the java.util.function package.
You created the Mapper<T> interface to learn how to create and use a generic
functional interface. From now on, look at the built-in functional interfaces before
creating your own; use them if they meet your needs.

The following snippet of code shows how to use the same lambda expression to

represent a function that accepts an int and returns its square, using four variants of the

Function<T, R> function type:

// Takes an int and returns its square

Function<Integer, Integer> square1 = x -> x * x;

IntFunction<Integer> square2 = x -> x * x;

ToIntFunction<Integer> square3 = x -> x * x;

UnaryOperator<Integer> square4 = x -> x * x;

ChApter 4 LAmbdA expressions

212

System.out.println(square1.apply(5));

System.out.println(square2.apply(5));

System.out.println(square3.applyAsInt(5));

System.out.println(square4.apply(5));

25

25

25

25

The Function interface contains the following default and static methods:

• default <V> Function<T,V> andThen(Function<? super R,?

extends V> after)

• default <V> Function<V,R> compose(Function<? super V,?

extends T> before)

• static <T> Function<T,T> identity()

The andThen() method returns a composed Function that applies this function to

the argument and then applies the specified after function to the result. The compose()

function returns a composed function that applies the specified before function to the

argument and then applies this function to the result. The identify() method returns a

function that always returns its argument.

The following snippet of code demonstrates how to use default and static methods of

the Function interface to compose new functions:

// Create two functions

Function<Long, Long> square = x -> x * x;

Function<Long, Long> addOne = x -> x + 1;

// Compose functions from the two functions

Function<Long, Long> squareAddOne = square.andThen(addOne);

Function<Long, Long> addOneSquare = square.compose(addOne);

// Get an identity function

Function<Long, Long> identity = Function.<Long>identity();

// Test the functions

long num = 5L;

ChApter 4 LAmbdA expressions

213

System.out.println("Number: " + num);

System.out.println("Square and then add one: " +

 squareAddOne.apply(num));

System.out.println("Add one and then square: " +

 addOneSquare.apply(num));

System.out.println("Identity: " + identity.apply(num));

Number: 5

Square and then add one: 26

Add one and then square: 36

Identity: 5

You are not limited to composing a function that consists of two functions that

are executed in a specific order. A function may be composed of as many functions

as you want. You can chain lambda expressions to create a composed function in one

expression. Note that when you chain lambda expressions, you may need to provide

hints to the compiler to resolve the target type ambiguity that may arise. The following

is an example of a composed function by chaining three functions. A cast is provided to

help the compiler. Without the cast, the compiler will not be able to infer the target type:

// Square the input, add one to the result, and square

// the result

Function<Long, Long> chainedFunction =

 ((Function<Long, Long>)(x -> x * x))

 .andThen(x -> x + 1)

 .andThen(x -> x * x);

System.out.println(chainedFunction.apply(3L));

100

 Using the Predicate<T> Interface
A predicate represents a condition that is either true or false for a given input. The

Predicate interface contains the following default and static methods that let you

compose a predicate based on other predicates using logical NOT, AND, and OR:

• default Predicate<T> negate()

• default Predicate<T> and(Predicate<? super T> other)

ChApter 4 LAmbdA expressions

214

• default Predicate<T> or(Predicate<? super T> other)

• static <T> Predicate<T> isEqual(Object targetRef)

The negate() method returns a Predicate that is a logical negation of the original

predicate. The and() method returns a short-circuiting logical AND predicate of this

predicate and the specified predicate. The or() method returns a short-circuiting logical

OR predicate of this predicate and the specified predicate. The isEqual() method

returns a predicate that tests if the specified targetRef is equal to the specified argument

for the predicate according to Objects.equals(Object o1, Object o2); if two inputs

are null, this predicate evaluates to true. You can chain the calls to these methods

to create complex predicates. The following snippet of code shows some examples of

creating and using predicates:

// Create some predicates

Predicate<Integer> greaterThanTen = x -> x > 10;

Predicate<Integer> divisibleByThree = x -> x % 3 == 0;

Predicate<Integer> divisibleByFive = x -> x % 5 == 0;

Predicate<Integer> equalToTen = Predicate.isEqual(null);

// Create predicates using NOT, AND, and OR on other

// predicates

Predicate<Integer> lessThanOrEqualToTen =

 greaterThanTen.negate();

Predicate<Integer> divisibleByThreeAndFive =

 divisibleByThree.and(divisibleByFive);

Predicate<Integer> divisibleByThreeOrFive =

 divisibleByThree.or(divisibleByFive);

// Test the predicates

int num = 10;

System.out.println("Number: " + num);

System.out.println("greaterThanTen: " +

 greaterThanTen.test(num));

System.out.println("divisibleByThree: " +

 divisibleByThree.test(num));

System.out.println("divisibleByFive: " +

 divisibleByFive.test(num));

ChApter 4 LAmbdA expressions

215

System.out.println("lessThanOrEqualToTen: " +

 lessThanOrEqualToTen.test(num));

System.out.println("divisibleByThreeAndFive: " +

 divisibleByThreeAndFive.test(num));

System.out.println("divisibleByThreeOrFive: " +

 divisibleByThreeOrFive.test(num));

System.out.println("equalsToTen: " +

 equalToTen.test(num));

Number: 10

greaterThanTen: false

divisibleByThree: false

divisibleByFive: true

lessThanOrEqualToTen: true

divisibleByThreeAndFive: false

divisibleByThreeOrFive: true

equalsToTen: false

 Using Functional Interfaces
Functional interfaces are used in two contexts by two different types of users:

• By library designers for designing APIs

• By library users for using the APIs

Functional interfaces are used to design APIs by library designers. They are used to

declare a parameter’s type and return type in method declarations. They are used the

same way non-functional interfaces are used (functional interfaces existed in Java since

the beginning).

Library users use functional interfaces as target types for lambda expressions. That

is, when a method in the API takes a functional interface as an argument, the user of the

API should use a lambda expression to pass the argument. Using lambda expressions

has the benefit of making the code concise and more readable.

In this section, I show you how to design APIs using functional interfaces and how to

use lambda expressions to use the APIs. Functional interfaces have been used heavily in

designing the Java library for the Collections and Streams APIs.

ChApter 4 LAmbdA expressions

216

I use one enum and two classes in subsequent examples. The Gender enum, shown

in Listing 4-12, contains two constants to represent the gender of a person. The Person

class, shown in Listing 4-13, represents a person; it contains, apart from other methods, a

getPersons() method that returns a list of persons.

Listing 4-12. A Gender enum

// Gender.java

package com.jdojo.lambda;

public enum Gender {

 MALE, FEMALE

}

Listing 4-13. A Person Class

// Person.java

package com.jdojo.lambda;

import java.time.LocalDate;

import java.util.ArrayList;

import java.util.List;

import static com.jdojo.lambda.Gender.MALE;

import static com.jdojo.lambda.Gender.FEMALE;

public class Person {

 private String firstName;

 private String lastName;

 private LocalDate dob;

 private Gender gender;

 public Person(String firstName, String lastName,

 LocalDate dob, Gender gender) {

 this.firstName = firstName;

 this.lastName = lastName;

 this.dob = dob;

 this.gender = gender;

 }

ChApter 4 LAmbdA expressions

217

 public String getFirstName() {

 return firstName;

 }

 public void setFirstName(String firstName) {

 this.firstName = firstName;

 }

 public String getLastName() {

 return lastName;

 }

 public void setLastName(String lastName) {

 this.lastName = lastName;

 }

 public LocalDate getDob() {

 return dob;

 }

 public void setDob(LocalDate dob) {

 this.dob = dob;

 }

 public Gender getGender() {

 return gender;

 }

 public void setGender(Gender gender) {

 this.gender = gender;

 }

 @Override

 public String toString() {

 return firstName + " " + lastName + ", " +

 gender + ", " + dob;

 }

 // A convenience method

 public static List<Person> getPersons() {

 ArrayList<Person> list = new ArrayList<>();

 list.add(new Person("John", "Jacobs",

 LocalDate.of(1975, 1, 20), MALE));

ChApter 4 LAmbdA expressions

218

 list.add(new Person("Wally", "Inman",

 LocalDate.of(1965, 9, 12), MALE));

 list.add(new Person("Donna", "Jacobs",

 LocalDate.of(1970, 9, 12), FEMALE));

 return list;

 }

}

The FunctionUtil class in Listing 4-14 is a utility class. Its methods apply a

function on a List. List is an interface that is implemented by the ArrayList class.

The forEach() method applies an action on each item in the list, typically producing

side effects; the action is represented by a Consumer. The filter() method filters a list

based on a specified Predicate. The map() method maps each item in the list to a value

using a Function. As a library designer, you will design these methods using functional

interfaces.

Listing 4-14. A FunctionUtil Class

// FunctionUtil.java

package com.jdojo.lambda;

import java.util.ArrayList;

import java.util.List;

import java.util.function.Consumer;

import java.util.function.Function;

import java.util.function.Predicate;

public class FunctionUtil {

 // Applies an action on each item in a list

 public static <T> void forEach(List<T> list,

 Consumer<? super T> action) {

 for (T item : list) {

 action.accept(item);

 }

 }

 // Applies a filter to a list and returns the

 // filtered list items

ChApter 4 LAmbdA expressions

219

 public static <T> List<T> filter(List<T> list,

 Predicate<? super T> predicate) {

 List<T> filteredList = new ArrayList<>();

 for (T item : list) {

 if (predicate.test(item)) {

 filteredList.add(item);

 }

 }

 return filteredList;

 }

 // Maps each item in a list to a value

 public static <T, R> List<R> map(List<T> list,

 Function<? super T, R> mapper) {

 List<R> mappedList = new ArrayList<>();

 for (T item : list) {

 mappedList.add(mapper.apply(item));

 }

 return mappedList;

 }

}

You will now use the FunctionUtil class as a library user and use the functional

interfaces as target types of lambda expressions. Listing 4-15 shows how to use the

FunctionUtil class.

Listing 4-15. Using Functional Interfaces As Target Types of Lambda

Expressions As Library Users

// FunctionUtilTest.java

package com.jdojo.lambda;

import static com.jdojo.lambda.Gender.MALE;

import java.util.List;

public class FunctionUtilTest {

 public static void main(String[] args) {

 List<Person> list = Person.getPersons();

 // Use the forEach() method to print each person

 // in the list

ChApter 4 LAmbdA expressions

220

 System.out.println("Original list of persons:");

 FunctionUtil.forEach(list, p ->

 System.out.println(p));

 // Filter only males

 List<Person> maleList = FunctionUtil.filter(list,

 p -> p.getGender() == MALE);

 System.out.println("\nMales only:");

 FunctionUtil.forEach(maleList,

 p -> System.out.println(p));

 // Map each person to his/her year of birth

 List<Integer> dobYearList = FunctionUtil.map(list,

 p -> p.getDob().getYear());

 System.out.println("\nPersons mapped to year of " +

 "their birth:");

 FunctionUtil.forEach(dobYearList,

 year -> System.out.println(year));

 // Apply an action to each person in the list.

 // Add one year to each male's dob

 FunctionUtil.forEach(maleList,

 p -> p.setDob(p.getDob().plusYears(1)));

 System.out.println("\nMales only after adding " +

 "1 year to DOB:");

 FunctionUtil.forEach(maleList,

 p -> System.out.println(p));

 }

}

Original list of persons:

John Jacobs, MALE, 1975-01-20

Wally Inman, MALE, 1965-09-12

Donna Jacobs, FEMALE, 1970-09-12

Males only:

John Jacobs, MALE, 1975-01-20

Wally Inman, MALE, 1965-09-12

ChApter 4 LAmbdA expressions

221

Persons mapped to year of their birth:

1975

1965

1970

Males only after adding 1 year to DOB:

John Jacobs, MALE, 1976-01-20

Wally Inman, MALE, 1966-09-12

The program gets a list of persons, applies a filter to the list to get a list of only males,

maps persons to the year of their birth, and adds one year to each male’s date of birth. It

performs each of these actions using lambda expressions. Note the conciseness of the

code; it uses only one line of code to perform each action. Most notable is the use of the

forEach() method. This method takes a Consumer function. Then each item is passed to

this function. The function can take any action on the item. You passed a Consumer that

prints the item on the standard output as shown:

FunctionUtil.forEach(list,

 p -> System.out.println(p));

Typically, a Consumer applies an action on the item it receives to produce side effects.

In this case, it simply prints the item, without producing any side effects.

 Method References
A lambda expression represents an anonymous function that is treated as an instance

of a functional interface. A method reference is a shorthand way to create a lambda

expression using an existing method. Using method references makes your lambda

expressions more readable and concise; it also lets you use the existing methods as

lambda expressions. If a lambda expression contains a body that is an expression using a

method call, you can use a method reference in place of that lambda expression.

Note A method reference is not a new type in Java. it is not a function pointer as
used in some other programming languages. it is simply shorthand for writing a
lambda expression using an existing method. it can only be used where a lambda
expression can be used.

ChApter 4 LAmbdA expressions

222

Let’s consider an example before I explain the syntax for method references.

Consider the following snippet of code:

import java.util.function.ToIntFunction;

...

ToIntFunction<String> lengthFunction = str ->

 str.length();

String name = "Ellen";

int len = lengthFunction.applyAsInt(name);

System.out.println("Name = " + name +

 ", length = " + len);

Name = Ellen, length = 5

The code uses a lambda expression to define an anonymous function that takes

a String as an argument and returns its length. The body of the lambda expression

consists of only one method call that is the length() method of the String class. You can

rewrite the lambda expression using a method reference to the length() method of the

String class, as shown:

import java.util.function.ToIntFunction;

...

ToIntFunction<String> lengthFunction = String::length;

String name = "Ellen";

int len = lengthFunction.applyAsInt(name);

System.out.println("Name = " + name +

 ", length = " + len);

Name = Ellen, length = 5

The general syntax for a method reference is

<Qualifier>::<MethodName>

The <Qualifier> depends on the type of the method reference. Two consecutive

colons act as a separator. The <MethodName> is the name of the method. For example, in

the method reference String::length, String is the qualifier and length is the method

name.

ChApter 4 LAmbdA expressions

223

Note A method reference does not call the method when it is declared. the
method is called later when the method of its target type is called.

The syntax for method references allows specifying only the method name. You

cannot specify the parameter types and return type of the method. Recall that a method

reference is shorthand for a lambda expression. The target type, which is always a

functional interface, determines the method’s details. If the method is an overloaded

method, the compiler will choose the most specific method based on the context. See

Table 4-3.

Using method references may be a little confusing in the beginning. The main

point of confusion is the process of mapping the number and type of arguments in the

actual method to the method reference. To help understand the syntax, I use a method

reference and its equivalent lambda expression in all examples.

Table 4-3. Types of Method References

Syntax Description

TypeName::staticMethod A method reference to a static method of a class, an interface, or

an enum.

objectRef::instanceMethod A method reference to an instance method of the specified object.

ClassName::instanceMethod A method reference to an instance method of an arbitrary object

of the specified class.

TypeName.

super::instanceMethod

A method reference to an instance method of the supertype of a

particular object.

ClassName::new A constructor reference to the constructor of the specified class.

ArrayTypeName::new An array constructor reference to the constructor of the specified

array type.

ChApter 4 LAmbdA expressions

224

 Static Method References
A static method reference uses a static method of a type as a lambda expression. The

type could be a class, an interface, or an enum. Consider the following static method of

the Integer class:

static String toBinaryString(int i)

The toBinaryString() method represents a function that takes an int as an

argument and returns a String. You can use it in a lambda expression as shown:

// Using a lambda expression

Function<Integer,String> func1 =

 x -> Integer.toBinaryString(x);

System.out.println(func1.apply(17));

10001

The compiler infers the type of x as Integer and the return type of the lambda

expression as String, by using the target type Function<Integer,String>.

You can rewrite this statement using a static method reference, as shown:

// Using a method reference

Function<Integer, String> func2 =

 Integer::toBinaryString;

System.out.println(func2.apply(17));

10001

The compiler finds a static method reference to the toBinaryString() method of

the Integer class on the right side of the assignment operator. The toBinaryString()

method takes an int as an argument and returns a String. The target type of the method

reference is a function that takes an Integer as an argument and returns a String. The

compiler verifies that after unboxing the Integer argument type of the target type to int,

the method reference and target type are assignment compatible.

Consider another static method sum() in the Integer class:

static int sum(int a, int b)

ChApter 4 LAmbdA expressions

225

The method reference would be Integer::sum. Let’s use it in the same way you used

the toBinaryString() method in the previous example:

Function<Integer,Integer> func2 = Integer::sum;

// <- A compile-time error

Error: incompatible types: invalid

 Function<Integer, Integer>

method sum in class Integer cannot

required: int,int

found: Integer

reason: actual and formal argument

method reference

func2 = Integer::sum;

be applied to given types

lists differ in length

The error message is stating that the method reference Integer::sum is not

assignment compatible with the target type Function<Integer,Integer>. The sum(int,

int) method takes two int arguments, whereas the target type takes only one Integer

argument. The mismatch in the number of arguments caused the compile-time error.

To fix the error, the target type of the method reference Integer::sum should be a

functional interface whose abstract method takes two int arguments and returns an

int. Using a BiFunction<Integer,Integer, Integer> as the target type will work. The

following snippet of code shows how to use a method reference Integer::sum as well as

the equivalent lambda expression:

// Uses a lambda expression

BiFunction<Integer,Integer,Integer> func1 =

 (x, y) -> Integer.sum(x, y);

System.out.println(func1.apply(17, 15));

// Uses a method reference

BiFunction<Integer,Integer,Integer> func2 =

 Integer::sum;

System.out.println(func2.apply(17, 15));

32

32

ChApter 4 LAmbdA expressions

226

Let’s try using a method reference of the overloaded static method valueOf() of the

Integer class. The method has three versions:

• static Integer valueOf(int i)

• static Integer valueOf(String s)

• static Integer valueOf(String s, int radix)

The following snippet of code shows how different target types will use the three

different versions of the Integer.valueOf() static method. It is left as an exercise for

readers to write the following snippet of code using lambda expressions:

// Uses Integer.valueOf(int)

Function<Integer,Integer> func1 = Integer::valueOf;

// Uses Integer.valueOf(String)

Function<String,Integer> func2 = Integer::valueOf;

// Uses Integer.valueOf(String, int)

BiFunction<String,Integer,Integer> func3 =

 Integer::valueOf;

System.out.println(func1.apply(17));

System.out.println(func2.apply("17"));

System.out.println(func3.apply("10001", 2));

17

17

17

The following is the last example in this category. The Person class, shown in

Listing 4-13, contains a getPersons() static method that is declared as follows:

static List<Person> getPersons()

The method takes no argument and returns a List<Person>. A Supplier<T>

represents a function that takes no arguments and returns a result of type T. The

following snippet of code uses the method reference Person::getPersons as a

Supplier<List<Person>>:

ChApter 4 LAmbdA expressions

227

Supplier<List<Person>> supplier = Person::getPersons;

List<Person> personList = supplier.get();

FunctionUtil.forEach(personList,

 p -> System.out.println(p));

John Jacobs, MALE, 1975-01-20

Wally Inman, MALE, 1965-09-12

Donna Jacobs, FEMALE, 1970-09-12

 Instance Method References
An instance method is invoked on an object’s reference. The object reference on which

an instance method is invoked is known as the receiver of the method invocation.

The receiver of a method invocation can be an object reference or an expression that

evaluates to an object’s reference. The following snippet of code shows the receiver of

the length() instance method of the String class:

String name = "Kannan";

// name is the receiver of the length() method

int len1 = name.length();

// "Hello" is the receiver of the length() method

int len2 = "Hello".length();

// (new String("Kannan")) is the receiver of the length()

// method

int len3 = (new String("Kannan")).length();

In a method reference of an instance method, you can specify the receiver of the

method invocation explicitly, or you can provide it implicitly when the method is

invoked. The former is called a bound receiver, and the latter is called an unbound

receiver. The syntax for an instance method reference supports two variants:

• objectRef::instanceMethod

• ClassName::instanceMethod

ChApter 4 LAmbdA expressions

228

For a bound receiver, use the objectRef::instanceMethod syntax. Consider the

following snippet of code:

Supplier<Integer> supplier = () -> "Ellen".length();

System.out.println(supplier.get());

5

This statement uses a lambda expression that represents a function that takes no

arguments and returns an int. The body of the expression uses a String object called

“Ellen” to invoke the length() instance method of the String class. You can rewrite

this statement using an instance method reference with the “Ellen” object as the bound

receiver and using a Supplier<Integer> as the target type, as shown:

Supplier<Integer> supplier = "Ellen"::length;

System.out.println(supplier.get());

5

Consider the following snippet of code to represent a Consumer<String> that takes a

String as an argument and returns void:

Consumer<String> consumer = str -> System.out.println(str);

consumer.accept("Hello");

Hello

This lambda expression invokes the println() method on the System.out object.

This can be rewritten using a method reference with System.out as the bound receiver,

as shown:

Consumer<String> consumer = System.out::println;

consumer.accept("Hello");

Hello

When the method reference System.out::println is used, the compiler looks at its

target type, which is Consumer<String>. It represents a function type that takes a String

as an argument and returns void. The compiler finds a println(String) method in

the PrintStream class of the System.out object and uses that method for the method

reference.

ChApter 4 LAmbdA expressions

229

As the last example in this category, you will use the method reference System.

out::println to print the list of persons, as shown:

List<Person> list = Person.getPersons();

FunctionUtil.forEach(list, System.out::println);

John Jacobs, MALE, 1975-01-20

Wally Inman, MALE, 1965-09-12

Donna Jacobs, FEMALE, 1970-09-12

For an unbound receiver, use the ClassName::instanceMethod syntax. Consider the

following statement in which the lambda expression takes a Person as an argument and

returns a String:

Function<Person,String> fNameFunc =

 (Person p) -> p.getFirstName();

This statement can be rewritten using the instance method reference, as shown:

Function<Person,String> fNameFunc = Person::getFirstName;

In the beginning, this is confusing for two reasons:

• The syntax is the same as the syntax for a method reference to a static

method.

• It raises a question: Which object is the receiver of the instance

method invocation?

The first confusion can be cleared up by looking at the method name and checking

whether it is a static or an instance method. If the method is an instance method, the

method reference represents an instance method reference.

The second confusion can be cleared up by keeping a rule in mind that the first

argument to the function represented by the target type is the receiver of the method

invocation. Consider an instance method reference called String::length that uses an

unbound receiver. The receiver is supplied as the first argument to the apply() method,

as shown:

Function<String,Integer> strLengthFunc = String::length;

String name = "Ellen";

// name is the receiver of String::length

ChApter 4 LAmbdA expressions

230

int len = strLengthFunc.apply(name);

System.out.println("name = " + name +

 ", length = " + len);

name = Ellen, length = 5

The instance method concat() of the String class has the following declaration:

String concat(String str)

The method reference String::concat represents an instance method reference for

a target type whose function takes two String arguments and returns a String. The first

argument will be the receiver of the concat() method, and the second argument will be

passed to the concat() method. The following snippet of code shows an example:

String greeting = "Hello";

String name = " Laynie";

// Uses a lambda expression

BiFunction<String,String,String> func1 =

 (s1, s2) -> s1.concat(s2);

System.out.println(func1.apply(greeting, name));

// Uses an instance method reference on an unbound

// receiver

BiFunction<String,String,String> func2 = String::concat;

System.out.println(func2.apply(greeting, name));

Hello Laynie

Hello Laynie

As the last example in this category, you will use the method reference

Person::getFirstName that is an instance method reference on an unbound receiver, as

shown:

List<Person> personList = Person.getPersons();

// Maps each Person object to its first name

List<String> firstNameList = FunctionUtil.map(personList,

 Person::getFirstName);

// Prints the first name list

FunctionUtil.forEach(firstNameList, System.out::println);

ChApter 4 LAmbdA expressions

231

John

Wally

Donna

 Supertype Instance Method References
The keyword super is used as a qualifier to invoke the overridden method in a class or an

interface. The keyword is available only in an instance context. Use the following syntax

to construct a method reference that refers to the instance method in the supertype and

the method that’s invoked on the current instance:

TypeName.super::instanceMethod

Consider the Priced interface and the Item class in Listings 4-16 and 4-17. The

Priced interface contains a default method that returns 1.0. The Item class implements

the Priced interface. It overrides the toString() method of the Object class and the

getPrice() method of the Priced interface. I added three constructors to the Item

class that display a message on the standard output. I use them in examples in the next

section.

Listing 4-16. A Priced Interface with a Default Method of getPrice()

// Priced.java

package com.jdojo.lambda;

public interface Priced {

 default double getPrice() {

 return 1.0;

 }

}

Listing 4-17. An Item Class That Implements the Priced Interface

// Item.java

package com.jdojo.lambda;

import java.util.function.Supplier;

public class Item implements Priced {

 private String name = "Unknown";

 private double price = 0.0;

ChApter 4 LAmbdA expressions

232

 public Item() {

 System.out.println("Constructor Item() called.");

 }

 public Item(String name) {

 this.name = name;

 System.out.println("Constructor Item(String) " +

 "called.");

 }

 public Item(String name, double price) {

 this.name = name;

 this.price = price;

 System.out.println("Constructor " +

 "Item(String, double) called.");

 }

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 public void setPrice(double price) {

 this.price = price;

 }

 @Override

 public double getPrice() {

 return price;

 }

 @Override

 public String toString() {

 return "name = " + getName() +

 ", price = " + getPrice();

 }

 public void test() {

 // Uses the Item.toString() method

 Supplier<String> s1 = this::toString;

ChApter 4 LAmbdA expressions

233

 // Uses the Object.toString() method

 Supplier<String> s2 = Item.super::toString;

 // Uses the Item.getPrice() method

 Supplier<Double> s3 = this::getPrice;

 // Uses the Priced.getPrice() method

 Supplier<Double> s4 = Priced.super::getPrice;

 // Uses all method references and prints the

 // results

 System.out.println("this::toString: " + s1.get());

 System.out.println("Item.super::toString: " +

 s2.get());

 System.out.println("this::getPrice: " + s3.get());

 System.out.println("Priced.super::getPrice: " +

 s4.get());

 }

}

The test() method in the Item class uses four method references with a bound

receiver. The receiver is the Item object on which the test() method is called.

• The method reference this::toString refers to the toString()

method of the Item class.

• The method reference Item.super::toString refers to the

toString() method of the Object class, which is the superclass

of the Item class.

• The method reference this::getPrice refers to the getPrice()

method of the Item class.

• The method reference Priced.super::getPrice refers to

the getPrice() method of the Priced interface, which is the

superinterface of the Item class.

The program in Listing 4-18 creates an object of the Item class and calls its test()

method. The output shows the method being used by the four method references.

ChApter 4 LAmbdA expressions

234

Listing 4-18. Testing the Item Class

// ItemTest.java

package com.jdojo.lambda;

public class ItemTest {

 public static void main(String[] args) {

 Item apple = new Item("Apple", 0.75);

 apple.test();

 }

}

Constructor Item(String, double) called.

this::toString: name = Apple, price = 0.75

Item.super::toString: com.jdojo.lambda.Item@24d46ca6

this::getPrice: 0.75

Priced.super::getPrice: 1.0

 Constructor References
Sometimes, the body of a lambda expression may be just an object creation expression.

Consider the following two statements that use a String object creation expression as

the body for lambda expressions:

Supplier<String> func1 = () -> new String();

Function<String,String> func2 = str -> new String(str);

You can rewrite these statements by replacing the lambda expressions with

constructor references as shown:

Supplier<String> func1 = String::new;

Function<String,String> func2 = String::new;

The syntax for using a constructor is as follows:

• ClassName::new

• ArrayTypeName::new

ChApter 4 LAmbdA expressions

235

The ClassName in ClassName::new is the name of the class that can be instantiated;

it cannot be the name of an abstract class. The keyword new refers to the constructor of

the class. A class may have multiple constructors. The syntax does not provide a way to

refer to a specific constructor. The compiler selects a specific constructor based on the

context. It looks at the target type and the number of arguments in the abstract method

of the target type. The constructor whose number of arguments matches the number of

arguments in the abstract method of the target type is chosen. Consider the following

snippet of code that uses three constructors of the Item class, shown in Listing 4-17, in

lambda expressions:

Supplier<Item> func1 = () -> new Item();

Function<String,Item> func2 = name -> new Item(name);

BiFunction<String,Double,Item> func3 =

 (name, price) -> new Item(name, price);

System.out.println(func1.get());

System.out.println(func2.apply("Apple"));

System.out.println(func3.apply("Apple", 0.75));

Constructor Item() called.

name = Unknown, price = 0.0

Constructor Item(String) called.

name = Apple, price = 0.0

Constructor Item(String, double) called.

name = Apple, price = 0.75

The following snippet of code replaces the lambda expressions with a constructor

reference Item::new. The output shows the same constructors as before:

Supplier<Item> func1 = Item::new;

Function<String,Item> func2 = Item::new;

BiFunction<String,Double,Item> func3 = Item::new;

System.out.println(func1.get());

System.out.println(func2.apply("Apple"));

System.out.println(func3.apply("Apple", 0.75));

ChApter 4 LAmbdA expressions

236

Constructor Item() called.

name = Unknown, price = 0.0

Constructor Item(String) called.

name = Apple, price = 0.0

Constructor Item(String, double) called.

name = Apple, price = 0.75

When the statement

Supplier<Item> func1 = Item::new;

is executed, the compiler finds that the target type Supplier<Item> does not accept

an argument. Therefore, it uses the no-args constructor of the Item class. When the

statement

Function<String,Item> func2 = Item::new;

is executed, the compiler finds that the target type Function<String,Item> takes a

String argument. Therefore, it uses the constructor of the Item class that takes a String

argument. When the statement

BiFunction<String,Double,Item> func3 = Item::new;

is executed, the compiler finds that the target type BiFunction<String,Double,Item>

takes two arguments: a String and a Double. Therefore, it uses the constructor of the

Item class that takes a String and a double argument.

The following statement generates a compile-time error, as the compiler does not

find a constructor in the Item class that accepts a Double argument:

Function<Double,Item> func4 = Item::new;

// <- A compile-time error

Arrays in Java do not have constructors. There is a special syntax to use constructor

references for arrays. Array constructors are treated to have one argument of int type that

is the size of the array. The following snippet of code shows the lambda expression and

its equivalent constructor reference for an int array:

// Uses a lambda expression

IntFunction<int[]> arrayCreator1 = size -> new int[size];

int[] empIds1 = arrayCreator1.apply(5);

ChApter 4 LAmbdA expressions

237

// <- Creates an int array of five elements

// Uses an array constructor reference

IntFunction<int[]> arrayCreator2 = int[]::new;

int[] empIds2 = arrayCreator2.apply(5);

// <- Creates an int array of five elements

You can also use a Function<Integer,R> type to use an array constructor reference,

where R is the array type:

// Uses an array constructor reference

Function<Integer,int[]> arrayCreator3 = int[]::new;

int[] empIds3 = arrayCreator3.apply(5);

// <- Creates an int array of five elements

The syntax for the constructor reference for arrays supports creating an array of

multiple dimensions. However, you can specify the length for only the first dimension.

The following statement creates a two-dimensional int array with the first dimension

having the length of 5:

// Uses an array constructor reference

IntFunction<int[][]> TwoDimArrayCreator = int[][]::new;

int[][] matrix = TwoDimArrayCreator.apply(5);

// <- Creates an int[5][] array

You might be tempted to use a BiFunction<Integer,Integer,int[][]> to use

a constructor reference for a two-dimensional array to supply the length for both

dimensions. However, the syntax is not supported. Array constructors are supposed to

accept only one parameter—the length of the first dimension. The following statement

generates a compile-time error:

BiFunction<Integer,Integer,int[][]> arrayCreator =

 int[][]::new;

 Generic Method References
Typically, the compiler figures out the actual type for generic type parameters when a

method reference refers to a generic method. Consider the following generic method in

the java.util.Arrays class:

static <T> List<T> asList(T... a)

ChApter 4 LAmbdA expressions

238

The asList() method takes a varargs argument of type T and returns a List<T>.

You can use Arrays::asList as a method reference. The syntax for the method

reference allows you to specify the actual type parameter for the method just after the

two consecutive colons. For example, if you are passing String objects to the asList()

method, its method reference can be written as Arrays::<String>asList.

Note the syntax for a method reference also supports specifying the actual
type parameters for generic types. the actual type parameters are specified
just before the two consecutive colons. For example, the constructor reference
ArrayList<Long>::new specifies Long as the actual type parameter for the
generic ArrayList<T> class.

The following snippet of code contains an example of specifying the actual type

parameter for the generic method Arrays.asList(). In the code, Arrays::asList will

work the same, as the compiler will infer String as the type parameter for the asList()

method by examining the target type:

import java.util.Arrays;

import java.util.List;

import java.util.function.Function;

...

Function<String[],List<String>> asList =

 Arrays::<String>asList;

String[] namesArray = {"Jim", "Ken", "Li"};

List<String> namesList = asList.apply(namesArray);

for(String name : namesList) {

 System.out.println(name);

}

Jim

Ken

Li

ChApter 4 LAmbdA expressions

239

 Lexical Scoping
A scope is the part of a Java program within which a name can be used without a

qualifier. Classes and methods define their own scope. Scopes may be nested. For

example, a method scope does not exist independently, as a method is always part

of another construct, for example, a class; an inner class appears inside the scope of

another class; a local and an anonymous class appear inside the scope of a method.

Even though a lambda expression looks like a method declaration, it does not define

a scope of its own. It exists in its enclosing scope. This is known as lexical scoping for

lambda expressions. For example, when a lambda expression is used inside a method,

the lambda expression exists in the scope of the method.

The meanings of the keywords this and super are the same inside the lambda

expression and its enclosing method. Note that this is different from the meanings of

these keywords inside a local and anonymous inner class in which the keyword this

refers to the current instance of the local and anonymous inner class, not its enclosing

class.

Listing 4-19 contains code for a functional interface named Printer that you will use

to print messages in the examples in this section.

Listing 4-19. A Printer Functional Interface

// Printer.java

package com.jdojo.lambda;

@FunctionalInterface

public interface Printer {

 void print(String msg);

}

The program in Listing 4-20 creates two instances of the Printer interface: one using

a lambda expression in the getLambdaPrinter() method and one using an anonymous

inner class in the getAnonymousPrinter() method. Both instances use the keyword

this inside the print() method. Both methods print the class name that the keyword

this refers to. The output shows that the keyword this has the same meaning inside the

getLambdaPrinter() method and the lambda expression. However, the keyword this

has different meanings inside the getAnonymousPrinter() method and the anonymous

class.

ChApter 4 LAmbdA expressions

240

Listing 4-20. Testing Scope of a Lambda Expression and an Anonymous Class

// ScopeTest.java

package com.jdojo.lambda;

public class ScopeTest {

 public static void main(String[] args) {

 ScopeTest test = new ScopeTest();

 Printer lambdaPrinter = test.getLambdaPrinter();

 lambdaPrinter.print("Lambda Expressions");

 Printer anonymousPrinter = test.

 getAnonymousPrinter();

 anonymousPrinter.print("Anonymous Class");

 }

 public Printer getLambdaPrinter() {

 System.out.println("getLambdaPrinter(): " +

 this.getClass());

 // Uses a lambda expression

 Printer printer = msg -> {

 // Here, this refers to the current object

 // of the ScopeTest class

 System.out.println(msg + ": " +

 this.getClass());

 };

 return printer;

 }

 public Printer getAnonymousPrinter() {

 System.out.println("getAnonymousPrinter(): " +

 this.getClass());

 // Uses an anonymous class

 Printer printer = new Printer() {

 @Override

 public void print(String msg) {

 // Here, this refers to the current

 // object of the anonymous class

ChApter 4 LAmbdA expressions

241

 System.out.println(msg + ": " +

 this.getClass());

 }

 };

 return printer;

 }

}

getLambdaPrinter(): class com.jdojo.lambda.ScopeTest

Lambda Expressions: class com.jdojo.lambda.ScopeTest

getAnonymousPrinter(): class com.jdojo.lambda.ScopeTest

Anonymous Class: class com.jdojo.lambda.ScopeTest\$1

Lexical scoping of a lambda expression means that variables declared in the lambda

expression, including its parameters, exist in the enclosing scope. Simple names in a

scope must be unique. It means that a lambda expression cannot redefine variables with

the name that already exists in the enclosing scope.

The following code for a lambda expression inside the main() method generates a

compile-time error, as its parameter name msg is already defined in the main() method’s

scope:

public class Test {

 public static void main(String[] args) {

 String msg = "Hello";

 // A compile-time error. The msg variable is

 // already defined and the lambda parameter is

 // attempting to redefine it.

 Printer printer = msg -> System.out.println(msg);

 }

}

The following code generates a compile-time error for the same reason that the

local variable named msg is in scope inside the body of the lambda expression, and the

lambda expression is attempting to declare a local variable with the same name msg:

ChApter 4 LAmbdA expressions

242

public class Test {

 public static void main(String[] args) {

 String msg = "Hello";

 Printer printer = msg1 -> {

 String msg = "Hi"; // A compile-time error

 System.out.println(msg1);

 };

 }

}

 Variable Capture
Like a local and anonymous inner class, a lambda expression can access effectively final

local variables. A local variable is effectively final in the following two cases:

• It is declared final.

• It is not declared final, but initialized only once.

In the following snippet of code, the msg variable is effectively final, as it has been

declared final. The lambda expression accesses the variable inside its body:

public Printer test() {

 final String msg = "Hello"; // msg is effectively final

 Printer printer = msg1 -> System.out.println(msg +

 " " + msg1);

 return printer;

}

In the following snippet of code, the msg variable is effectively final, as it is initialized

once. The lambda expression accesses the variables inside its body:

public Printer test() {

 String msg = "Hello"; // msg is effectively final

 Printer printer = msg1 ->

 System.out.println(msg + " " + msg1);

 return printer;

}

ChApter 4 LAmbdA expressions

243

The following snippet of code is a slight variation of the previous example. The msg

variable is effectively final, as it has been initialized only once:

public Printer test() {

 String msg;

 msg = "Hello"; // msg is effectively final

 Printer printer = msg1 ->

 System.out.println(msg + " " + msg1);

 return printer;

}

In the following snippet of code, the msg variable is not effectively final, as it is

assigned a value twice. The lambda expression is accessing the msg variable that

generates a compile-time error:

public Printer test() {

 // msg is not effectively final as it is changed later

 String msg = "Hello";

 // A compile-time error

 Printer printer = msg1 ->

 System.out.println(msg + " " + msg1);

 msg = "Hi";

 // <- msg is changed making it effectively non-final

 return printer;

}

The following snippet of code generates a compile-time error because the lambda

expression accesses the msg variable that is declared lexically after its use. In Java,

forward referencing of variable names in a method’s scope is not allowed. Note that the

msg variable is effectively final.

public Printer test() {

 // A compile-time error. The msg variable is not

 // declared yet.

 Printer printer = msg1 ->

 System.out.println(msg + " " + msg1);

 String msg = "Hello"; // msg is effectively final

 return printer;

}

ChApter 4 LAmbdA expressions

244

Can you guess why the following snippet of code generates a compile-time error?

public Printer test() {

 String msg = "Hello";

 Printer printer = msg1 -> {

 msg = "Hi " + msg1; // A compile-time error.

 // Attempting to modify msg.

 System.out.println(msg);

 };

 return printer;

}

The lambda expression accesses the local variable msg. Any local variable accessed

inside a lambda expression must be effectively final. The lambda expression attempts to

modify the msg variable inside its body, and that causes the compile-time error.

Note A lambda expression can access instance and class variables of a class
whether they are effectively final or not. if instance and class variables are not
final, they can be modified inside the body of the lambda expressions. A lambda
expression keeps a copy of the local variables used in its body. if the local variables
are reference variables, a copy of the references is kept, not a copy of the objects.

The program in Listing 4-21 demonstrates how to access the local and instance

variables inside lambda expressions.

Listing 4-21. Accessing Local and Instance Variables Inside Lambda Expressions

// VariableCapture.java

package com.jdojo.lambda;

public class VariableCapture {

 private int counter = 0;

 public static void main(String[] args) {

 VariableCapture vc1 = new VariableCapture();

 VariableCapture vc2 = new VariableCapture();

 // Create lambdas

 Printer p1 = vc1.createLambda(1);

 Printer p2 = vc2.createLambda(100);

ChApter 4 LAmbdA expressions

245

 // Execute the lambda bodies

 p1.print("Lambda #1");

 p2.print("Lambda #2");

 p1.print("Lambda #1");

 p2.print("Lambda #2");

 p1.print("Lambda #1");

 p2.print("Lambda #2");

 }

 public Printer createLambda(int incrementBy) {

 Printer printer = msg -> {

 // Accesses instance and local variables

 counter += incrementBy;

 System.out.println(msg + ": counter = " +

 counter);

 };

 return printer;

 }

}

Lambda #1: counter = 1

Lambda #2: counter = 100

Lambda #1: counter = 2

Lambda #2: counter = 200

Lambda #1: counter = 3

Lambda #2: counter = 300

The createLambda() method uses a lambda expression to create an instance of

the Printer functional interface. The lambda expression uses the method’s parameter

incrementBy. Inside the body, it increments the instance variable counter and prints its

value. The main() method creates two instances of the VariableCapture class and calls

the createLambda() method on those instances by passing 1 and 100 as incrementBy

values. The print() methods of the Printer objects are called three times for both

instances. The output shows that the lambda expression captures the incrementBy value

and increments the counter instance variable every time it is called.

ChApter 4 LAmbdA expressions

246

 Jumps and Exits
Statements such as break, continue, return, and throw are allowed inside the body of a

lambda expression. These statements indicate jumps inside a method and exits from a

method. Inside a lambda expression, they indicate jumps inside the body of the lambda

expression and exits from the body of the lambda expressions. They indicate local jumps

and exits in the lambda expressions. Non-local jumps and exits in lambda expressions

are not allowed. The program in Listing 4-22 demonstrates the valid use of the break and

continue statements inside the body of a lambda expression.

Listing 4-22. Using break and continue Statements Inside the Body of a Lambda

Expression

// LambdaJumps.java

package com.jdojo.lambda;

import java.util.function.Consumer;

public class LambdaJumps {

 public static void main(String[] args) {

 Consumer<int[]> printer = ids -> {

 int printedCount = 0;

 for (int id : ids) {

 if (id % 2 != 0) {

 continue;

 }

 System.out.println(id);

 printedCount++;

 // Break out of the loop after printing 3

 // ids

 if (printedCount == 3) {

 break;

 }

 }

 };

 // Print an array of 8 integers

 printer.accept(new int[]{1, 2, 3, 4, 5, 6, 7, 8});

 }

}

ChApter 4 LAmbdA expressions

247

2

4

6

In the following snippet of code, the break statement is inside a for loop statement,

and it is also inside the body of a lambda statement. If this break statement is allowed,

it will jump out of the body of the lambda expression. This is the reason that the code

generates a compile-time error:

public void test() {

 for(int i = 0; i < 5; i++) {

 Consumer<Integer> evenIdPrinter = id -> {

 if (id < 0) {

 // A compile-time error. Attempting to

 // break out of the lambda body

 break;

 }

 };

 }

}

 Recursive Lambda Expressions
Sometimes, a function may invoke itself from its body. Such a function is called a

recursive function. A lambda expression represents a function. However, a lambda

expression does not support recursive invocations. If you need a recursive function, you

need to use a method reference or an anonymous inner class.

The program in Listing 4-23 shows how to use a method reference when a recursive

lambda expression is needed. It defines a recursive method called factorial() that

computes the factorial of an integer. In the main() method, it uses the method reference

RecursiveTest::factorial in place of a lambda expression.

ChApter 4 LAmbdA expressions

248

Listing 4-23. Using a Method Reference When a Recursive Lambda Expression

Is Needed

// RecursiveTest.java

package com.jdojo.lambda;

import java.util.function.IntFunction;

public class RecursiveTest {

 public static void main(String[] args) {

 IntFunction<Long> factorialCalc =

 RecursiveTest::factorial;

 int n = 5;

 long fact = factorialCalc.apply(n);

 System.out.println("Factorial of " + n +

 " is " + fact);

 }

 public static long factorial(int n) {

 if (n < 0) {

 String msg = "Number must not be negative.";

 throw new IllegalArgumentException(msg);

 }

 if (n == 0) {

 return 1;

 } else {

 return n * factorial(n - 1);

 }

 }

}

factorial of 5 is 120

You can achieve the same results using an anonymous inner class as shown:

IntFunction<Long> factorialCalc = new IntFunction<Long>() {

 @Override

 public Long apply(int n) {

 if (n < 0) {

 String msg = "Number must not be negative.";

ChApter 4 LAmbdA expressions

249

 throw new IllegalArgumentException(msg);

 }

 if (n == 0) {

 return 1L;

 } else {

 return n * this.apply(n - 1);

 }

 }

};

 Comparing Objects
The Comparator interface is a functional interface with the following declaration:

package java.util;

@FunctionalInterface

public interface Comparator<T> {

 int compare(T o1, T o2);

 /* Other methods are not shown. */

}

The Comparator<T> interface contains many default and static methods that can be

used along with lambda expressions to create its instances. It is worth exploring the API

documentation for the interface. In this section, I discuss the following two methods of

the Comparator interface:

• static <T,U extends Comparable<? super U» Comparator<T>

comparing(Function<? super T,? extends U> keyExtractor)

• default <U extends Comparable<? super U» Comparator<T>

thenComparing(Function<? super T,? extends U> keyExtractor)

The comparing() method takes a Function and returns a Comparator. The Function

should return a Comparable that is used to compare two objects. You can create a

Comparator object to compare Person objects based on their first names, as shown:

Comparator<Person> firstNameComp =

 Comparator.comparing(Person::getFirstName);

ChApter 4 LAmbdA expressions

250

The thenComparing() method is a default method. It is used to specify a secondary

comparison if two objects are the same in sorting order based on the primary

comparison. The following statement creates a Comparator<Person> that sorts Person

objects based on their last names, first names, and DOBs:

Comparator<Person> lastFirstDobComp =

 Comparator.comparing(Person::getLastName)

 .thenComparing(Person::getFirstName)

 .thenComparing(Person::getDob);

The program in Listing 4-24 shows how to use the method references to create

a Comparator object to sort Person objects. It uses the sort() default method of the

List interface to sort the list of persons. The sort() method takes a Comparator as an

argument. Thanks to lambda expressions and default methods in interfaces for making

the sorting task so easy!

Listing 4-24. Sorting a List of Person Objects

/ ComparingObjects.java

package com.jdojo.lambda;

import java.util.Comparator;

import java.util.List;

public class ComparingObjects {

 public static void main(String[] args) {

 List<Person> persons = Person.getPersons();

 // Sort using the first name

 persons.sort(Comparator.comparing(

 Person::getFirstName));

 // Print the sorted list

 System.out.println("Sorted by the first name:");

 FunctionUtil.forEach(persons, System.out::println);

 // Sort using the last name, first name, and then

 // DOB

 persons.sort(Comparator.comparing(

 Person::getLastName)

 .thenComparing(Person::getFirstName)

 .thenComparing(Person::getDob));

ChApter 4 LAmbdA expressions

251

 // Print the sorted list

 System.out.println("\nSorted by the last name, " +

 "first name, and dob:");

 FunctionUtil.forEach(persons, System.out::println);

 }

}

Sorted by the first name:

Donna Jacobs, FEMALE, 1970-09-12

John Jacobs, MALE, 1975-01-20

Wally Inman, MALE, 1965-09-12

Sorted by the last name, first name, and dob:

Wally Inman, MALE, 1965-09-12

Donna Jacobs, FEMALE, 1970-09-12

John Jacobs, MALE, 1975-01-20

 Summary
A lambda expression is an unnamed block of code (or an unnamed function) with a

list of formal parameters and a body. A lambda expression provides a concise way, as

compared to anonymous inner classes, to create instances of functional interfaces.

Lambda expressions and default methods in interfaces have given new life to the Java

programming languages as far as expressiveness and fluency in Java programming go.

The Java collection library has benefited the most from lambda expressions.

The syntax for defining lambda expressions is similar to declaring a method.

A lambda expression may have a list of formal parameters and a body. A lambda

expression is evaluated to an instance of a functional interface. The body of the lambda

expression is not executed when the expression is evaluated. The body of the lambda

expression is executed when the method of the functional interface is invoked.

One of the design goals of lambda expressions was to keep it concise and readable.

The lambda expression syntax supports shorthand for common use cases. Method

references are shorthand to specify lambda expressions that use existing methods.

A poly expression is an expression whose type depends on the context of its use. A

lambda expression is always a poly expression. A lambda expression cannot be used by

itself. Its type is inferred by the compiler from the context. A lambda expression can be

used in assignments, method invocations, returns, and casts.

ChApter 4 LAmbdA expressions

252

When a lambda expression occurs inside a method, it is lexically scoped. That is, a

lambda expression does not define a scope of its own; rather, it occurs in the method’s

scope. A lambda expression may use the effectively final local variables of a method. A

lambda expression may use the statements such as break, continue, return, and throw.

The break and continue statements specify local jumps inside the body of the lambda

expression. Attempting to jump outside the body of the lambda expression generates

a compile-time error. The return and throw statements exit the body of the lambda

expression.

 Exercises
Exercise 1

What are lambda expressions and how are they related to functional interfaces?

Exercise 2

How does a lambda expression differ from an anonymous class? Can you always

replace a lambda expression with an anonymous class and vice versa?

Exercise 3

Are the following two lambda expressions different?

a. (int x, int y) -> { return x + y; }

b. (int x, int y) -> x + y

Exercise 4

If someone shows you the following lambda expressions, explain the possible

functions they may represent:

a. (int x, int y) -> x + y \\

b. (x, y) -> x + y \\

c. (String msg) -> { System.out.println(msg); }\\

d. () -> {}

Exercise 5

What kind of function the following lambda expression may represent?

x -> x;

ChApter 4 LAmbdA expressions

253

Exercise 6

Will the following declaration of a MathUtil interface compile? Explain your answer.

@FunctionalInterface

public interface Operations {

 int factorial(int n);

 int abs(int n);

}

Exercise 7

Will the following statement compile? Explain your answer.

Object obj = x -> x + 1;

Exercise 8

Will the following statements compile? Explain your answer.

Function<Integer,Integer> f = x -> x + 1;

Object obj = f;

Exercise 9

What will be the output when you run the following Scope class?

// Scope.java

package com.jdojo.lambda.exercises;

import java.util.function.Function;

public class Scope {

 private static long n = 100;

 private static Function<Long,Long> f = n -> n + 1;

 public static void main(String[] args) {

 System.out.println(n);

 System.out.println(f.apply(n));

 System.out.println(n);

 }

}

ChApter 4 LAmbdA expressions

254

Exercise 10

Why does the following method declaration not compile?

public static void test() {

 int n = 100;

 Function<Integer,Integer> f = n -> n + 1;

 System.out.println(f.apply(100));

}

Exercise 11

What will be the output when the following Capture class is run?

// Capture.java

package com.jdojo.lambda.exercises;

import java.util.function.Function;

public class Capture {

 public static void main(String[] args) {

 test();

 test();

 }

 public static void test() {

 int n = 100;

 Function<Integer,Integer> f = x -> n + 1;

 System.out.println(f.apply(100));

 }

}

Exercise 12

Assume that there is a Person class, which contains four constructors. One of the

constructors is a no-args constructor. Given a constructor reference, Person::new, can

you tell which constructor of the Person it refers to?

Exercise 13

Will the following declaration of the FeelingLucky interface compile? Notice that it

has been annotated with @FunctionalInterface.

@FunctionalInterface

public interface FeelingLucky {

 void gamble();

ChApter 4 LAmbdA expressions

255

 public static void hitJackpot() {

 System.out.println("You have won 80M dollars.");

 }

}

Exercise 14

Why does the following declaration of the Mystery interface not compile?

@FunctionalInterface

public interface Mystery {

 @Override

 String toString();

}

Exercise 15

What will be the output when the following PredicateTest class is run?

// PredicateTest.java

package com.jdojo.lambda.exercises;

import java.util.function.Predicate;

public class PredicateTest {

 public static void main(String[] args) {

 int[] nums = {1, 2, 3, 4, 5};

 filterThenPrint(nums, n -> n%2 == 0);

 filterThenPrint(nums, n -> n%2 == 1);

 }

 static void filterThenPrint(int[] nums,

 Predicate<Integer> p) {

 for(int x : nums) {

 if(p.test(x)) {

 System.out.println(x);

 }

 }

 }

}

ChApter 4 LAmbdA expressions

256

Exercise 16

What will be the output when the following SupplierTest class is run? Explain your

answer.

/ SupplierTest.java

package com.jdojo.lambda.exercises;

import java.util.function.Supplier;

public class SupplierTest {

 public static void main(String[] args) {

 Supplier<Integer> supplier = () -> {

 int counter = 0;

 return ++counter;

 };

 System.out.println(supplier.get());

 System.out.println(supplier.get());

 }

}

Exercise 17

What will be the output when the following ConsumerTest class is run?

// ConsumerTest.java

package com.jdojo.lambda.exercises;

import java.util.function.Consumer;

public class ConsumerTest {

 public static void main(String[] args) {

 Consumer<String> c1 = System.out::println;

 Consumer<String> c2 = s -> {};

 consume(c1, "Hello");

 consume(c2, "Hello");

 }

 static <T> void consume(Consumer<T> consumer,

 T item) {

 consumer.accept(item);

 }

}

ChApter 4 LAmbdA expressions

257
© Kishori Sharan, Peter Späth 2021
K. Sharan and P. Späth, More Java 17, https://doi.org/10.1007/978-1-4842-7135-3_5

CHAPTER 5

Threads
In this chapter, you will learn:

• What threads are

• How to create threads in Java

• How to execute your code in separate threads

• What the Java Memory Model is

• The lifecycle of threads

• How to use object monitors to synchronize access to a critical section

by threads

• How to interrupt, stop, suspend, and resume threads

• Atomic variables, explicit locks, synchronizer, executor framework,

fork/join framework, and thread-local variables

All example programs in this chapter are members of a jdojo.threads module, as

declared in Listing 5-1.

Listing 5-1. The Declaration of a jdojo.threads Module

// module-info.java

module jdojo.threads {

 exports com.jdojo.threads;

}

 What Is a Thread?
Threads are a vast topic. They deserve an entire book. This chapter does not discuss the

concept of threads in detail. Rather, it discusses how to work with threads using Java

https://doi.org/10.1007/978-1-4842-7135-3_5#DOI

258

constructs. Before I define the term thread, it is necessary to understand the meaning of

some related terms, such as program, process, multitasking, sequential programming,

concurrent programming, etc.

A program is an algorithm expressed in a programming language. A process is a

running instance of a program with all system resources allocated by the operating

system to that instance of the program. Typically, a process consists of a unique

identifier, a program counter, executable code, an address space, open handles to system

resources, a security context, and many other things. A program counter, also called

an instruction pointer, is a value maintained in the CPU register that keeps track of the

instruction being executed by the CPU. It is automatically incremented at the end of the

execution of an instruction. You can also think of a process as a unit of activity (or a unit

of work, or a unit of execution, or a path of execution) within an operating system. The

concept of process allows one computer system to support multiple units of executions.

Multitasking is the ability of an operating system to execute multiple tasks (or

processes) at once. On a single CPU machine, multitasking is not possible in a true

sense because one CPU can execute instructions for only one process at a time. In such

a case, the operating system achieves multitasking by dividing the single CPU’s time

among all running processes and switching between processes quickly enough to give

an impression that all processes are running simultaneously. The switching of the CPU

among processes is called a context switch. In a context switch, the running process is

stopped, its state is saved, the state of the process that is going to get the CPU is restored,

and the new process is run. It is necessary to save the state of the running process before

the CPU is allocated to another process, so when this process gets the CPU again, it

can start its execution from the same point where it left. Typically, the state of a process

consists of a program counter, register values used by the process, and any other pieces

of information that are necessary to restore the process later. An operating system

stores a process state in a data structure, which is called a process control block or a

switchframe. A context switch is rather an expensive task.

There are two types of multitasking: cooperative and preemptive. In cooperative

multitasking, the running process decides when to release the CPU so that other

processes can use the CPU. In preemptive multitasking, the operating system allocates

a time slice to each process. Once a process has used up its time slice, it is preempted,

and the operating system assigns the CPU to another process. In cooperative

multitasking, a process may monopolize the CPU for a long time, and other processes

may not get a chance to run. In preemptive multitasking, the operating system makes

Chapter 5 threads

259

sure all processes get CPU time. UNIX, OS/2, and Windows (except Windows 3.x) use

preemptive multitasking. Windows 3.x used cooperative multitasking.

Multiprocessing is the ability of a computer to use more than one processor

simultaneously. Parallel processing is the ability of a system to simultaneously execute

the same task on multiple processors. You may note that, for parallel processing, the

task must be split up into subtasks, so that the subtasks can be executed on multiple

processors simultaneously. Let’s consider a program that consists of six instructions:

Instruction-1

Instruction-2

Instruction-3

Instruction-4

Instruction-5

Instruction-6

To execute this program completely, the CPU has to execute all six instructions.

Suppose the first three instructions depend on each other. Assume that Instruction-2

uses the result of Instruction-1; Instruction-3 uses the result of Instruction-2.

Assume that the last three instructions also depend on each other the same way the

first three depend on each other. Suppose the first three and the last three instructions,

as two groups, do not depend on each other. How would you like to execute these six

instructions to get the best result? One of the ways to execute them is sequentially as

they appear in the program. This gives you one sequence of execution in your program.

Another way of executing them is to have two sequences of executions. One sequence of

execution will execute Instruction-1, Instruction-2, and Instruction-3, and at the

same time, another sequence of execution will execute Instruction-4, Instruction-5,

and Instruction-6. The phrases “unit of execution” and “sequence of execution” mean

the same; I use them interchangeably. These two scenarios are depicted in Figure 5-1.

Figure 5-1. Dividing a program into multiple units of execution

Chapter 5 threads

260

Note that a process is also a unit of execution. Therefore, the two sets of instructions

can be run as two processes to achieve concurrency in their execution. So far, we have

assumed that the two sets of instructions are independent of each other. Suppose

this assumption still holds true. What if the two sets of instructions access a shared

memory; or, when both sets of instructions finish running, you need to combine the

results from both to compute the final result? Processes are generally not allowed to

access another process’s address space. They must communicate using interprocess

communication facilities such as sockets, pipes, etc. The very nature of a process—that

it runs independent of other processes—may pose problems when multiple processes

need to communicate or share resources. All modern operating systems let you solve this

problem by allowing you to create multiple units of execution within a process, where all

units of execution can share address space and resources allocated to the process. Each

unit of execution within a process is called a thread.

Every process has at least one thread. A process can create multiple threads, if

needed. The resources available to the operating system and its implementation

determine the maximum number of threads a process can create. All threads within a

process share all resources including the address space; they can also communicate with

each other easily because they operate within the same process and they share the same

memory. Each thread within a process operates independent of the other threads within

the same process.

A thread maintains two things: a program counter and a stack. The program counter

lets a thread keep track of the instruction that it is currently executing. It is necessary

to maintain a separate program counter for each thread because each thread within a

process may be executing different instructions at the same time. Each thread maintains

its own stack to store the values of the local variables. A thread can also maintain its

private memory, which cannot be shared with other threads, even if they are in the same

process. The private memory maintained by a thread is called thread-local storage (TLS).

Figure 5-2 depicts threads represented within a process.

Chapter 5 threads

261

In all modern operating systems, threads are scheduled on the CPU for execution,

not the processes. Therefore, the CPU context switch occurs between the threads.

The context switch between threads is less expensive compared to the context switch

between processes. Because of the ease of communication, sharing resources among

threads within a process, and a cheaper context switch, it is preferred to split a program

into multiple threads, rather than multiple processes. Sometimes, a thread is also called

a lightweight process. The program with six instructions as discussed previously can also

be split into two threads within a process, as depicted in Figure 5-3. On a multiprocessor

machine, multiple threads of a process may be scheduled on different processors, thus

providing true concurrent executions of a program. A program that uses multiple threads

is called a multi-threaded program.

You can think of the relationship between a process and threads as Process =

address space + resources + threads where threads are units of execution within

Figure 5-2. Processes and threads

Figure 5-3. Dividing the program logic to use two threads within a process

Chapter 5 threads

262

the process; they maintain their own unique program counter and stack; they share the

process address space and resources; they are scheduled on a CPU independently and

may execute on different CPUs, if available.

 Creating Threads in Java
The Java API makes it easy to work with threads. It lets you represent a thread as an

object. An object of the java.lang.Thread class represents a thread. Creating and using

a thread in Java is as simple as creating an object of the Thread class and using that

object in a program. Let’s start with the simplest example of creating a thread in Java.

There are at least two steps involved in working with a thread:

• Creating an object of the Thread class

• Invoking the start() method of the Thread class to start the thread

Creating an object of the Thread class is the same as creating an object of any other

classes in Java. In its simplest form, you can use the no-args constructor of the Thread

class to create a Thread object:

// Creates a thread object

Thread simplestThread = new Thread();

Creating an object of the Thread class allocates memory for that object on the heap.

It does not start or run the thread. You must call the start() method of the Thread

object to start the thread:

// Starts the thread

simplestThread.start();

The start() method returns after doing some housekeeping work. It puts the thread

in the runnable state. In this state, the thread is ready to receive the CPU time. Note that

invoking the start() method of a Thread object does not guarantee “when” this thread

will start getting the CPU time. That is, it does not guarantee when the thread will start

running. It just schedules the thread to receive the CPU time.

Let’s write a simple Java program with these two statements, as shown in Listing 5-2.

The program will not do anything useful. However, it will get you started using threads.

Chapter 5 threads

263

Listing 5-2. The Simplest Thread in Java

// SimplestThread.java

package com.jdojo.threads;

public class SimplestThread {

 public static void main(String[] args) {

 // Creates a thread object

 Thread simplestThread = new Thread();

 // Starts the thread

 simplestThread.start();

 }

}

When you run the SimplestThread class, you do not see any output. The program

will start and finish silently. Even though you did not see any output, here are a few

things the JVM did when the two statements in the main() method were executed:

• When the second statement, simplestThread.start(), is executed,

the JVM scheduled this thread for execution.

• At some point in time, this thread got the CPU time and started

executing. What code does a thread in Java start executing when it

gets the CPU time?

• A thread in Java always starts its execution in a run() method. You

can define the run() method to be executed by a thread when you

create an object of the Thread class. In your case, you created an

object of the Thread class using its no-args constructor. When you use

the no-args constructor of the Thread class to create its object (as in

new Thread()), the run() method of the Thread class is called when

the thread starts its execution. The following sections in this chapter

explain how to define your own run() method for a thread.

• The run() method of the Thread class checks how the object of the

Thread class was created. If the thread object was created using the

no-args constructor of the Thread class, it does not do anything and

immediately returns. Therefore, in your program, when the thread

got the CPU time, it called the run() method of the Thread class,

which did not execute any meaningful code, and returned.

Chapter 5 threads

264

• When the CPU finishes executing the run() method, the thread is

dead, which means the thread will not get the CPU time again.

Figure 5-4 depicts how the simplest thread example works.

There are two important points to add to the current discussion:

• When a thread is dead, it does not mean the thread object is garbage

collected. Note that a thread is a unit of execution. “A thread is dead”

means that the unit of execution that the thread represented has

finished its work. However, the thread object representing the unit of

execution still exists in memory. After the thread is dead, the object

will be garbage collected based on the same garbage collection rules

that are used for any other Java objects. Some restrictions exist that

dictate the methods you can call on a dead thread. For example, you

cannot call its start() method again. That is, a thread object can be

started only once. However, you can still check if the thread is dead

by calling the isAlive() method of the thread object.

Figure 5-4. The simplest thread execution

Chapter 5 threads

265

• The thread does not get the CPU time in one go to execute the run()

method. The operating system decides on the amount of time to

allocate and when to allocate that time to the thread. This means that

the multiple context switches may occur before the thread finishes

executing the run() method.

 Specifying Your Code for a Thread
There are three ways you can specify your code to be executed by a thread:

• By inheriting your class from the Thread class

• By implementing the Runnable interface in your class

• By using the method reference to a method that takes no parameters

and returns void

Note Inheriting your class from the Thread class may not be possible if your
class already inherits from another class. In that case, you need to use the second
method. You can use the third method from Java 8. Before Java 8, it was common
to use an anonymous class to define a thread object where the anonymous class
would either inherit from the Thread class or implement the Runnable interface.

 Inheriting Your Class from the Thread Class
When you inherit your class from the Thread class, you should override the run()

method and provide the code to be executed by the thread:

public class MyThreadClass extends Thread {

 @Override

 public void run() {

 System.out.println("Hello Java threads!");

 }

 // More code goes here

}

Chapter 5 threads

266

The steps to create a thread object and start the thread are the same:

MyThreadClass myThread = new MyThreadClass();

myThread.start();

The thread will execute the run() method of the MyThreadClass class.

 Implementing the Runnable Interface
You can create a class that implements the java.lang.Runnable interface. Runnable is a

functional interface, and it is declared in the java.lang package as follows:

@FunctionalInterface

public interface Runnable {

 void run();

}

A simple example implementation of Runnable would read

public class HelloRunnable implements Runnable {

 @Override

 public void run() {

 System.out.println("Hello Java threads!");

 }

}

// Creating an instance:

Runnable aRunnableObject = new HelloRunnable();

Instead, you can also use a lambda expression to create an instance of the Runnable

interface:

Runnable aRunnableObject = () ->

 System.out.println("Hello Java threads!");

Create an object of the Thread class using the constructor that accepts a Runnable

object:

Thread myThread = new Thread(aRunnableObject);

Chapter 5 threads

267

Start the thread by calling the start() method of the thread object:

myThread.start();

The thread will execute the code contained in the body of the lambda expression.

 Using a Method Reference
To even further increase conciseness, you can use the method reference of a method

(static or instance) that takes no parameters and returns void as the code to be executed

by a thread. The following code declares a ThreadTest class that contains an execute()

method. The method contains the code to be executed in a thread:

public class ThreadTest {

 public static void execute() {

 System.out.println("Hello Java threads!");

 }

}

The following snippet of code uses the method reference of the execute() method of

the ThreadTest class to create a Runnable object:

Thread myThread = new Thread(ThreadTest::execute);

myThread.start();

The thread will execute the code contained in the execute() method of the

ThreadTest class.

 A Quick Example
Let’s look at a simple example to print integers from 1 to 500 in a new thread. Listing 5-3

contains the code for the PrinterThread class that performs this task. When the class is

run, it prints integers from 1 to 500 on the standard output.

Listing 5-3. Printing Integers from 1 to 500 in a New Thread

// PrinterThread.java

package com.jdojo.threads;

Chapter 5 threads

268

public class PrinterThread {

 public static void main(String[] args) {

 // Create a Thread object

 Thread t = new Thread(PrinterThread::print);

 // Start the thread

 t.start();

 }

 public static void print() {

 for (int i = 1; i <= 500; i++) {

 System.out.print(i + " ");

 }

 }

}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 ... 497 498 499 500

I used a method reference to create the thread object in the example. You can use

any of the other ways discussed earlier to create a thread object.

 Using Multiple Threads in a Program
Using multiple threads in a Java program is as simple as creating multiple Thread objects

and calling their start() method. Java does not have any upper limit on the number

of threads that can be used in a program. It is limited by the operating system and the

memory available to the program. Listing 5-4 uses two threads. Both threads print

integers from 1 to 500. The code prints a new line after each integer. However, the output

shows a space after each integer to keep the output short. Only partial output is shown.

Listing 5-4. Running Multiple Threads in a Program

// MultiPrinterThread.java

package com.jdojo.threads;

public class MultiPrinterThread {

 public static void main(String[] args) {

 // Create two Thread objects

 Thread t1 = new Thread(MultiPrinterThread::print);

 Thread t2 = new Thread(MultiPrinterThread::print);

Chapter 5 threads

269

 // Start both threads

 t1.start();

 t2.start();

 }

 public static void print() {

 for (int i = 1; i <= 500; i++) {

 System.out.println(i);

 }

 }

}

1 2 3 4 5 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23 24 25 26 6 7

27 28 8 9 10 11 12 29 30 31 13 14 32 15 16

17 ... 496 497 498 499 500 424 425 ... 492 493

494 495 496 497 498 499 500

You will find some interesting things in the output. Every time you run this program,

you may get different output. However, the nature of the output on your computer can be

compared to the output shown here. On a very fast machine, the output may print 1 to

500 and 1 to 500. However, let’s focus on the discussion assuming that your output is like

the one shown.

The program created two threads. Each thread prints integers from 1 to 500. It starts

the thread t1 first and the thread t2 second. You might expect that the thread t1 will

start first to print integers from 1 to 500, and then the thread t2 will start to print integers

from 1 to 500. However, it is obvious from the output that the program did not run the

way you might have expected.

The start() method of the Thread class returns immediately. That is, when you

call the start() method of a thread, the JVM takes note of your instruction to start the

thread. However, it does not start the thread right away. It has to do some housekeeping

before it can really start a thread. When a thread starts, it is up to the operating system

to decide when and how much CPU time it will give to that thread. Therefore, as soon as

the t1.start() and t2.start() methods return, your program enters the indeterminate

realm. That is, both threads will start running; however, you do not know when they will

start running and in what sequence they will run to execute their code. When you start

multiple threads, you do not even know which thread will start running first. Looking at

the output, you can observe that one of the threads started, and it got enough CPU time

Chapter 5 threads

270

to print integers from 1 to 5 before it was preempted. Another thread got CPU time to

print from 1 to 26 before it was preempted. The second time, the first thread (the thread

that started printing integers first) got the CPU time, and it printed only two integers, 6

and 7, and so on. You can see that both threads got CPU time. However, the amount of

CPU time and the sequence in which they got the CPU time are unpredictable. Each time

you run this program, you may get different output. The only guarantee that you get from

this program is that all integers between 1 and 500 will be printed twice in some order.

 Issues in Using Multiple Threads
Some issues are involved when you use multiple threads in a program. You need

to consider these issues only if multiple threads have to coordinate based on some

conditions or some shared resources.

In the previous sections, the examples involving threads were trivial. They simply

printed some integers on the standard output. Let’s look at a different kind of example

that uses multiple threads, which access and modify the value of a variable. Listing 5-5

shows the code for the BalanceUpdate class.

Listing 5-5. Multiple Threads Modifying the Same Variable

// BalanceUpdate.java

package com.jdojo.threads;

public class BalanceUpdate {

 // Initialize balance to 100

 private static int balance = 100;

 public static void main(String[] args) {

 startBalanceUpdateThread();

 // <- Thread to update the balance value

 startBalanceMonitorThread();

 // <- Thread to monitor the balance value

 }

 public static void updateBalance() {

 // Add 10 to balance and subtract 10 from balance

 balance = balance + 10;

 balance = balance - 10;

 }

Chapter 5 threads

271

 public static void monitorBalance() {

 int b = balance;

 if (b != 100) {

 System.out.println("Balance changed: " + b);

 System.exit(0); // Exit the program

 }

 }

 public static void startBalanceUpdateThread() {

 // Start a new thread that calls the

 // updateBalance() method in an infinite loop

 Thread t = new Thread(() -> {

 while (true) {

 updateBalance();

 }

 });

 t.start();

 }

 public static void startBalanceMonitorThread() {

 // Start a thread that monitors the balance value

 Thread t = new Thread(() -> {

 while (true) {

 monitorBalance();

 }

 });

 t.start();

 }

}

Balance changed: 110

A brief description of each component of this class follows:

• balance: It is a static variable of type int. It is initialized to 100.

• updateBalance(): It is a static method that adds 10 to the static

variable balance and subtracts 10 from it. Upon completion of this

method, the value of the static variable balance is expected to remain

the same as 100.

Chapter 5 threads

272

• startBalanceUpdateThread(): It starts a new thread that keeps

calling the updateBalance() method in an infinite loop. That is, once

you call this method, a thread keeps adding 10 to the balance variable

and subtracting 10 from it.

• startBalanceMonitorThread(): It starts a new thread that monitors

the value of the balance static variable by repeatedly calling the

monitorBalance() method. When the thread detects that the value of

the balance variable is other than 100, it prints the current value and

exits the program.

• main(): This method is used to run the program. It starts a

thread that updates the balance class variable in a loop using the

updateBalance() method. It also starts another thread that monitors

the value of the balance class variable.

The program consists of two threads. One thread calls the updateBalance() method,

which adds 10 to balance and subtracts 10 from it. That is, after this method finishes

executing, the value of the balance variable is expected to remain unchanged. Another

thread monitors the value of the balance variable. When it detects that the value of

the balance variable is anything other than 100, it prints the new value and exits the

program. Specifying zero in System.exit(0) method call indicates that you want to

terminate the program normally.

Intuitively, the balance monitor thread should not print anything because the

balance should always be 100, and the program should never end because both threads

are using infinite loops. However, that is not the case. If you run this program, you will

find, in a short time, the program prints the balance value other than 100 and exits.

Suppose on a particular machine the statement balance = balance + 10; is

implemented as the following machine instructions assuming register-1 as a CPU

register:

register-1 = balance;

register-1 = register-1 + 10;

balance = register-1;

Chapter 5 threads

273

Similarly, assume that the statement balance = balance - 10; is implemented as

the following machine instructions assuming register-2 as another CPU register:

register-2 = balance;

register-2 = register-2 - 10;

balance = register-2;

When the updateBalance() method is invoked, the CPU has to execute six

instructions to add 10 to and subtract 10 from the balance variable. When the balance

update thread is in the middle of executing any of the first three instructions, the balance

monitor thread will read the balance value as 100. When the balance update thread has

finished executing the third instruction, the balance monitor thread will read its value

as 110. The value 110 for the balance variable will be restored to 100 only when the

balance update thread executes the sixth instruction. Note that if the balance monitor

thread reads the value of the balance variable any time after the execution of the third

instruction and before the execution of the sixth instruction by the balance update

thread, it will read a value that is not the same as the value that existed at the start of

the updateBalance() method execution. Table 5-1 shows how the value of the balance

variable will be modified and read by the two threads.

In your program, the monitor thread was able to read the value of the balance

variable as 110 because you allowed two threads to modify and read the value of the

balance variable concurrently. If you allowed only one thread at a time to work with

(modify or read) the balance variable, the balance monitor thread would never read the

value of the balance variable other than 100.

Table 5-1. Instruction Executions for Multiple Threads

Statement (Suppose Balance
Value Is 100 to Start With)

Instructions Being Executed by the
Balance Update Thread

The Value of Balance Read by
the Balance Monitor Thread

balance = balance + 10; register-1 = balance;

register-1 = register-1 + 10;

balance = register-1;

100

Before execution: 100

After execution: 110

balance = balance - 10; register-2 = balance;

register-2 = register-2 - 10;

balance = register-2;

110

110

Before execution: 110

After execution: 100

Chapter 5 threads

274

The situation where multiple threads manipulate and access a shared data

concurrently and the outcome depends on the order in which the execution of threads

take place is known as a race condition. A race condition in a program may lead to

unpredictable results. Listing 5-5 is an example of a race condition where the program

output depends on the sequence of execution of the two threads.

To avoid a race condition in a program, you need to make sure that only one of the

racing threads works with the shared data at a time. To solve this problem, you need to

synchronize the access to the two methods updateBalance() and monitorBalance()

of the BalanceUpdate class. That is, only one thread should access one of these two

methods at a time. In other words, if one thread is executing the updateBalance()

method, another thread that wants to execute the monitorBalance() method must

wait until the thread executing the updateBalance() method is finished. Similarly,

if one thread is executing the monitorBalance() method, another thread that wants

to execute the updateBalance() method must wait until the thread executing the

monitorBalance() method is finished. This will ensure that when a thread is in the

process of updating the balance variable, no other threads will read the inconsistent

value of the balance variable, and if a thread is reading the balance variable, no other

threads will update the balance variable at the same time.

This kind of problem that needs synchronizing the access of multiple threads to a

section of code in a Java program can be solved using the synchronized keyword. To

understand the use of the synchronized keyword, I need to discuss the Java Memory

Model in brief and the lock and wait sets of an object.

 Java Memory Model
All program variables (instance fields, static fields, and array elements) in a program

are allocated memory from the main memory of a computer. Each thread has a working

memory (processor cache or registers). The Java Memory Model (JMM) describes

how, when, and in what order program variables are stored to, and read from, the main

memory. The JMM is described in the Java Language Specification in detail. You may

visualize the JMM as depicted in Figure 5-5.

Chapter 5 threads

275

Figure 5-5 shows two threads sharing the main memory. Let’s assume that you have

a Java program that is running two threads, thread-1 and thread-2, and each thread

is running on different processors. Suppose thread-1 reads the value of an instance

variable of object-1 in its working memory, updates the value, and does not write the

updated value back to the main memory. Let’s run through a few possible scenarios:

• What happens if thread-2 tries to read the value of the same instance

variable of object-1 from the main memory? Would thread-2 read

the old value from the main memory, or would it be able to read the

updated value from the working memory of thread-1?

• Suppose thread-1 is in the middle of writing the updated value to

the main memory, and at the same time, thread-2 is trying to read

the same value from the main memory. Would thread-2 read the

old value or some garbage value from the main memory because the

value is not written back to the main memory completely?

The JMM answers all such questions. In essence, the JMM describes three important

aspects of the execution of instructions in a Java program. They are as follows:

• Atomicity

• Visibility

• Ordering

Figure 5-5. The Java Memory Model

Chapter 5 threads

276

 Atomicity
The JMM describes actions that should be executed atomically. It describes atomicity

rules about read and write actions on instance variables, static variables, and array

elements. It guarantees that read and write on an object’s field of any type, except long

and double, are always atomic. However, if a field of type long or double is declared

volatile (I discuss the volatile keyword in detail later in this chapter), read and write

on that field are also guaranteed to be atomic.

 Visibility
The JMM describes the conditions under which the effects produced by actions in one

thread are visible to other threads. Mainly, it determines when a thread writes a value to

a field, at what point the new value of that field can be visible to other threads. I discuss

more about the visibility aspect of the JMM when I discuss locks, synchronization, and

volatile variables later in this chapter. For completeness, the following are some of the

visibility rules:

• When a thread reads the value of a field for the first time, it will read

either the initial value of the field or some value that was written to

that field by some other thread.

• A write to a volatile variable is always written to the main memory.

• A read on a volatile variable is always read from the main memory.

That is, a volatile variable is never cached in the working memory of a

thread. In effect, any write to a volatile variable is flushed to the main

memory, immediately making the new value visible to other threads.

• When a thread terminates, the working memory of the thread is

written to the main memory immediately. That is, after a thread

terminates, all variables’ values visible only to the terminated thread

are made visible to all threads.

• When a thread enters a synchronized block, that thread reloads the

values of all variables in its working memory. When a thread leaves

a synchronized block, it writes all variables’ values from its working

memory to the main memory.

Chapter 5 threads

277

 Ordering
The JMM describes in what order actions are performed within a thread and among

threads. It guarantees that all actions performed within a thread are ordered. Actions

in different threads are not guaranteed to be performed in any order. You may achieve

some ordering while working with multiple threads by using the synchronization

technique described later in this chapter.

Note each thread in a Java program uses two kinds of memory: working
memory and main memory. a thread cannot access the working memory of
another thread. Main memory is shared among the threads. threads communicate
with each other using the main memory. every thread has its own stack, which is
used to store local variables.

 Object’s Monitor and Thread Synchronization
In a multi-threaded program, a section of code that may have undesirable effects on the

outcome of the program if executed by multiple threads concurrently is called a critical

section. Often, the undesirable effects result from the concurrent use of a resource by

multiple threads in the critical section. It is necessary to control the access to a critical

section in a program so only one thread can execute the critical section at a time.

In a Java program, a critical section can be a block of statements or a method. Java

has no built-in mechanism to identify a critical section in a program. However, Java

has many built-in constructs that allow programmers to declare a critical section and

to control and coordinate access to it. It is the programmer’s responsibility to identify

critical sections in a program and control the access to those critical sections by multiple

threads. Controlling and coordinating the access to a critical section by multiple threads

is known as thread synchronization. Thread synchronization is always a challenging

task when writing a multi-threaded program. In Listing 5-5, the updateBalance()

and monitorBalance() methods are critical sections, and you must synchronize the

threads’ access to these two methods to get a consistent output. Two kinds of thread

synchronizations are built into the Java programming language:

• Mutual exclusion synchronization

• Conditional synchronization

Chapter 5 threads

278

In mutual exclusion synchronization, only one thread is allowed to have access

to a section of code at a point in time. Listing 5-5 is an example of a program where

mutual exclusion synchronization is needed so that only one thread can execute

updateBalance() and monitorBalance() at a point in time. In this case, you can think of

the mutual exclusion as an exclusive access to the balance variable by a thread.

The conditional synchronization allows multiple threads to work together to achieve

a result. For example, consider a multi-threaded program to solve a producer/consumer

problem. There are two threads in a program: one thread produces data (the producer

thread), and another thread consumes the data (the consumer thread). The consumer

thread must wait until the producer thread produces data and makes it available for

consuming. The producer thread must notify the consumer thread when it produces

data so the consumer thread can consume it. In other words, producer and consumer

threads must coordinate/cooperate with each other to accomplish the task. During

conditional synchronization, mutual exclusion synchronization may also be needed.

Suppose the producer thread produces data one byte at a time and puts the data into

a buffer whose capacity is also one byte. The consumer thread consumes data from

the same buffer. In this case, only one of the threads should have access to the buffer

at a time (a mutual exclusion). If the buffer is full, the producer thread must wait for

the consumer thread to empty the buffer; if the buffer is empty, the consumer thread

must wait for the producer thread to produce a byte of data and put it into the buffer (a

conditional synchronization).

The mutual exclusion synchronization is achieved through a lock. A lock supports

two operations: acquire and release. A thread that wants exclusive access to a resource

must acquire the lock associated with that resource. As long as a thread possesses the

lock to a resource, other threads cannot acquire the same lock. Once the thread that

possesses the lock is finished with the resource, it releases the lock so another thread can

acquire it.

The conditional synchronization is achieved through condition variables and three

operations: wait, signal, and broadcast. Condition variables define the conditions on

which threads are synchronized. The wait operation makes a thread wait on a condition

to become true so it can proceed. The signal operation wakes up one of the threads that

was waiting on the condition variables. The broadcast operation wakes up all threads

that were waiting on the condition variables. Note that the difference between the signal

operation and broadcast operation is that the former wakes up only one waiting thread,

whereas the latter wakes up all waiting threads.

Chapter 5 threads

279

A monitor is a programming construct that has a lock, condition variables, and

associated operations on them. Thread synchronization in a Java program is achieved

using monitors. Every object in a Java program has an associated monitor.

A critical section in a Java program is defined with respect to an object’s monitor.

A thread must acquire the object’s monitor before it can start executing the piece of code

declared as a critical section. The synchronized keyword is used to declare a critical

section. There are two ways to use the synchronized keyword:

• To declare a method as a critical section

• To declare a block of statements as a critical section

You can declare a method as a critical section by using the keyword synchronized

before the method’s return type, as shown:

public class CriticalSection {

 public synchronized void someMethod_1() {

 // Method code goes here

 }

 public static synchronized void someMethod_2() {

 // Method code goes here

 }

}

Note You can declare both an instance method and a static method as
synchronized. a constructor cannot be declared as synchronized. a constructor
is called only once by only one thread, which is creating the object. so it makes no
sense to synchronize access to a constructor.

In the case of a synchronized instance method, the entire method is a critical section,

and it is associated with the monitor of the object for which this method is executed.

That is, a thread must acquire the object’s monitor lock before executing the code inside

a synchronized instance method of that object. For example:

// Create an object called cs1

CriticalSection cs1 = new CriticalSection();

// Execute the synchronized instance method. Before this

Chapter 5 threads

280

// method execution starts, the thread that is executing

// this statement must acquire the monitor lock of the cs1

// object

cs1.someMethod_1();

In the case of a synchronized static method, the entire method is a critical section,

and it is associated with the class object that represents that class. That is, a thread must

acquire the class object’s monitor lock before executing the code inside a synchronized

static method of that class. For example:

// Execute the synchronized static method. Before this

// method execution starts, the thread that is executing

// this statement must acquire the monitor lock of the

// CriticalSection.class object

CriticalSection.someMethod_2();

The syntax for declaring a block of code as a critical section is as follows:

synchronized(<objectReference>) {

 // one or more statements of the critical section

}

The <objectReference> is the reference of the object whose monitor lock will be

used to synchronize the access to the critical section. This syntax is used to define part

of a method body as a critical section. This way, a thread needs to acquire the object’s

monitor lock only, while executing a smaller part of the method’s code, which is declared

as a critical section.

Other threads can still execute other parts of the body of the method concurrently.

Additionally, this method of declaring a critical section lets you declare a part or whole of

a constructor as a critical section. Recall that you cannot use the keyword synchronized

in the declaration part of a constructor. However, you can use it inside a constructor’s

body to declare a block of code as synchronized. The following snippet of code illustrates

the use of the keyword synchronized:

public class CriticalSection2 {

 public synchronized void someMethod10() {

 // Method code goes here. Only one thread can

 // execute here at a time.

 }

Chapter 5 threads

281

 public void someMethod11() {

 synchronized(this) {

 // Method code goes here. Only one thread

 // can execute here at a time.

 }

 }

 public void someMethod12() {

 // Some statements go here. Multiple threads can

 // execute here at a time.

 synchronized(this) {

 // Some statements go here. Only one thread

 // can execute here at a time.

 }

 // Some statements go here. Multiple threads can

 // execute here at a time.

 }

 public static synchronized void someMethod20() {

 // Method code goes here. Only one thread can

 // execute here at a time.

 }

 public static void someMethod21() {

 synchronized(CriticalSection2.class) {

 // Method code goes here. Only one thread can

 // execute here at a time.

 }

 }

 public static void someMethod_22() {

 // Some statements go here: section_1. Multiple

 // threads can execute here at a time.

 synchronized(CriticalSection2.class) {

 // Some statements go here: section_2. Only

 // one thread can execute here at a time.

 }

 // Some statements go here: section_3. Multiple

 // threads can execute here at a time

 }

}

Chapter 5 threads

282

The CriticalSection2 class has six methods: three instance methods and three

class methods. The someMethod10() method is synchronized as the synchronized

keyword is used in the method declaration. The someMethod11() method differs from the

someMethod10() method only in the way it uses the synchronized keyword. It puts the

entire method body inside the synchronized keyword as a block, which has practically

the same effect as declaring the method synchronized. The method someMethod12() is

different. It declares only part of the method’s body as a synchronized block. There can

be more than one thread that can execute someMethod12() concurrently. However, only

one of them can be executing inside the synchronized block at one point in time. Other

methods—someMethod20(), someMethod21(), and someMethod22()—are class methods,

and they will behave the same way, except that the class’s object monitor will be used to

achieve the thread synchronization.

The process of acquiring and releasing an object’s monitor lock is handled by the

JVM. The only thing you need to do is declare a method (or a block) as synchronized.

Before entering a synchronized method or block, the thread acquires the monitor

lock of the object. On exiting the synchronized method or block, it releases the object’s

monitor lock. A thread that has acquired an object’s monitor lock can acquire it again as

many times as it wants. However, it must release the object’s monitor lock as many times

as it had acquired it in order for another thread to acquire the same object’s monitor

lock. Let’s consider the following code for a MultiLocks class:

public class MultiLocks {

 public synchronized void method1() {

 // Some statements go here

 this.method2();

 // Some statements go here

 }

 public synchronized void method2() {

 // Some statements go here

 }

 public static synchronized void method3() {

 // Some statements go here

 MultiLocks.method4();

 // Some statements go here

 }

Chapter 5 threads

283

 public static synchronized void method4() {

 // Some statements go here

 }

}

The MultiLocks class has four methods, and all of them are synchronized. Two of

them are instance methods, which are synchronized using the reference of the object

on which the method call will be made. Two of them are class methods, which are

synchronized using the reference of the class object of the MultiLocks class. If a thread

wants to execute method1() or method2(), it must first acquire the monitor lock of the

object on which the method is called. You are calling method2() from inside the method

method1(). Since a thread that is executing method1() must already have acquired the

object’s monitor lock and a call to method2() requires the acquisition of the same lock,

that thread will reacquire the same object’s monitor lock automatically when it executes

method2() from inside method1() without competing with other threads to acquire the

object’s monitor lock.

Therefore, when a thread executes method2() from inside method1(), it will have

acquired the object’s monitor lock twice. When it exits method2(), it will release the

lock once; when it exits method1(), it will release the lock the second time; and then

the object’s monitor lock will be available for other threads for acquisition. The same

argument applies to the call to method4() from inside method3() except that, in this case,

the MultiLocks class object’s monitor lock is involved in the synchronization. Consider

calling method3() from method1(), like so:

public class MultiLocks {

 public synchronized void method1() {

 // Some statements go here

 this.method2();

 MultiLocks.method3();

 // Some statements go here

 }

 // Rest of the code remains the same as shown before

}

Suppose you call method1(), like so:

MultiLocks ml = new MultiLocks();

ml.method1();

Chapter 5 threads

284

When ml.method1() is executed, the executing thread must acquire the monitor

lock of the object ml. However, the executing thread must acquire the monitor lock of

the MultiLocks.class object to execute the MultiLocks.method3() method. Note that

ml and MultiLocks.class are two different objects. The thread that wants to execute the

MultiLocks.method3() method from the method1() method must possess both objects’

monitor locks at the same time.

You can apply the same arguments to work with synchronized blocks. For example,

you can have a snippet of code like this:

synchronized (objectReference) {

 // Trying to synchronize again on the same object is ok

 synchronized(objectReference) {

 // Some statements go here

 }

}

It is time to take a deeper look into the workings of thread synchronization using an

object’s monitor. Figure 5-6 depicts how multiple threads can use an object’s monitor.

I use a doctor-patient analogy while discussing thread synchronization. Suppose a

doctor has a clinic to treat patients. We know that it is very important to allow only one

patient access to the doctor at a time. Otherwise, the doctor may mix up one patient’s

symptoms with another patient’s symptoms; a patient with fever may get a prescription

for a headache! Therefore, we will assume that only one patient can have access to the

doctor at any point in time. It is the same assumption that only one thread (patient) can

have access to an object’s monitor (doctor) at a time.

Any patient who wants an access to the doctor must sign in and wait in the waiting

room. Similarly, each object monitor has an entry set (waiting room for newcomers),

and any thread that wants to acquire the object’s monitor lock must enter the entry set

first. If the patient signs in, they may get access to the doctor immediately, if the doctor

is not treating a patient and there were no patients waiting for their turn in the waiting

room. Similarly, if the entry set of an object’s monitor is empty and there is no other

thread that possesses the object’s monitor lock, the thread entering the entry set acquires

the object’s monitor lock immediately. However, if there were patients waiting in the

waiting room or one being treated by the doctor, the patient who signs in is blocked and

must wait for the doctor to become available again. Similarly, if a thread enters the entry

Chapter 5 threads

285

set, and other threads are already blocked in the entry set, or another thread already

possesses the object’s monitor lock, the thread that just signed in is said to be blocked

and must wait in the entry set.

A thread entering the entry set is shown by the arrow labeled Enter. A thread itself is

shown in Figure 5-6 using a circle. A circle with the text B shows a thread that is blocked

in the entry set. A circle with the text R shows a thread that has acquired the object’s

monitor.

What happens to the threads that are blocked in the entry set? When do they get

a chance to acquire the object’s monitor? You can think about the patients blocked in

the waiting room and getting their turn to be treated by the doctor. Many factors decide

which patient will be treated next. First, the patient being treated must free the doctor

before another patient can have access to the doctor. In Java, the thread that has the

ownership of the object’s monitor must release the object’s monitor before any threads

that are blocked in the entry set can have the ownership of the object’s monitor. A patient

may free the doctor for one of two reasons:

• The patient is done with their treatment and is ready to go home.

This is a straightforward case of a patient freeing the doctor after their

treatment is over.

Figure 5-6. Multiple threads using an object’s monitor

Chapter 5 threads

286

• A patient is in the middle of their treatment. However, they must

wait for some time in order for the doctor to resume their treatment.

Let’s assume that the clinic has a special waiting room (separate

from the one where patients who just signed in wait) for those

patients who are in the middle of their treatment. This case needs

some explanation. Let’s say that the doctor is an eye specialist and

has some patients in their clinic. The patient who is being treated

needs an eye examination for which their pupils must be dilated

first. It takes about 30 minutes after the patient receives eye drops

for full pupil dilation, which is required for the examination. Should

the doctor be waiting for 30 minutes for the patient’s pupils to

dilate? Should this patient release the doctor for 30 minutes and let

other patients have access to the doctor? You would agree that if the

doctor’s time can be used to treat other patients while this patient’s

pupils are being dilated, it is fine for this patient to release the

doctor. What should happen when this patient’s pupils are dilated,

however, and the doctor is still busy treating another patient?

The doctor cannot leave any patient in the middle of treatment.

Therefore, the patient who released the doctor and waited for some

condition to be true (here, the dilation process to complete) must

wait until the doctor is free again. I explain this issue more later in

this chapter, and I try to correlate this situation with threads and the

object’s monitor lock.

I must discuss another issue in the context of the doctor-patient example before I

can compare this with the monitor-threads case. When the doctor is free and only one

patient is waiting to get access to them, there is no problem. The sole patient waiting for

the doctor will get access to them immediately. However, what happens when the doctor

becomes available and there is more than one patient waiting to get access to them?

Which one of the waiting patients should get access to the doctor first? Should it be the

patient who came first (first in, first out or FIFO)? Should it be the patient who came in

last (last in, first out or LIFO)? Should it be the patient who needs the least (or the most)

amount of time for their treatment? Should it be the patient who is in the most serious

condition? The answer depends on the policy followed by the clinic management.

Chapter 5 threads

287

Similar to a patient in the doctor-patient example, a thread can also release an

object’s monitor lock for two reasons:

• At this time, the thread has completed the work for which it had

acquired the object’s monitor lock. The arrow labeled “Release and

Exit” in Figure 5-6 indicates this scenario in the diagram. When a

thread simply exits a synchronized method/block, it releases the

object’s monitor lock it had acquired.

• The thread is in the middle of a task, and it needs to wait for some

condition to be true to complete its remaining task. Let’s consider the

producer/consumer problem. Suppose the producer acquires the

buffer object’s monitor lock and wants to write some data into the

buffer. However, it finds that the buffer is full and the consumer must

consume the data and make the buffer empty before it can write to

it. In this case, the producer must release the buffer object’s monitor

lock and wait until the consumer acquires the lock and empties the

buffer. The same logic applies for the consumer when it acquires

the buffer’s monitor lock and finds that the buffer is empty. At that

time, the consumer must release the lock and wait until the producer

produces some data. This kind of temporarily releasing of the object’s

monitor lock and waiting for some condition to occur is shown in the

diagram labeled as the “Release and Wait” arrow. An object can have

multiple threads that can be in a “Release and Wait” state at the same

time. All threads that have released the object’s monitor lock and are

waiting for some conditions to occur are put in a set called a wait set.

How is a thread placed in the wait set? Note that a thread can be placed in the wait

set of an object monitor only if it once acquired the object’s monitor lock. Once a thread

has acquired the object’s monitor lock, it must call the wait() method of the object in

order to place itself into the wait set. This means a thread must always call the wait()

method from inside a synchronized method or a block. The wait() method is defined

in the java.lang.Object class, and it is declared final; that is, no other class in Java can

override this method. You must consider the following two rules before you call the

wait() method of an object.

Chapter 5 threads

288

 Rule #1
The call to the wait() method must be placed inside a synchronized method (static or

non-static) or a synchronized block.

 Rule #2
The wait() method must be called on the object whose monitor the current

thread has acquired. It throws a java.lang.InterruptedException. The code

that calls this method must handle this exception. The wait() method throws an

IllegalMonitorStateException when the current thread is not the owner of the object’s

monitor. The following snippet of code does not place the wait() method call inside

a try-catch to keep the code simple and readable. For example, inside a synchronized

non-static method, the call to the wait() method may look like the following:

public class WaitMethodCall {

 // Object that is used to synchronize a block

 private Object objectRef = new Object();

 public synchronized void someMethod_1() {

 // The thread running here has already acquired

 // the monitor lock on the object represented by

 // the reference this because it is a

 // synchronized non-static method

 // other statements go here

 while (some condition is true) {

 // It is ok to call the wait() method on this,

 // because the current thread possesses

 // monitor lock on this

 this.wait();

 }

 // other statements go here

 }

 public static synchronized void someMethod_2() {

 // The thread executing here has already acquired

 // the monitor lock on the class object represented

Chapter 5 threads

289

 // by the WaitMethodCall.class reference because it

 // is a synchronized static method

 while (some condition is true) {

 // It is ok to call the wait() method on

 // WaitMethodCall.class because the current

 // thread possesses monitor lock on

 // WaitMethodCall.class object

 WaitMethodCall.class.wait();

 }

 // other statements go here

 }

 public void someMethod_3() {

 // other statements go here

 synchronized(objectRef) {

 // Current thread possesses monitor lock of

 // objectRef

 while (some condition is true) {

 // It is ok to call the wait() method on

 // objectRef because the current thread

 // possesses monitor lock on objectRef

 objectRef.wait();

 }

 }

 // other statements go here

 }

}

Note that objectRef is an instance variable, and it is of the type java.lang.Object.

Its only use is to synchronize threads’ access to a block inside the someMethod_3()

method. Since it is declared an instance variable, all threads calling someMethod_3()

will use its monitor to execute the synchronized block. A common mistake made by

beginners is to declare objectRef as a local variable inside a method and use it in a

synchronized block. The following snippet of code shows such a mistake:

Chapter 5 threads

290

public void wrongSynchronizationMethod {

 // This objectRef is created every time a thread calls

 // this method

 Object objectRef = new Object();

 // It is a blunder to use objectRef for

 // synchronization below

 synchronized(objectRef) {

 // In fact, this block works as if there is no

 // synchronization, because every thread creates a

 // new objectRef and acquires its monitor lock

 // immediately.

 }

}

With this snippet of code in mind, you must use an object reference that is common

to all threads to synchronize access to a block.

Let’s get back to the question of which patient will get access to the doctor when

they become available again. Will it be a patient from the waiting room who is waiting

after signing in or a patient from another waiting room who was waiting in the middle

of their treatment? Before you answer this question, let’s make it clear that there is a

difference between the patients in the waiting room who are waiting after signing in and

the patients waiting for some condition (e.g., dilation to complete) to occur in another

waiting room. After signing in, patients wait on the availability of the doctor, whereas

patients in the middle of their treatments wait on a particular condition to occur. For

patients in the second category, a particular condition must hold before they can seek

access to the doctor, whereas patients in the first category are ready to grab access to

the doctor as soon as possible. Therefore, someone must notify a patient in the second

category that a particular condition has occurred, and it is time for them to seek access

to the doctor again to continue their treatment. Let’s assume that this notification must

come from a patient being currently treated by the doctor. That is, the patient who

currently has access to the doctor notifies the patients waiting in the middle of their

treatments to get ready to gain access to the doctor again. Note that it is just a notification

that some condition has occurred, and it is delivered only to the patients waiting in the

middle of their treatments. Whether the patient in the middle of their treatment will

get access to the doctor right after the current patient is done with the doctor is not

guaranteed. It only guarantees that the condition on which a patient was waiting holds

Chapter 5 threads

291

at the time of notification, and the waiting patient may try to get access to the doctor to

continue their treatment. Let’s correlate this example to the monitor-threads example.

The threads in the entry set are blocked, and they are ready to grab access to the

monitor as soon as possible. The threads in the wait set are waiting for some condition

to occur. A thread that has ownership of the monitor must notify the threads waiting

in the wait set about the fulfillment of the conditions on which they are waiting. In

Java, the notification is made by calling the notify() and notifyAll() methods of

the Object class. Like the wait() method, the notify() and notifyAll() methods

are also declared final. Like the wait() method, these two methods must be called

by a thread using an object whose monitor has already been acquired by the thread.

If a thread calls these methods on an object before acquiring the object’s monitor, an

IllegalMonitorStateException is thrown. The call to the notify() method wakes up

one thread from the wait set, whereas the call to the notifyAll() method wakes up all

threads in the wait set. In the case of the notify() method call, the thread that is woken

up is chosen arbitrarily. Note that when a thread calls the notify() or notifyAll()

method, it still holds the lock on the object’s monitor. Threads in the wait set are

only woken up by the notify() or notifyAll() call. They do not acquire the object’s

monitor lock immediately. When the thread that called the notify() or notifyAll()

method releases the object’s monitor lock by “Release and Exit” or “Release and Wait,”

the woken up threads in the wait set compete with the threads in the entry set to

acquire the object’s monitor again. Therefore, a call to the notify() and notifyAll()

serves only as a wake-up call for threads in the wait set, and it does not guarantee

access to the object’s monitor.

Note there is no way to wake up a specific thread in the wait set. the call to
notify() chooses a thread arbitrarily, whereas the call to notifyAll() wakes up
all threads. Use notifyAll() when you are in doubt about which method to use.

The following snippet of code shows pseudocode for using the notifyAll() method

along with the wait() method. You may observe that the call to the wait() and notify()

methods is made on the same object, because if objectRef.wait() puts a thread in the

wait set of the objectRef object, the objectRef.notify() or objectRef.notifyAll()

method will wake that thread from the wait set of the objectRef object:

Chapter 5 threads

292

public class WaitAndNotifyMethodCall {

 private Object objectRef = new Object();

 public synchronized void someMethod_1() {

 while (some condition is true) {

 this.wait();

 }

 if (some other condition is true) {

 // Notify all waiting threads

 this.notifyAll();

 }

 }

 public static synchronized void someMethod_2() {

 while (some condition is true) {

 WaitAndNotifyMethodCall.class.wait();

 }

 if (some other condition is true) {

 // Notify all waiting threads

 WaitAndNotifyMethodCall.class.notifyAll();

 }

 }

 public void someMethod_3() {

 synchronized(objectRef) {

 while (some condition is true) {

 objectRef.wait();

 }

 if (some other condition is true) {

 // Notify all waiting threads

 objectRef.notifyAll();

 }

 }

 }

}

Chapter 5 threads

293

Once a thread is woken up in the wait set, it has to compete with the threads in the

entry set to acquire the monitor lock of the object. After a thread is woken up in the wait

set and acquires the object’s monitor lock, it has choices: to do some work and release

the lock by invoking the wait() method (release and wait) again or to release the lock by

exiting the synchronized section (release and exit). One important point to remember

about the call to the wait() method is that, typically, a call to the wait() method is placed

inside a loop. Here is the reason why it is necessary to do so. A thread looks for a condition

to hold. It waits by calling the wait() method and placing itself in the wait set if that

condition does not hold. The thread wakes up when it is notified by another thread, which

calls the notify() or notifyAll() method. When the thread that woke up acquires the

lock, the condition that held at the time of notification may not still hold. Therefore, it is

necessary to check for the condition again, when the thread wakes up and acquires the

lock, to make sure the condition it was looking for is true, and it can continue its work. For

example, consider the producer/consumer problem. Suppose there is one producer and

many consumers. Suppose a consumer calls the wait() method as follows:

if (buffer is empty) {

 buffer.wait();

}

buffer.consume();

Suppose the buffer is empty and all consumers are waiting in the wait set. The

producer produces some data, and it calls the buffer.notifyAll() method to wake up

all consumer threads in the wait set. All consumer threads wake up; however, only one

will get a chance to acquire the monitor lock next. The first one acquires the lock and

executes the buffer.consume() method to empty the buffer. When the next consumer

acquires the monitor lock, it will also execute the buffer.consume() statement.

However, the consumer that woke up and acquired the lock before this one had already

emptied the buffer. The logical mistake in the previous snippet of code is that the call to

the wait() method is placed inside an if statement instead of inside a loop. That is, after

a thread wakes up, it is not checking if the buffer contains some data or not, before trying

to consume the data. The corrected snippet of code is the following:

while (buffer is empty) {

 buffer.wait();

}

buffer.consume();

Chapter 5 threads

294

I answer one more question before you can see this big discussion about thread

synchronization in action. The question is, “Which thread gets a chance to acquire

the object’s monitor lock when there are some blocked threads in the entry set and

some woken up threads in the wait set?” Note that the threads that are in the wait set

do not compete for the object’s monitor until they are woken up by the notify() or

notifyAll() call. The answer to this question is that it depends on the scheduler’s

algorithm of the operating system.

Listing 5-6 contains the code for the BalanceUpdateSynchronized class, which is a

modified version of the BalanceUpdate class listed in Listing 5-5. The only difference

between the two classes is the use of the synchronized keyword to declare the

updateBalance() and monitorBalance() methods in the new class, so only one thread

can enter one of the methods at a time. When you run the new class, you will not see any

output because the monitorBalance() method will never see the value of the balance

variable other than 100. You will need to terminate the program manually, for example,

using Ctrl+C on Windows.

Listing 5-6. Synchronized Balance Update

// BalanceUpdateSynchronized.java

package com.jdojo.threads;

public class BalanceUpdateSynchronized {

 // Initialize balance to 100

 private static int balance = 100;

 public static void main(String[] args) {

 startBalanceUpdateThread();

 // <- Thread to update the balance value

 startBalanceMonitorThread();

 // <- Thread to monitor the balance value

 }

 public static synchronized void updateBalance() {

 // Add 10 to balance and subtract 10 from balance

 balance = balance + 10;

 balance = balance - 10;

 }

Chapter 5 threads

295

 public static synchronized void monitorBalance() {

 int b = balance;

 if (b != 100) {

 System.out.println("Balance changed: " + b);

 System.exit(1); // Exit the program

 }

 }

 public static void startBalanceUpdateThread() {

 // Start a new thread that calls the

 // updateBalance() method in an infinite loop

 Thread t = new Thread(() -> {

 while (true) {

 updateBalance();

 }

 });

 t.start();

 }

 public static void startBalanceMonitorThread() {

 // Start a thread that monitors the balance value

 Thread t = new Thread(() -> {

 while (true) {

 monitorBalance();

 }

 });

 t.start();

 }

}

I show examples of using the wait() and notify() methods in the next section,

which discusses the producer/consumer problem. The wait() method in the Object

class is overloaded, and it has three versions:

• wait(): The thread waits in the object’s wait set until another thread

calls the notify() or notifyAll() method on the same object.

Chapter 5 threads

296

• wait(long timeinMillis): The thread waits in the object’s wait set

until another thread calls the notify() or notifyAll() method on

the same object or the specified amount of timeinMillis time has

elapsed.

• wait(long timeinMillis, long timeinNanos): This version lets

you specify time in milliseconds and nanoseconds.

 The Producer/Consumer Synchronization Problem
The producer/consumer is a typical thread synchronization problem that uses the

wait() and notify() methods. I keep it simple.

The problem statement goes like this. There are four classes: Buffer, Producer,

Consumer, and ProducerConsumerTest. An object of the Buffer class will have an integer

data element that will be produced by the producer and consumed by the consumer.

Therefore, in this example, a Buffer object can hold only one integer at a point in time.

Your goal is to synchronize the access to the buffer, so the Producer produces a new data

element only when the Buffer is empty, and the Consumer consumes the buffer’s data

only when it is available. The ProducerConsumerTest class is used to test the program.

Listings 5-7 to 5-10 contain the code for the four classes.

Listing 5-7. A Buffer Class for Producer/Consumer Synchronization

// Buffer.java

package com.jdojo.threads;

public class Buffer {

 private int data;

 private boolean empty;

 public Buffer() {

 this.empty = true;

 }

 public synchronized void produce(int newData) {

 // Wait until the buffer is empty

 while (!this.empty) {

 try {

 this.wait();

Chapter 5 threads

297

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 // Store the new data produced by the producer

 this.data = newData;

 // Set the empty flag to false, so the consumer

 // may consume the data

 this.empty = false;

 // Notify the waiting consumer in the wait set

 this.notify();

 System.out.println("Produced: " + newData);

 }

 public synchronized int consume() {

 // Wait until the buffer gets some data

 while (this.empty) {

 try {

 this.wait();

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 // Set the empty flag to true, so that the

 // producer can store new data

 this.empty = true;

 // Notify the waiting producer in the wait set

 this.notify();

 System.out.println("Consumed: " + data);

 return data;

 }

}

Chapter 5 threads

298

Listing 5-8. A Producer Class for Producer/Consumer Synchronization

// Producer.java

package com.jdojo.threads;

import java.util.Random;

public class Producer extends Thread {

 private final Buffer buffer;

 public Producer(Buffer buffer) {

 this.buffer = buffer;

 }

 @Override

 public void run() {

 Random rand = new Random();

 while (true) {

 // Generate a random integer and store it in

 // the buffer

 int n = rand.nextInt();

 buffer.produce(n);

 }

 }

}

Listing 5-9. A Consumer Class for Producer/Consumer Synchronization

// Consumer.java

package com.jdojo.threads;

public class Consumer extends Thread {

 private final Buffer buffer;

 public Consumer(Buffer buffer) {

 this.buffer = buffer;

 }

 @Override

 public void run() {

 int data;

Chapter 5 threads

299

 while (true) {

 // Consume the data from the buffer. We are

 // not using the consumed data for any other

 // purpose here

 data = buffer.consume();

 }

 }

}

Listing 5-10. A ProducerConsumerTest Class to Test the Producer/Consumer

Synchronization

// ProducerConsumerTest.java

package com.jdojo.threads;

public class ProducerConsumerTest {

 public static void main(String[] args) {

 // Create Buffer, Producer and Consumer objects

 Buffer buffer = new Buffer();

 Producer p = new Producer(buffer);

 Consumer c = new Consumer(buffer);

 // Start the producer and consumer threads

 p.start();

 c.start();

 }

}

Produced: 1872733184

Consumed: 1872733184

...

When you run the ProducerConsumerTest class, you may get different output.

However, your output will look similar in the sense that two lines printed will be always

of the following form, where XXX indicates an integer:

Produced: XXX

Consumed: XXX

Chapter 5 threads

300

In this example, the Buffer class needs some explanation. It has two instance

variables:

• private int data

• private boolean empty

The producer uses the data instance variable to store the new data. The consumer

reads it. The empty instance variable is used as an indicator whether the buffer is empty

or not. In the constructor, it is initialized to true, indicating that the new buffer is empty.

It has two synchronized methods: produce() and consume(). Both methods are

declared synchronized because the goal is to protect the Buffer object to be used by

multiple threads concurrently. If the producer is producing new data by calling the

produce() method, the consumer must wait to consume the data until the producer is

done and vice versa. The producer thread calls the produce() method, passing the newly

generated data to it. However, before the new data is stored in the data instance variable,

the producer makes sure that the buffer is empty. If the buffer is not empty, it calls the

this.wait() method to place itself in the wait set of the buffer object until the consumer

notifies it using the this.notify() method inside the consume() method.

Once the producer thread detects that the buffer is empty, it stores the new data in

the data instance variable, sets the empty flag to false, and calls this.notify() to wake

up the consumer thread in the wait set to consume the data. At the end, it also prints a

message on the console that data has been produced.

The consume() method of the Buffer class is similar to its counterpart, the

produce() method. The only difference is that the consumer thread calls this method,

and it performs logic that’s opposite of the produce() method. For example, it checks if

the buffer is not empty before consuming the data.

The Producer and Consumer classes inherit from the Thread class. They override the

run() method of the Thread class. Both of them accept an object of the Buffer class in

their constructor to use it in their run() method. The Producer class generates a random

integer in its run() method inside an infinite loop and keeps writing it to the buffer. The

Consumer class keeps consuming data from the buffer in an infinite loop.

The ProducerConsumerTest class creates all three objects (a buffer, a producer, and a

consumer) and starts the producer and consumer threads. Since both classes (Producer

and Consumer) use infinite loops inside the run() method, you have to terminate the

program forcibly, such as by pressing Ctrl+C, if you are running this program from a

Windows command prompt.

Chapter 5 threads

301

 Which Thread Is Executing?
The Thread class has some useful static methods; one of them is the currentThread()

method. It returns the reference of the Thread object that calls this method. Consider the

following statement:

Thread t = Thread.currentThread();

The statement will assign the reference of the thread object that executes this statement

to the variable t. Note that a statement in Java can be executed by different threads at

different points in time during the execution of a program. Therefore, t may be assigned

the reference of a different Thread object when the statement is executed at different times

in the same program. Listing 5-11 demonstrates the use of the currentThread() method.

You may get the same text in the output, but in a different order.

Listing 5-11. Using the Thread.currentThread() Method

// CurrentThread.java

package com.jdojo.threads;

public class CurrentThread extends Thread {

 public CurrentThread(String name) {

 super(name);

 }

 @Override

 public void run() {

 Thread t = Thread.currentThread();

 String threadName = t.getName();

 System.out.println("Inside run() method: " +

 threadName);

 }

 public static void main(String[] args) {

 CurrentThread ct1 = new CurrentThread(

 "Thread #1");

 CurrentThread ct2 = new CurrentThread(

 "Thread #2");

 ct1.start();

 ct2.start();

Chapter 5 threads

302

 // Let's see which thread is executing the

 // following statement

 Thread t = Thread.currentThread();

 String threadName = t.getName();

 System.out.println("Inside main() method: " +

 threadName);

 }

}

Inside main() method: main

Inside run() method: Thread #1

Inside run() method: Thread #2

Two different threads call the Thread.currentThread() method inside the run()

method of the CurrentThread class. The method returns the reference of the thread

executing the call. The program simply prints the name of the thread that is executing.

 It is interesting to note that when you called the Thread.currentThread() method inside

the main() method, a thread named main executed the code. When you run a class, the

JVM starts a thread named main, which is responsible for executing the main() method.

 Letting a Thread Sleep
The Thread class contains a static sleep() method, which makes a thread sleep for a

specified duration. It accepts a timeout as an argument. You can specify the timeout in

milliseconds, or milliseconds and nanoseconds. The thread that executes this method

sleeps for the specified amount of time. A sleeping thread is not scheduled by the

operating system scheduler to receive the CPU time. If a thread has the ownership of an

object’s monitor lock before it goes to sleep, it continues to hold those monitor locks.

The sleep() method may throw an InterruptedException, and your code should be

ready to handle it. Listing 5-12 demonstrates the use of the sleep() method.

Listing 5-12. A Sleeping Thread

// LetMeSleep.java

package com.jdojo.threads;

Chapter 5 threads

303

public class LetMeSleep {

 public static void main(String[] args) {

 try {

 System.out.println(

 "I am going to sleep for 5 seconds.");

 Thread.sleep(5000);

 // <- The "main" thread will sleep

 System.out.println("I woke up.");

 } catch (InterruptedException e) {

 System.out.println(

 "Someone interrupted me in my sleep.");

 }

 System.out.println("I am done.");

 }

}

I am going to sleep for 5 seconds.

I woke up.

I am done.

Note the TimeUnit enum in the java.util.concurrent package
represents a measurement of time in various units such as milliseconds, seconds,
minutes, hours, days, etc. It has some convenience methods. One of them is the
sleep() method. the Thread.sleep() method accepts time in milliseconds.
If you want a thread to sleep for five seconds, you need to call this method as
Thread.sleep(5000) by converting the seconds into milliseconds. You can use
the sleep() method of TimeUnit instead to avoid the time duration conversion,
like so:

TimeUnit.SECONDS.sleep(5); // Same as Thread.sleep(5000)

Chapter 5 threads

304

 I Will Join You in Heaven
I can rephrase this section heading as “I will wait until you die.” That’s right. A thread can

wait for another thread to die (or terminate). Suppose there are two threads, t1 and t2. If

the thread t1 executes t2.join(), thread t1 starts waiting until thread t2 is terminated.

In other words, the call t2.join() blocks until t2 terminates. Using the join() method

in a program is useful if one of the threads cannot proceed until another thread has

finished executing.

Listing 5-13 has an example where you want to print a message on the standard

output when the program has finished executing. The message to print is “We are done.”

Listing 5-13. An Incorrect Way of Waiting for a Thread to Terminate

// JoinWrong.java

package com.jdojo.threads;

public class JoinWrong {

 public static void main(String[] args) {

 Thread t1 = new Thread(JoinWrong::print);

 t1.start();

 System.out.println("We are done.");

 }

 public static void print() {

 for (int i = 1; i <= 5; i++) {

 try {

 System.out.println("Counter: " + i);

 Thread.sleep(1000);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 }

}

Chapter 5 threads

305

We are done.

Counter: 1

Counter: 2

Counter: 3

Counter: 4

Counter: 5

In the main() method, a thread is created and started. The thread prints integers

from 1 to 5. It sleeps for one second after printing an integer. In the end, the main()

method prints a message. It seems that this program should print the numbers from 1

to 5, followed by your last message. However, if you look at the output, it is in the reverse

order. What is wrong with this program?

The JVM starts a new thread called main that is responsible for executing the main()

method of the class that you run. In your case, the main() method of the JoinWrong class

is executed by the main thread. This thread will execute the following statements:

Thread t1 = new Thread(JoinWrong::print);

t1.start();

System.out.println("We are done.");

When the t1.start() method call returns, you have one more thread running in

your program (thread t1) in addition to the main thread. The t1 thread is responsible for

printing the integers from 1 to 5, whereas the main thread is responsible for printing the

message “We are done.” Since there are two threads responsible for two different tasks, it

is not guaranteed which task will finish first. What is the solution? You must make your

main thread wait on the thread t1 to terminate. This can be achieved by calling the t1.

join() method inside the main() method.

Listing 5-14 contains the correct version of Listing 5-13 by using the t1.join()

method call before printing the final message. When the main thread executes the

join() method call, it waits until the t1 thread is terminated. The join() method of the

Thread class may throw an InterruptedException, and your code should be ready to

handle it.

Chapter 5 threads

306

Listing 5-14. A Correct Way of Waiting for a Thread to Terminate

// JoinRight.java

package com.jdojo.threads;

public class JoinRight {

 public static void main(String[] args) {

 Thread t1 = new Thread(JoinRight::print);

 t1.start();

 try {

 t1.join();

 // <- "main" thread waits until t1 is

 // terminated

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 System.out.println("We are done.");

 }

 public static void print() {

 for (int i = 1; i <= 5; i++) {

 try {

 System.out.println("Counter: " + i);

 Thread.sleep(1000);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 }

}

Counter: 1

Counter: 2

Counter: 3

Counter: 4

Counter: 5

We are done.

Chapter 5 threads

307

The join() method of the Thread class is overloaded. Its other two versions accept

a timeout argument. If you use the join() method with a timeout, the caller thread will

wait until the thread on which it is called is terminated or the timeout has elapsed. If you

replace the t1.join() statement in the JoinRight class with t1.join(1000), you will

find that the output is not in the same order because the main thread will wait only for a

second for the t1 thread to terminate before it prints the final message.

Can a thread join multiple threads? The answer is yes. A thread can join multiple

threads like so:

t1.join(); // Join t1

t2.join(); // Join t2

t3.join(); // Join t3

You should call the join() method of a thread after it has been started. If you call the

join() method on a thread that has not been started, it returns immediately. Similarly,

if you invoke the join() method on a thread that is already terminated, it returns

immediately.

Can a thread join itself? The answer is yes and no. Technically, it is allowed for a

thread to join itself. However, a thread should not join itself in most circumstances. In

such a case, a thread waits to terminate itself. In other words, the thread waits forever.

// "Bad" call (not if you know what you are doing) to

// join. It waits forever until another thread interrupts

// it.

Thread.currentThread().join();

If you write this statement, make sure that your program interrupts the waiting

thread using some other threads. In such a case, the waiting thread will return from the

join() method call by throwing an InterruptedException.

 Be Considerate to Others and Yield
A thread may voluntarily give up the CPU by calling the static yield() method of the

Thread class. The call to the yield() method is a hint to the scheduler that it may

pause the running thread and give the CPU to other threads. A thread may want to call

this method only if it executes in a long loop without waiting or blocking. If a thread

frequently waits or blocks, the yield() method call is not very useful because this thread

Chapter 5 threads

308

does not monopolize the CPU and other threads will get the CPU time when this thread

is blocked or waiting. It is advisable not to depend on the yield() method because it is

just a hint to the scheduler. It is not guaranteed to give a consistent result across different

platforms. A thread that calls the yield() method continues to hold the monitor locks.

Note that there is no guarantee as to when the thread that yields will get the CPU time

again. You may use it like so:

// The run() method of a thread class

public void run() {

 while(true) {

 // do some processing here...

 Thread.yield(); // Let's yield to other threads

 }

}

 Lifecycle of a Thread
A thread is always in one of the following six states:

• New

• Runnable

• Blocked

• Waiting

• Timed-waiting

• Terminated

All these states of a thread are JVM states. They do not represent the states assigned

to a thread by an operating system.

When a thread is created and its start() method is not yet called, it is in the new

state:

Thread t = new SomeThreadClass();

// <- t is in the new state

A thread that is ready to run or running is in the runnable state. In other words, a

thread that is eligible for getting the CPU time is in a runnable state.

Chapter 5 threads

309

Note the JVM combines two Os-level thread states: ready-to-run and running
into a state called the runnable state. a thread in the ready-to-run Os state means
it is waiting for its turn to get the CpU time. a thread in the running Os state means
it is running on the CpU.

A thread is said to be in a blocked state if it was trying to enter (or reenter) a

synchronized method or block, but the monitor is being used by another thread.

A thread in the entry set that is waiting to acquire a monitor lock is in the blocked state.

A thread in the wait set that is waiting to reacquire the monitor lock after it has been

woken up is also in a blocked state.

A thread may place itself in a waiting state by calling one of the methods listed

in Table 5-2. A thread may place itself in a timed-waiting state by calling one of the

methods listed in Table 5-3. I discuss the parkNanos() and parkUntil() methods later in

this chapter.

Table 5-2. Methods That Place a Thread in Waiting State

Method Description

wait() this is the wait() method of the Object class, which a thread may call if it wants

to wait for a specific condition to hold. recall that a thread must own the monitor’s lock

of an object to call the wait() method on that object. another thread must call the

notify() or notifyAll() method on the same object in order for the waiting thread

to transition to the runnable state.

join() this is the join() method of the Thread class. a thread that calls this method wants

to wait until the thread on which this method is called terminates.

park() this is the park() method of the LockSupport class, which is in the java.util.

concurrent.locks package. a thread that calls this method may wait until a permit

is available by calling the unpark() method on a thread. I cover the LockSupport

class later in this chapter.

Chapter 5 threads

310

A thread that has completed its execution is said to be in the terminated state.

A thread is terminated when it exits its run() method or its stop() method is called.

A terminated thread cannot transition to any other state. You can use the isAlive()

method of a thread after it has been started to know if it is alive or terminated.

You can use the getState() method of the Thread class to get the state of a thread

at any time. This method returns one of the constants of the Thread.State enum type.

Listings 5-15 and 5-16 demonstrate the transition of a thread from one state to another. The

output of Listing 5-16 shows some of the states the thread transitions to during its lifecycle.

Listing 5-15. A ThreadState Class

// ThreadState.java

package com.jdojo.threads;

public class ThreadState extends Thread {

 private boolean keepRunning = true;

 private boolean wait = false;

 private final Object syncObject;

 public ThreadState(Object syncObject) {

 this.syncObject = syncObject;

 }

Table 5-3. Methods That Place a Thread in a Timed-Waiting State

Method Description

sleep() this method is in the Thread class.

wait (long millis)

wait(long millis, int nanos)

these methods are in the Object class.

join(long millis)

join(long millis, int nanos)

these methods are in the Thread class.

parkNanos (long nanos)

parkNanos (Object blocker,

long nanos)

these methods are in the LockSupport class, which is

in the java.util.concurrent.locks package.

parkUntil (long deadline)

parkUntil (Object blocker,

long nanos)

these methods are in the LockSupport class, which

is in the java.util.concurrent.locks package.

Chapter 5 threads

311

 @Override

 public void run() {

 while (keepRunning) {

 synchronized (syncObject) {

 if (wait) {

 try {

 syncObject.wait();

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 }

 }

 }

 public void setKeepRunning(boolean keepRunning) {

 this.keepRunning = keepRunning;

 }

 public void setWait(boolean wait) {

 this.wait = wait;

 }

}

Listing 5-16. A ThreadStateTest Class to Demonstrate the States of a Thread

// ThreadStateTest.java

package com.jdojo.threads;

public class ThreadStateTest {

 public static void main(String[] args) {

 Object syncObject = new Object();

 ThreadState ts = new ThreadState(syncObject);

 System.out.println(

 "Before start()-ts.isAlive(): " +

 ts.isAlive());

 System.out.println("#1: " + ts.getState());

 // Start the thread

 ts.start();

Chapter 5 threads

312

 System.out.println(

 "After start()-ts.isAlive(): " +

 ts.isAlive());

 System.out.println("#2: " + ts.getState());

 ts.setWait(true);

 // Make the current thread sleep, so the thread

 // starts waiting

 sleepNow(100);

 synchronized (syncObject) {

 System.out.println("#3: " + ts.getState());

 ts.setWait(false);

 // Wake up the waiting thread

 syncObject.notifyAll();

 }

 // Make the current thread sleep, so ts thread

 // wakes up

 sleepNow(2000);

 System.out.println("#4: " + ts.getState());

 ts.setKeepRunning(false);

 // Make the current thread sleep, so the ts thread

 // will wake up

 sleepNow(2000);

 System.out.println("#5: " + ts.getState());

 System.out.println("At the end. ts.isAlive(): " +

 ts.isAlive());

 }

 public static void sleepNow(long millis) {

 try {

 Thread.currentThread().sleep(millis);

 } catch (InterruptedException e) {

 }

 }

}

Chapter 5 threads

313

Before start()-ts.isAlive(): false

#1: NEW

After start()-ts.isAlive(): true

#2: RUNNABLE

#3: WAITING

#4: RUNNABLE

#5: TERMINATED

At the end. ts.isAlive(): false

 Priority of a Thread
A thread has a priority. The priority is indicated by an integer between 1 and 10. A thread

with the priority of 1 is said to have the lowest priority. A thread with the priority of 10 is

said to have the highest priority. There are three constants defined in the Thread class to

represent three different thread priorities, as listed in Table 5-4.

The priority of a thread is a hint to the scheduler that indicates the importance (or

the urgency) with which it should schedule the thread. The higher priority of a thread

indicates that the thread is of higher importance, and the scheduler should give priority

in giving the CPU time to that thread. Note that the priority of a thread is just a hint to

the scheduler; it is up to the scheduler to respect that hint. It is not recommended to

depend on the thread priority for the correctness of a program. For example, if there are

ten maximum priority threads and one minimum priority thread, that does not mean

that the scheduler will schedule the minimum priority thread after all ten maximum

priority threads have been scheduled and finished. This scheduling scheme will result

in a thread starvation, where a lower priority thread will have to wait indefinitely or for a

long time to get CPU time.

Table 5-4. Thread’s Priority Constants

Defined in the Thread Class

Thread Priority Constant Integer Value

MIN_PRIORITY 1

NORM_PRIORITY 5

MAX_PRIORITY 10

Chapter 5 threads

314

The setPriority() method of the Thread class sets a new priority for the thread.

The getPriority() method returns the current priority for a thread. When a thread

is created, its priority is set by default to the priority of the thread that creates the new

thread.

Listing 5-17 demonstrates how to set and get the priority of a thread. It also

demonstrates how a new thread gets the priority of the thread that creates it. In the

example, threads t1 and t2 get the priority of the main thread at the time they are

created.

Listing 5-17. Setting and Getting a Thread’s Priority

// ThreadPriority.java

package com.jdojo.threads;

public class ThreadPriority {

 public static void main(String[] args) {

 // Get the reference of the current thread

 Thread t = Thread.currentThread();

 System.out.println("main Thread Priority: " +

 t.getPriority());

 // Thread t1 gets the same priority as the main

 // thread at this point

 Thread t1 = new Thread();

 System.out.println("Thread(t1) Priority: " +

 t1.getPriority());

 t.setPriority(Thread.MAX_PRIORITY);

 System.out.println("main Thread Priority: " +

 t.getPriority());

 // Thread t2 gets the same priority as main

 // thread at this point, which is

 // Thread.MAX_PRIORITY (10)

 Thread t2 = new Thread();

 System.out.println("Thread(t2) Priority: " +

 t2.getPriority());

 // Change thread t2 priority to minimum

 t2.setPriority(Thread.MIN_PRIORITY);

Chapter 5 threads

315

 System.out.println("Thread(t2) Priority: " +

 t2.getPriority());

 }

}

main Thread Priority: 5

Thread(t1) Priority: 5

main Thread Priority: 10

Thread(t2) Priority: 10

Thread(t2) Priority: 1

 Is It a Demon or a Daemon?
A thread can be a daemon thread or a user thread. The word “daemon” is pronounced

the same as “demon.” However, the word daemon in a thread’s context has nothing to do

with a demon!

A daemon thread is a kind of a service provider thread, whereas a user thread (or

non-daemon thread) is a thread that uses the services of daemon threads. A service

provider should not exist if there is no service consumer. The JVM applies this logic.

When the JVM detects that all threads in an application are only daemon threads, it exits

the application. Note that if there are only daemon threads in an application, the JVM

does not wait for those daemon threads to finish before exiting the application.

You can make a thread a daemon thread by using the setDaemon() method by

passing true as an argument. You must call the setDaemon() method of a thread before

you start the thread. Otherwise, an IllegalThreadStateException is thrown. You can

use the isDaemon() method to check if a thread is a daemon thread.

Note the JVM starts a garbage collector thread to collect all unused object’s
memory. the garbage collector thread is a daemon thread.

When a thread is created, its daemon property is the same as the thread that creates

it. In other words, a new thread inherits the daemon property of its creator thread.

Listing 5-18 creates a thread and sets the thread as a daemon thread. The thread

prints an integer and sleeps for some time in an infinite loop. At the end of the main()

method, the program prints a message to the standard output stating that it is exiting

Chapter 5 threads

316

the main() method. Since thread t is a daemon thread, the JVM will terminate the

application when the main() method is finished executing. You can see this in the

output. The application prints only one integer from the thread before it exits. You may

get different output when you run this program.

Listing 5-18. A Daemon Thread Example

// DaemonThread.java

package com.jdojo.threads;

public class DaemonThread {

 public static void main(String[] args) {

 Thread t = new Thread(DaemonThread::print);

 t.setDaemon(true);

 t.start();

 System.out.println("Exiting main method");

 }

 public static void print() {

 int counter = 1;

 while (true) {

 try {

 System.out.println("Counter: " +

 counter++);

 Thread.sleep(2000); // sleep for 2 seconds

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 }

}

Exiting main method

Counter: 1

Listing 5-19 is the same program as Listing 5-18, except that it sets the thread as a

non-daemon thread. Since this program has a non-daemon (or a user) thread, the JVM

will keep running the application, even after the main() method finishes. You have to

stop this application manually because the thread runs in an infinite loop.

Chapter 5 threads

317

Listing 5-19. A Non-daemon Thread Example

// NonDaemonThread.java

package com.jdojo.threads;

public class NonDaemonThread {

 public static void main(String[] args) {

 Thread t = new Thread(NonDaemonThread::print);

 // t is already a non-daemon thread because the

 // "main" thread that runs the main() method is a

 // non-daemon thread. You can verify it by using

 // t.isDaemon() method. It will return false.

 // Still we will use the following statement to

 // make it clear that we want t to be a non-daemon

 // thread.

 t.setDaemon(false);

 t.start();

 System.out.println("Exiting main method");

 }

 public static void print() {

 int counter = 1;

 while (true) {

 try {

 System.out.println("Counter: " +

 counter++);

 Thread.sleep(2000); // sleep for 2 seconds

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 }

}

Exiting main method

Counter: 1

Counter: 2

...

Chapter 5 threads

318

 Am I Interrupted?
You can interrupt a thread that is alive by using the interrupt() method. This method

invocation on a thread is just an indication to the thread that some other part of the

program is trying to draw its attention. It is up to the thread how it responds to the

interruption. Java implements the interruption mechanism using an interrupted status

flag for every thread.

A thread could be in one of the two states when it is interrupted: running or blocked.

If a thread is interrupted when it is running, its interrupted status is set by the JVM. The

running thread can check its interrupted status by calling the Thread.interrupted()

static method, which returns true if the current thread was interrupted. The call to

the Thread.interrupted() method clears the interrupted status of a thread. That is,

if you call this method again on the same thread and if the first call returned true, the

subsequent calls will return false, unless the thread is interrupted after the first call but

before the subsequent calls.

Listing 5-20 shows the code that interrupts the main thread and prints the

interrupted status of the thread. Note that the second call to the Thread.interrupted()

method returns false, as indicated in the output #3: false. This example also shows

that a thread can interrupt itself. The main thread that is responsible for running the

main() method is interrupting itself in this example.

Listing 5-20. A Simple Example of Interrupting a Thread

// SimpleInterrupt.java

package com.jdojo.threads;

public class SimpleInterrupt {

 public static void main(String[] args) {

 System.out.println("#1: " + Thread.interrupted());

 // Now interrupt the main thread

 Thread.currentThread().interrupt();

 // Check if it has been interrupted

 System.out.println("#2: " + Thread.interrupted());

 // Check again if it has been interrupted

 System.out.println("#3: " + Thread.interrupted());

 }

}

Chapter 5 threads

319

#1: false

#2: true

#3: false

Let’s look at another example of the same kind. This time, one thread will interrupt

another thread. Listing 5-21 starts a thread that increments a counter until the thread is

interrupted. At the end, the thread prints the value of the counter. The main() method

starts the thread; it sleeps for one second to let the counter thread do some work; it

interrupts the thread. Since the thread checks whether it has been interrupted or not

before continuing in the while loop, it exits the loop once it is interrupted. You may get

different output when you run this program.

Listing 5-21. A Thread Interrupting Another Thread

// SimpleInterruptAnotherThread.java

package com.jdojo.threads;

public class SimpleInterruptAnotherThread {

 public static void main(String[] args) {

 Thread t = new Thread(

 SimpleInterruptAnotherThread::run);

 t.start();

 try {

 // Let the main thread sleep for 1 second

 Thread.currentThread().sleep(1000);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 // Now interrupt the thread

 t.interrupt();

 }

 public static void run() {

 int counter = 0;

 while (!Thread.interrupted()) {

 counter++;

 }

Chapter 5 threads

320

 System.out.println("Counter: " + counter);

 }

}

Counter: 1313385352

The Thread class has a non-static isInterrupted() method that can be used to test

if a thread has been interrupted. When you call this method, unlike the interrupted()

method, the interrupted status of the thread is not cleared. Listing 5-22 demonstrates the

difference between these methods.

Listing 5-22. Difference Between the interrupted() and isInterrupted()

Methods

// SimpleIsInterrupted.java

package com.jdojo.threads;

public class SimpleIsInterrupted {

 public static void main(String[] args) {

 // Check if the main thread is interrupted

 System.out.println("#1: " +

 Thread.interrupted());

 // Now interrupt the main thread

 Thread mainThread = Thread.currentThread();

 mainThread.interrupt();

 // Check if it has been interrupted

 System.out.println("#2: " +

 mainThread.isInterrupted());

 // Check if it has been interrupted

 System.out.println("#3: " +

 mainThread.isInterrupted());

 // Now check if it has been interrupted using the

 // static method which will clear the interrupted

 // status

 System.out.println("#4: " +

 Thread.interrupted());

Chapter 5 threads

321

 // Now, isInterrupted() should return false,

 // because previous statement Thread.interrupted()

 // has cleared the flag

 System.out.println("#5: " +

 mainThread.isInterrupted());

 }

}

#1: false

#2: true

#3: true

#4: true

#5: false

You may interrupt a blocked thread. Recall that a thread may block itself by

executing one of the sleep(), wait(), and join() methods. If a thread blocked on these

three methods is interrupted, an InterruptedException is thrown, and the interrupted

status of the thread is cleared because the thread has already received an exception to

signal the interruption.

Listing 5-23 starts a thread that sleeps for one second and prints a message until

it is interrupted. The main thread sleeps for five seconds, so the sleeping thread gets

a chance to sleep and print messages a few times. When the main thread wakes up, it

interrupts the sleeping thread. You may get different output when you run the program.

Listing 5-23. Interrupting a Blocked Thread

// BlockedInterrupted.java

package com.jdojo.threads;

public class BlockedInterrupted {

 public static void main(String[] args) {

 Thread t = new Thread(BlockedInterrupted::run);

 t.start();

 // main thread sleeps for 5 seconds

 try {

 Thread.sleep(5000);

Chapter 5 threads

322

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 // Interrupt the sleeping thread

 t.interrupt();

 }

 public static void run() {

 int counter = 1;

 while (true) {

 try {

 Thread.sleep(1000);

 System.out.println("Counter: " +

 counter++);

 } catch (InterruptedException e) {

 System.out.println("I got interrupted!");

 // Terminate the thread by returning

 return;

 }

 }

 }

}

Counter: 1

Counter: 2

Counter: 3

Counter: 4

I got interrupted!

If a thread is blocked on an I/O, interrupting a thread does not really do anything if

you are using the old I/O API. However, if you are using the new I/O API, your thread will

receive a ClosedByInterruptException, which is declared in the java.nio.channels

package.

Chapter 5 threads

323

 Threads Work in a Group
A thread is always a member of a thread group. By default, the thread group of a thread is

the group of its creator thread. The JVM creates a thread group called main and a thread

in this group called main, which is responsible for running the main() method of the

main class at startup. A thread group in a Java program is represented by an object of

the ThreadGroup class. The getThreadGroup() method of the Thread class returns the

reference to the ThreadGroup of a thread. Listing 5-24 demonstrates that, by default, a

new thread is a member of the thread group of its creator thread.

Listing 5-24. Determining the Default Thread Group of a Thread

// DefaultThreadGroup.java

package com.jdojo.threads;

public class DefaultThreadGroup {

 public static void main(String[] args) {

 // Get the current thread, which is called "main"

 Thread t1 = Thread.currentThread();

 // Get the thread group of the main thread

 ThreadGroup tg1 = t1.getThreadGroup();

 System.out.println(

 "Current thread's name: " +

 t1.getName());

 System.out.println(

 "Current thread's group name: " +

 tg1.getName());

 // Creates a new thread. Its thread group is the

 // same that of the main thread.

 Thread t2 = new Thread("my new thread");

 ThreadGroup tg2 = t2.getThreadGroup();

 System.out.println("New thread's name: " +

 t2.getName());

 System.out.println("New thread's group name: " +

 tg2.getName());

 }

}

Chapter 5 threads

324

Current thread's name: main

Current thread's group name: main

New thread's name: my new thread

New thread's group name: main

You can also create a thread group and place a new thread in that thread group. To

place a new thread in your thread group, you must use one of the constructors of the

Thread class that accepts a ThreadGroup object as an argument. The following snippet of

code places a new thread in a particular thread group:

// Create a new ThreadGroup

ThreadGroup myGroup = new ThreadGroup("My Thread Group");

// Make the new thread a member of the myGroup thread group

Thread t = new Thread(myGroup, "myThreadName");

Thread groups are arranged in a tree-like structure. A thread group can contain

another thread group. The getParent() method of the ThreadGroup class returns the

parent thread group of a thread group. The parent of the top-level thread group is null.

The activeCount() method of the ThreadGroup class returns an estimate of the

number of active threads in the group. The enumerate(Thread[] list) method of the

ThreadGroup class can be used to get the threads in a thread group.

A thread group in a Java program can be used to implement a group-based policy

that applies to all threads in a thread group. For example, by calling the interrupt()

method of a thread group, you can interrupt all threads in the thread group and its

subgroups.

 Volatile Variables
I discussed the use of the synchronized keyword in previous sections. Two things

happen when a thread executes a synchronized method/block:

• The thread must obtain the monitor lock of the object on which the

method/block is synchronized.

• The thread’s working copy of the shared variables is updated with

the values of those variables in the main memory just after the

thread gets the lock. The values of the shared variables in the main

memory are updated with the thread’s working copy value just before

Chapter 5 threads

325

the thread releases the lock. That is, at the start and at the end of a

synchronized method/block, the values of the shared variables in the

thread’s working memory and the main memory are synchronized.

What can you do to achieve only the second point without using a synchronized

method/block? That is, how can you keep the values of variables in a thread’s working

memory in sync with their values in the main memory? The answer is the keyword

volatile. You can declare a variable volatile like so:

volatile boolean flag = true;

For every read request for a volatile variable, a thread reads the value from the main

memory. For every write request for a volatile variable, a thread writes the value to the

main memory. In other words, a thread does not cache the value of a volatile variable in

its working memory. Note that using a volatile variable is useful only in a multi-threaded

environment for variables that are shared among threads. It is faster and cheaper than

using a synchronized block.

You can declare only a class member variable (instance or static fields) as volatile.

You cannot declare a local variable as volatile because a local variable is always private

to the thread, which is never shared with other threads. You cannot declare a volatile

variable final because the volatile keyword is used with a variable that changes.

You can use a volatile variable to stop a thread by using the variable’s value as a

flag. If the flag is set, the thread can keep running. If another thread clears the flag, the

thread should stop. Since two threads share the flag, you need to declare it volatile, so

that on every read the thread will get its updated value from the main memory.

Listing 5-25 demonstrates the use of a volatile variable. If the keepRunning variable

is not declared volatile, the JVM is free to run the while loop in the run() method

forever, as the initial value of keepRunning is set to true and a thread can cache this

value in its working memory. Since the keepRunning variable is declared volatile,

the JVM will read its value from the main memory every time it is used. When another

thread updates the keepRunning variable’s value to false using the stopThread()

method, the next iteration of the while loop will read its updated value and stop the loop.

Your program may work the same way as in Listing 5-25 even if you do not declare the

keepRunning as volatile. However, according to the JVM specification, this behavior

is not guaranteed. If the JVM specification is implemented correctly, using a volatile

variable in this way ensures the correct behavior for your program.

Chapter 5 threads

326

Listing 5-25. Using a volatile Variable in a Multi-threaded Program

// VolatileVariable.java

package com.jdojo.threads;

public class VolatileVariable extends Thread {

 private volatile boolean keepRunning = true;

 @Override

 public void run() {

 System.out.println("Thread started...");

 // keepRunning is volatile. So, for every read,

 // the thread reads its latest value from the main

 // memory

 while (keepRunning) {

 try {

 System.out.println("Going to sleep ...");

 Thread.sleep(1000);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 System.out.println("Thread stopped...");

 }

 public void stopThread() {

 this.keepRunning = false;

 }

 public static void main(String[] args) {

 // Create the thread

 VolatileVariable vv = new VolatileVariable();

 // Start the thread

 vv.start();

 // Let the main thread sleep for 3 seconds

 try {

 Thread.sleep(3000);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

Chapter 5 threads

327

 // Stop the thread

 System.out.println(

 "Going to set the stop flag to true...");

 vv.stopThread();

 }

}

Thread started...

Going to sleep ...

Going to sleep ...

Going to sleep ...

Going to set the stop flag to true...

Thread stopped...

Note a volatile variable of long and double types is treated atomically for
read and write purposes. recall that a non-volatile variable of long and double
types is treated non-atomically. that is, if two threads are writing two different
values, say v1 and v2, to a non-volatile long or double variable, respectively,
your program may see a value for that variable that is neither v1 nor v2. however,
if that long or double variable is declared volatile, your program sees
the value v1 or v2 at a given point in time. You cannot make array elements
volatile.

 Stopping, Suspending, and Resuming Threads
The stop(), suspend(), and resume() methods in the Thread class let you stop a thread,

suspend a thread, and resume a suspended thread, respectively. These methods have

been deprecated because their use is error-prone.

You can stop a thread by calling the stop() method. When the stop() method of

a thread is called, the JVM throws a ThreadDeath error. Because of throwing this error,

all monitors locked by the thread being stopped are unlocked. Monitor locks are used

to protect some important shared resources (typically Java objects). If any of the shared

resources protected by the monitors were in inconsistent states when the thread was

Chapter 5 threads

328

stopped, other threads may see that inconsistent state of those resources. This will result

in incorrect behavior of the program. This is the reason why the stop() method has been

deprecated; you are advised not to use it in your program.

How can you stop a thread without using its stop() method? You can stop a thread

by setting a flag that the running thread will check regularly. If the flag is set, the thread

should stop executing. This way of stopping a thread was illustrated in Listing 5-25 in the

previous section.

You can suspend a thread by calling its suspend() method. To resume a suspended

thread, you need to call its resume() method. However, the suspend() method has been

deprecated because it is error-prone, and it may cause a deadlock. Let’s assume that

the suspended thread holds the monitor lock of an object. The thread that will resume

the suspended thread is trying to obtain the monitor lock of the same object. This will

result in a deadlock. The suspended thread will remain suspended because there is no

thread that will resume it, and the thread that will resume it will remain blocked because

the monitor lock it is trying to obtain is held by the suspended thread. This is why the

suspend() method has been deprecated. The resume() method is also deprecated

because it is called in conjunction with the suspend() method. You can use a similar

technique to simulate the suspend() and resume() methods of the Thread class in your

program as you did to simulate the stop() method.

Listing 5-26 demonstrates how to simulate the stop(), suspend(), and resume()

methods of the Thread class in your thread.

Listing 5-26. Stopping, Suspending, and Resuming a Thread

// StopSuspendResume.java

package com.jdojo.threads;

public class StopSuspendResume extends Thread {

 private volatile boolean keepRunning = true;

 private boolean suspended = false;

 public synchronized void stopThread() {

 this.keepRunning = false;

 // Notify the thread in case it is suspended when

 // this method is called, so it will wake up and

 // stop.

 this.notify();

 }

Chapter 5 threads

329

 public synchronized void suspendThread() {

 this.suspended = true;

 }

 public synchronized void resumeThread() {

 this.suspended = false;

 this.notify();

 }

 @Override

 public void run() {

 System.out.println("Thread started...");

 while (keepRunning) {

 try {

 System.out.println("Going to sleep...");

 Thread.sleep(1000);

 // Check for a suspended condition must be

 // made inside a synchronized block to call

 // the wait() method

 synchronized (this) {

 while (suspended) {

 System.out.println("Suspended...");

 this.wait();

 System.out.println("Resumed...");

 }

 }

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 System.out.println("Thread stopped...");

 }

 public static void main(String[] args) {

 StopSuspendResume t = new StopSuspendResume();

 // Start the thread

 t.start();

 // Sleep for 2 seconds

Chapter 5 threads

330

 try {

 Thread.sleep(2000);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 // Suspend the thread

 t.suspendThread();

 // Sleep for 2 seconds

 try {

 Thread.sleep(2000);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 // Resume the thread

 t.resumeThread();

 try {

 Thread.sleep(2000);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 // Stop the thread

 t.stopThread();

 }

}

Thread started...

Going to sleep...

Going to sleep...

Going to sleep...

Suspended...

Resumed...

Going to sleep...

Going to sleep...

Going to sleep...

Thread stopped...

Chapter 5 threads

331

Note that you have two instance variables in the StopSuspendResume class. The

suspended instance variable is not declared volatile. It is not necessary to declare

it volatile because it is always accessed inside a synchronized method/block. The

following code in the run() method is used to implement the suspend and resume

features:

synchronized (this) {

 while (suspended) {

 System.out.println("Suspended...");

 this.wait();

 System.out.println("Resumed...");

 }

}

When the suspended instance variable is set to true, the thread calls the wait()

method on itself to wait. Note the use of the synchronized block. It uses this as the

object to synchronize. This is the reason that you can call this.wait() inside the

synchronized block because you have obtained the lock on this object before entering

the synchronized block. Once the this.wait() method is called, the thread releases

the lock on this object and keeps waiting until another thread calls the resumeThread()

method to notify it. I also use the this.notify() method call inside the stopThread()

method because if the thread is suspended when the stopThread() method is called, the

thread will not stop; rather, it will remain suspended.

The thread in this example sleeps for only one second in its run() method. Suppose

your thread sleeps for an extended period. In such a case, calling the stopThread()

method will not stop the thread immediately because the thread will stop only when it

wakes up and checks its keepRunning instance variable value in its next loop iteration.

In such cases, you can use the interrupt() method inside the stopThread() method to

interrupt sleeping/waiting threads, and when an InterruptedException is thrown, you

need to handle it appropriately.

If you use the technique used in Listing 5-26 to stop a thread, you may run into

problems in some situations. The while loop inside the run() method depends on the

keepRunning instance variable, which is set in the stopThread() method. The example

Chapter 5 threads

332

in this listing is simple. It is just meant to demonstrate the concept of how to stop,

suspend, and resume a thread. Suppose inside the run() method, your code waits for

other resources like calling a method someBlockingMethodCall() as shown:

while (keepRunning) {

 try {

 someBlockingMethodCall();

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

}

If you call the stopThread() method while this thread is blocked on the method call

someBlockingMethodCall(), this thread will not stop until it returns from the blocked

method call or it is interrupted. To overcome this problem, you need to change the

strategy for how to stop a thread. It is a good idea to rely on the interruption technique of

a thread to stop it prematurely. The stopThread() method can be changed as follows:

public void stopThread() {

 // interrupt this thread

 this.interrupt();

}

In addition, the while loop inside the run() method should be modified to check

if the thread is interrupted. You need to modify the exception handling code to exit

the loop if this thread is interrupted while it is blocked. The following snippet of code

illustrates this logic:

public void run() {

 while (Thread.currentThread().isInterrupted())) {

 try {

 // Do the processing

 } catch (InterruptedException e) {

 // Stop the thread by exiting the loop

 break;

 }

 }

}

Chapter 5 threads

333

 Spin-Wait Hints
Sometimes, one thread may have to wait for another thread to update a volatile

variable. When the volatile variable is updated with a certain value, the first thread

may proceed. If the wait could be longer, it is suggested that the first thread relinquish

the CPU by sleeping or waiting and it be notified when it can resume work. However,

making a thread sleep or wait has latency. For a short time wait and to reduce latency,

it is common for a thread to wait in a loop by checking for a certain condition to be

true. Consider the code in a class that uses a loop to wait for a volatile variable named

dataReady to be true: volatile boolean dataReady;

...

@Override

public void run() {

 // Wait in a loop until data is ready

 while (!dataReady) {

 // No code

 }

 processData();

}

private void processData() {

 // Data processing logic goes here

}

The while loop in this code is called a spin-loop, busy-spin, busy-wait, or spin wait.

The while loop keeps looping until the value of the dataReady variable becomes true.

While spin-wait is discouraged because of its unnecessary use of resources, it is

commonly needed. In this example, the advantage is that the thread will start processing

data as soon as the dataReady variable becomes true. However, you pay for performance

and power consumption because the thread is actively looping.

Certain processors can be hinted that a thread is in a spin-wait and, if possible, can

optimize the resource usage. For example, x86 processors support a PAUSE instruction to

indicate a spin-wait. The instruction delays the execution of the next instruction for the

thread for a finite small amount of time, thus improving resource usage.

Chapter 5 threads

334

The static onSpinWait() method of the Thread class can be used to give a hint to the

processor that the caller thread is momentarily not able to proceed, so resource usage

can be optimized. A possible implementation of this method may be no-op when the

underlying platform does not support such hints.

Listing 5-27 contains sample code. Note that your program’s semantics do not

change by using a spin-wait hint. It may perform better if the underlying hardware

supports the hint.

Listing 5-27. Sample Code for Using a Spin-Wait Hint to the Processor Using the

static Thread.onSpinWait() Method

// SpinWaitTest.java

package com.jdojo.misc;

public class SpinWaitTest implements Runnable {

 private volatile boolean dataReady = false;

 @Override

 public void run() {

 // Wait while data is ready

 while (!dataReady) {

 // use a spin-wait hint

 Thread.onSpinWait();

 }

 processData();

 }

 private void processData() {

 // Data processing logic goes here

 }

 public void setDataReady(boolean dataReady) {

 this.dataReady = dataReady;

 }

}

Chapter 5 threads

335

 Handling an Uncaught Exception in a Thread
You can handle an uncaught exception thrown in your thread. It is handled using

an object of a class that implements the nested Thread.UncaughtExceptionHandler

interface. The interface contains one method: void uncaughtException(Thread t,

Throwable e).

Here, t is the thread object reference that throws the exception, and e is the

uncaught exception thrown. Listing 5-28 contains the code for a class whose object can

be used as an uncaught exception handler for a thread.

Listing 5-28. An Uncaught Exception Handler for a Thread

// CatchAllThreadExceptionHandler.java

package com.jdojo.threads;

public class CatchAllThreadExceptionHandler

 implements Thread.UncaughtExceptionHandler {

 @Override

 public void uncaughtException(Thread t,

 Throwable e) {

 System.out.println(

 "Caught Exception from Thread: " +

 t.getName());

 }

}

The class simply prints a message and the thread name stating that an uncaught

exception from a thread has been handled. Typically, you may want to do some cleanup

work or log the exception to a file or a database in the uncaughtException() method

of the handler. The Thread class contains two methods to set an uncaught exception

handler for a thread: one is a static setDefaultUncaughtExceptionHandler() method,

and another is a non-static setUncaughtExceptionHandler() method. Use the static

method to set a default handler for all threads in your application. Use the non-static

method to set a handler for a particular thread. When a thread has an uncaught

exception, the following steps are taken:

• If the thread sets an uncaught exception handler using

the setUncaughtExceptionHandler() method, the

uncaughtException() method of that handler is invoked.

Chapter 5 threads

336

• If a thread does not have an uncaught exception handler set, its

thread group’s uncaughtException() method is called. If the thread

group has a parent thread group, it calls the uncaughtException()

method of its parent. Otherwise, it checks if there is a default

uncaught exception handler set. If it finds a default uncaught

exception handler, it calls the uncaughtException() method on it.

If it does not find a default uncaught exception handler, a message

is printed on the standard error stream. It does not do anything

if it does not find a default uncaught exception handler and a

ThreadDeath exception is thrown.

Listing 5-29 demonstrates how to set a handler for uncaught exceptions in a thread.

It creates an object of class CatchAllThreadExceptionHandler and sets it as a handler

for the uncaught exceptions for the main thread. The main thread throws an unchecked

exception in its last statement. The output shows that the handler handles the exception

thrown in the main() method.

Listing 5-29. Setting an Uncaught Exception Handler for a Thread

// UncaughtExceptionInThread.java

package com.jdojo.threads;

public class UncaughtExceptionInThread {

 public static void main(String[] args) {

 CatchAllThreadExceptionHandler handler =

 new CatchAllThreadExceptionHandler();

 // Set an uncaught exception handler for the

 // main thread

 Thread.currentThread().

 setUncaughtExceptionHandler(handler);

 // Throw an exception

 throw new RuntimeException();

 }

}

Caught Exception from Thread: main

Chapter 5 threads

337

 Thread Concurrency Packages
Although Java had support for multi-threading built into the language from the very

beginning, it was not easy to develop a multi-threaded Java program that used an

advanced level of concurrency constructs. For example, the synchronized keyword,

used to lock an object’s monitor, has existed since the beginning. However, a thread that

tries to lock an object’s monitor simply blocks if the lock is not available. In this case,

developers had no choice but to back out. Wouldn’t it be nice to have a construct that is

based on a “try and lock” philosophy rather than a “lock or block” philosophy? In this

strategy, if an object’s monitor lock is not available, the call to lock the monitor returns

immediately.

The java.util.concurrent package and its two subpackages, java.util.

concurrent.atomic and java.util.concurrent.locks, include very useful

concurrency constructs. You use them only when you are developing an advanced level

multi-threaded program. I don’t cover all concurrency constructs in this section because

describing everything available in these packages could take more than a hundred

pages. I briefly cover some of the most useful concurrency constructs available in these

packages. You can broadly categorize these concurrency features into four categories:

• Atomic variables

• Locks

• Synchronizers

• Concurrent collections

 Atomic Variables
Typically, when you need to share an updateable variable among threads,

synchronization is used. Synchronization among multiple threads used to be achieved

using the synchronized keyword, and it was based on an object’s monitor. If a thread

is not able to acquire an object’s monitor, that thread is suspended and it has to be

resumed later. This way of synchronization (suspending and resuming) uses a great deal

of system resources. The problem is not in locking and unlocking the mechanism of the

monitor lock; rather, it is in suspending and resuming threads. If there is no contention

for acquiring a lock, using the synchronized keyword to synchronize threads does not

hurt much.

Chapter 5 threads

338

An atomic variable uses a lock-free synchronization of a single variable. Note that if

your program needs to synchronize on more than one shared variable, you still need to

use the old synchronization methods. By lock-free synchronization, I mean that multiple

threads can access a shared variable safely using no object monitor lock. JDK takes

advantage of a hardware instruction called “compare and swap” (CAS) to implement the

lock-free synchronization for one variable.

 CAS
Compare And Swap is an internal instruction to maintain lock-free synchronization for

single atomic variables.

CAS is based on three operands: a memory location M, an expected old value V, and

a new value N. If the memory location M contains a value V, CAS updates it atomically

to N; otherwise, it does not do anything. CAS always returns the current value at the

location M that existed before the CAS operation started. The pseudocode for CAS is as

follows:

CAS(M, V, N) {

 currentValueAtM = get the value at Location M;

 if (currentValueAtM == V) {

 set value at M to N;

 }

 return currentValueAtM;

}}

The CAS instruction is lock-free. It is directly supported in most modern computer

hardware. However, CAS is not always guaranteed to succeed in a multi-threaded

environment. CAS takes an optimistic approach by assuming that there are no other

threads updating the value at location M; if location M contains value V, update it to N; if

the value at location M is not V, do not do anything. Therefore, if multiple threads attempt

to update the value at location M to different values simultaneously, only one thread will

succeed, and the others will fail.

The synchronization using locks takes a pessimistic approach by assuming that

other threads may be working with location M and acquires a lock before it starts working

at location M, so that other threads will not access location M while one is working with

it. In case CAS fails, the caller thread may try the action again or give up; the caller

Chapter 5 threads

339

thread using CAS never blocks. However, in the case of synchronization using a lock,

the caller thread may have to be suspended and resumed if it could not acquire the

lock. Using synchronization, you also run the risk of a deadlock, a livelock, and other

synchronization-related failures.

Atomic variable classes are named like AtomicXxx and can be used to execute

multiple instructions on a single variable atomically without using any lock. Here, Xxx

is replaced with different words to indicate different classes that are used for different

purposes; for example, the AtomicInteger class is used to represent an int variable,

which is supposed to be manipulated atomically. Twelve classes in the Java class library

support read-modify-write operations on a single variable atomically. They are in the

java.util.concurrent.atomic package. They can be categorized in four categories,

which are discussed in the following sections.

 Scalar Atomic Variable Classes
The AtomicInteger, AtomicLong, and AtomicBoolean classes support operations on

primitive data types int, long, and boolean, respectively.

If you need to work with other primitive data types, use the AtomicInteger class.

You can use it directly to work with the byte and short data types. Use it to work with the

float data type by using the Float.floatToIntBits() method to convert a float value

to the int data type and the AtomicInteger.floatValue() method to convert an int

value to the float data type.

You can use the AtomicLong class to work with the double data type by using the

Double.doubleToLongBits() method to convert a double value to the long data type

and the AtomicLong.doubleValue() method to convert the long value to the double

data type.

The AtomicReference<V> class is used to work with a reference data type when a

reference variable needs to be updated atomically.

 Atomic Array Classes
There are three classes—called AtomicIntegerArray, AtomicLongArray, and

AtomicReferenceArray <E>—that represent an array of int, long, and reference types

whose elements can be updated atomically.

Chapter 5 threads

340

 Atomic Field Updater Classes
There are three classes—called AtomicLongFieldUpdater, AtomicIntegerFieldUpdater,

and AtomicReferenceFieldUpdater<T,V>—that can be used to update a volatile field of

a class atomically using reflection. These classes have no constructors. To get a reference

to an object of these classes, you need to use their factory method called newUpdater().

 Atomic Compound Variable Classes
CAS works by asking “Is the value at location M still V?” If the answer is yes, it updates

the value at location M from V to N. In a typical scenario, one thread may read the value

from location M as V. By the time this thread tries to update the value from V to N, another

thread has changed the value at location M from V to P, and back from P to V. Therefore,

the call CAS(M, V, N) will succeed because the value at location M is still V, even though

it was changed (v to P and back to V) twice after the thread read the value V last time. In

some cases, it is fine. The thread that wants to update the value at location M does not

care if the old value V that it read last time was updated before its own update as long

as the value at location M is V at the time it is updating the value to N. However, in some

cases, it is not acceptable. If a thread reads the value V from a location M, this thread

wants to make sure that after it read the value, no other thread has updated the value. In

such cases, CAS needs to ask “Has the value at location M changed since I last read it

as V?” To achieve this functionality, you need to store a pair of values: the value you want

to work with and its version number. Each update will also update the version number.

The AtomicMarkableReference and AtomicStampedReference classes fall into this

category of atomic compound variable class.

Let’s look at a simple example that uses an atomic class. If you want to write a class to

generate a counter using built-in Java synchronization, it will resemble the code shown

in Listing 5-30.

Listing 5-30. A Counter Class That Uses Synchronization

// SynchronizedCounter.java

package com.jdojo.threads;

public class SynchronizedCounter {

 private long value;

Chapter 5 threads

341

 public synchronized long next() {

 return ++value;

 }

}

You would rewrite the SynchronizedCounter class using the AtomicLong class, as

shown in Listing 5-31.

Listing 5-31. A Counter Class Using an Atomic Variable

// AtomicCounter.java

package com.jdojo.threads;

import java.util.concurrent.atomic.AtomicLong;

public class AtomicCounter {

 private final AtomicLong value = new AtomicLong(0L);

 public long next() {

 return value.incrementAndGet();

 }

}

Note that the AtomicCounter class does not use any explicit synchronization. It takes

advantage of CAS hardware instruction. The call to the incrementAndGet() method

inside the next() method of the AtomicCounter class is performed atomically for you.

You can also use an object of the AtomicLong class as a thread-safe counter object

like so:

AtomicLong aCounter = new AtomicLong(0L);

Then you can use the aCounter.incrementAndGet() method to generate a new

counter. The incrementAndGet() method of the AtomicLong class increments its

current value and returns the new value. You also have its counterpart method called

getAndIncrement(), which increments its value and returns its previous value.

The AtomicXxx variable classes have a compareAndSet() method. It is a variant of

compare and swap (CAS). The only difference is that the compareAndSet() method

returns a boolean. It returns true if it succeeds; otherwise, it returns false. The

following is the pseudocode representation of the compareAndSet() method:

Chapter 5 threads

342

compareAndSet(M, V, N) {

 // Call CAS (see CAS pseudocode) if CAS succeeded,

 // return true; otherwise, return false.

 return (CAS(M, V, N) == V)

}

 Explicit Locks
The explicit locking mechanism can be used to coordinate access to shared resources

in a multi-threaded environment without using the synchronized keyword. The Lock

interface, which is declared in the java.util.concurrent.locks package, defines

the explicit locking operations. The ReentrantLock class, in the same package, is the

concrete implementation of the Lock interface. The Lock interface contains the following

methods:

• void lock();

• Condition newCondition();

• void lockInterruptibly() throws InterruptedException;

• boolean tryLock();

• boolean tryLock(long time, TimeUnit unit) throws

InterruptedException;

• void unlock();

The use of the lock() method to acquire a lock behaves the same as the use of the

synchronized keyword. The use of the synchronized keyword requires that a thread

should acquire and release an object’s monitor lock in the same block of code. When you

use the synchronized keyword to acquire an object’s monitor lock, the lock is released

by the JVM when the program leaves the block in which the lock was acquired. This

feature makes working with intrinsic locks very simple and less error-prone. However,

in the case of the Lock interface, the restriction of acquiring and releasing the lock in

the same block of code does not apply. This makes it a little flexible to use; however, it is

more error-prone because the responsibility of acquiring as well as releasing the lock is

Chapter 5 threads

343

on the developer. It is not difficult to acquire the lock and forget to release it, resulting in

hard-to-find bugs. You must make sure that you release the lock by calling the unlock()

method of the Lock interface after you are done with the lock. You can use the lock()

and unlock() methods in their simplest form, shown in Listing 5-32.

Listing 5-32. Using an Explicit Lock in Its Simplest Form

// SimpleExplicitLock.java

package com.jdojo.threads;

import java.util.concurrent.locks.Lock;

import java.util.concurrent.locks.ReentrantLock;

public class SimpleExplicitLock {

 // Instantiate the lock object

 private final Lock myLock = new ReentrantLock();

 public void updateResource() {

 // Acquire the lock

 myLock.lock();

 try {

 // Logic for updating/reading the shared

 // resource goes here

 } finally {

 // Release the lock

 myLock.unlock();

 }

 }

}

Note the use of a try-finally block to release the lock in the updateResource()

method. The use of a try-finally block is necessary in this case because no matter how

you finish returning from this method after you call myLock.lock(), you would like to

release the lock. This can be assured only if you place the call to the unlock() method

inside the finally block.

Chapter 5 threads

344

You may wonder why you would use the code structure listed in Listing 5-32 when

you could have used the synchronized keyword to achieve the same effect, like so:

public void updateResource() {

 // Acquire the lock and the lock will be released

 // automatically by the JVM when your code exits the

 // block

 synchronized (this) {

 // Logic for updating/reading the shared

 // resource goes here

 }

}

You are correct in thinking that using the synchronized keyword would have been

better in this case. It is much simpler and less error-prone to use the synchronized

keyword in such situations. The power of using the new Lock interface becomes

evident when you come across situations where using the synchronized keyword is

not possible or very cumbersome. For example, if you want to acquire the lock in the

updateResource() method and release it in some other methods, you cannot use the

synchronized keyword. If you need to acquire two locks to work with a shared resource

and if only one lock is available, you want to do something else rather than waiting for

the other lock to become available. If you use the synchronized keyword or the lock()

method of the Lock interface to acquire a lock, the call blocks if the lock is not available

immediately, which gives you no option to back off once you asked for the lock. Such

blocked threads cannot be interrupted either. The two methods of the Lock interface,

tryLock() and lockInterruptibly(), give you the ability to try to acquire a lock (rather

than acquire a lock or block). The thread that has acquired the lock can be interrupted if

it is blocked. The syntax to acquire and release a lock using the Lock interface should use

a try-finally or a try-catch-finally block structure, to avoid unintended bugs, by placing

the unlock() call in a finally block.

You will solve a classic synchronization problem known as the dining philosophers

problem using the explicit lock constructs. The problem goes like this: five philosophers

spend all of their time either thinking or eating. They sit around a circular table with

five chairs and five forks, as shown in Figure 5-7. There are only five forks, and all five

philosophers need to pick the two nearest (one from their left and one from their right)

forks to eat.

Chapter 5 threads

345

Once a philosopher finishes eating, he puts down both forks and starts thinking.

A philosopher cannot pick up a fork if his neighbor is using it. What happens if each

of the five philosophers picks up one fork from his right and waits for his left fork to be

released by his neighbor? This would be a deadlock situation, and no philosopher would

be able to eat. This deadlock condition can be avoided easily by using the tryLock()

method of the Lock interface. This method returns immediately, and it never blocks. If

the lock is available, it gets the lock and returns true. If the lock is not available, it returns

false. The class in Listing 5-33 can be used to model the philosophers assuming that an

object of the ReentrantLock class represents a fork.

Figure 5-7. Five philosophers at a dining table

Chapter 5 threads

346

Listing 5-33. A Philosopher Class to Represent a Philosopher

// Philosopher.java

package com.jdojo.threads;

import java.util.concurrent.locks.Lock;

public class Philosopher {

 private final Lock leftFork;

 private final Lock rightFork;

 private final String name; // Philosopher's name

 public Philosopher(Lock leftFork, Lock rightFork,

 String name) {

 this.leftFork = leftFork;

 this.rightFork = rightFork;

 this.name = name;

 }

 public void think() {

 System.out.println(name + " is thinking...");

 }

 public void eat() {

 // Try to get the left fork

 if (leftFork.tryLock()) {

 try {

 // try to get the right fork

 if (rightFork.tryLock()) {

 try {

 // Got both forks. Eat now

 System.out.println(name +

 " is eating...");

 } finally {

 // release the right fork

 rightFork.unlock();

 }

 }

Chapter 5 threads

347

 } finally {

 // release the left fork

 leftFork.unlock();

 }

 }

 }

}

To create philosophers, you would use code like:

Lock fork1 = new ReentrantLock();

Lock fork2 = new ReentrantLock();

...

Lock fork5 = new ReentrantLock();

Philosopher p1 = new Philosopher(fork1, fork2, "John");

Philosopher p2 = new Philosopher(fork2, fork3, "Wallace");

...

Philosopher p5 = new Philosopher(fork5, fork1, "Charles");

It is left for the reader as an exercise to complete the code and run all five

philosophers in five different threads to simulate the dining philosophers problem. You

can also think about how to use the synchronized keyword to solve the same problem.

Read the code in the eat() method carefully. It tries to get the left and right forks one at

a time. If you can get only one fork and not the other, you put down the one you got so

others can have it. The code in the eat() method has only the logic to get the forks. In a

real program, if you cannot get both forks, you would like to wait for some time and try

again to pick up the forks. You will have to write that logic.

You can specify the fairness of a lock when you instantiate the ReentrantLock class.

The fairness indicates the way of allocating the lock to a thread when multiple threads

are waiting to get the lock. In a fair lock, threads acquire the lock in the order they

request it. In a non-fair lock, jumping ahead by a thread is allowed. For example, in a

non-fair lock, if some threads are waiting for a lock and another thread, which requests

the same lock later, gets the lock before the waiting threads, if the lock becomes available

at the time the second thread requested it. This may sound a little strange because it is

not fair to the waiting threads to leave them waiting and granting the lock to the thread

Chapter 5 threads

348

that requested it later. However, it has a performance gain. The overhead of suspending

and resuming a thread is reduced using non-fair locking. The tryLock() method of the

ReentrantLock class always uses a non-fair lock. You can create fair and non-fair locks

as follows:

Lock nonFairLock1 = new ReentrantLock();

 // <- A non-fair lock (Default is non-fair)

Lock nonFairLock2 = new ReentrantLock(false);

 // <- A non-fair lock

Lock fairLock2 = new ReentrantLock(true);

 // <- A fair lock

A ReentrantLock provides a mutually exclusive locking mechanism. That is, only

one thread can own the ReentrantLock at a time. If you have a data structure guarded by

a ReentrantLock, a writer thread as well as a reader thread must acquire the lock one at

a time to modify or to read the data. This restriction of ReentrantLock, to be owned by

only one thread at a time, may downgrade the performance if your data structure is read

frequently and modified infrequently. In such situations, you may want multiple reader

threads to have concurrent access to the data structure. However, if the data structure

is being modified, only one writer thread should have the access to the data structure.

The read-write lock allows you to implement this kind of locking mechanism using an

instance of the ReadWriteLock interface. It has two methods: one to get the reader lock

and another to get the writer lock, as shown:

public interface ReadWriteLock {

 Lock readLock();

 Lock writeLock();

}

A ReentrantReadWriteLock class is an implementation of the ReadWriteLock

interface. Only one thread can hold the write lock of ReentrantReadWriteLock,

whereas multiple threads can hold its read lock. Listing 5-34 demonstrates the usage of

ReentrantReadWriteLock. Note that in the getValue() method, you use read lock so

multiple threads can read the data concurrently. The setValue() method uses a write

lock so only one thread can modify the data at a given time.

Chapter 5 threads

349

Note the ReadWriteLock allows you to have a read and a write version of the
same lock. Multiple threads can own a read lock as long as another thread does
not own the write lock. however, only one thread can own the write lock at a time.

Listing 5-34. Using a ReentrantReadWriteLock to Guard a Read-Mostly Data

Structure

// ReadMostlyData.java

package com.jdojo.threads;

import java.util.concurrent.locks.Lock;

import java.util.concurrent.locks.ReentrantReadWriteLock;

public class ReadMostlyData {

 private int value;

 private final ReentrantReadWriteLock rwLock =

 new ReentrantReadWriteLock();

 private final Lock rLock = rwLock.readLock();

 private final Lock wLock = rwLock.writeLock();

 public ReadMostlyData(int value) {

 this.value = value;

 }

 public int getValue() {

 // Use the read lock, so multiple threads may

 // read concurrently

 rLock.lock();

 try {

 return this.value;

 } finally {

 rLock.unlock();

 }

 }

 public void setValue(int value) {

 // Use the write lock, so only one thread can

 // write at a time

 wLock.lock();

Chapter 5 threads

350

 try {

 this.value = value;

 } finally {

 wLock.unlock();

 }

 }

}

 Synchronizers
I discussed how to coordinate access to a critical section by multiple threads using a

mutually exclusive mechanism of intrinsic locks and explicit locks. Some classes known

as synchronizers are used to coordinate the control flow of a set of threads in a situation

that needs other than mutually exclusive access to a critical section. A synchronizer

object is used with a set of threads. It maintains a state, and depending on its state, it lets

a thread pass through or forces it to wait. This section discusses the following types of

synchronizers:

• Semaphores

• Barriers

• Phasers

• Latches

• Exchangers

Other classes can also act as synchronizers, such as a blocking queue.

 Semaphores
A semaphore is used to control the number of threads that can access a resource.

A synchronized block also controls the access to a resource that is the critical section.

So, how is a semaphore different from a synchronized block? A synchronized block

allows only one thread to access a resource (a critical section), whereas a semaphore

allows N threads (N can be any positive number) to access a resource.

Chapter 5 threads

351

If N is set to one, a semaphore can act as a synchronized block to allow a thread to

have mutually exclusive access to a resource. A semaphore maintains a number of virtual

permits. To access a resource, a thread acquires a permit, and it releases the permit

when it is done with the resource. If a permit is not available, the requesting thread is

blocked until a permit becomes available. You can think of a semaphore’s permit as a

token.

Let’s discuss a daily life example of using a semaphore. Suppose there is a restaurant

with three dining tables. Only three people can eat in that restaurant at a time. When

a person arrives at the restaurant, they must take a token for a table. When they are

done eating, they will return the token. Each token represents a dining table. If a person

arrives at the restaurant when all three tables are in use, they must wait until a table

becomes available. If a table is not available immediately, you have a choice to wait until

one becomes available or to go to another restaurant. Let’s simulate this example using a

semaphore. You will have a semaphore with three permits. Each permit will represent a

dining table. The Semaphore class in the java.util.concurrent package represents the

semaphore synchronizer. You create a semaphore using one of its constructors:

final int MAX_PERMITS = 3;

Semaphore s = new Semaphores(MAX_PERMITS);

Another constructor for the Semaphore class takes fairness as the second argument:

final int MAX_PERMITS = 3;

Semaphore s = new Semaphores(MAX_PERMITS, true);

 // <- A fair semaphore

The fairness of a semaphore has the same meaning as that for locks. If you create

a fair semaphore, in the situation of multiple threads asking for permits, the semaphore

will guarantee first in, first out (FIFO). That is, the thread that asked for the permit first

will get the permit first.

To acquire a permit, use the acquire() method. It returns immediately if a permit is

available. It blocks if a permit is not available. The thread can be interrupted while it is

waiting for the permit to become available. Other methods of the Semaphore class let you

acquire one or multiple permits in one go.

To release a permit, use the release() method.

Listing 5-35 contains the code for a Restaurant class. It takes the number of tables

available in a restaurant as an argument in its constructor and creates a semaphore,

Chapter 5 threads

352

which has the number of permits that is equal to the number of tables. A customer uses

its getTable() and returnTable() methods to get and return a table, respectively.

Inside the getTable() method, you acquire a permit. If a customer calls the getTable()

method and no table is available, they must wait until one becomes available. This class

depends on a RestaurantCustomer class that is declared in Listing 5-36.

Listing 5-35. A Restaurant Class, Which Uses a Semaphore to Control Access to

Tables

// Restaurant.java

package com.jdojo.threads;

import java.util.concurrent.Semaphore;

public class Restaurant {

 private final Semaphore tables;

 public Restaurant(int tablesCount) {

 // Create a semaphore using number of tables we

 // have

 this.tables = new Semaphore(tablesCount);

 }

 public void getTable(int customerID) {

 try {

 System.out.println("Customer #" + customerID

 + " is trying to get a table.");

 // Acquire a permit for a table

 tables.acquire();

 System.out.println("Customer #" + customerID

 + " got a table.");

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 public void returnTable(int customerID) {

 System.out.println("Customer #" + customerID +

 " returned a table.");

 tables.release();

 }

Chapter 5 threads

353

 public static void main(String[] args) {

 // Create a restaurant with two dining tables

 Restaurant restaurant = new Restaurant(2);

 // Create five customers

 for (int i = 1; i <= 5; i++) {

 RestaurantCustomer c = new RestaurantCustomer(

 restaurant, i);

 c.start();

 }

 }

}

Customer #4 is trying to get a table.

Customer #5 is trying to get a table.

Customer #1 is trying to get a table.

Customer #3 is trying to get a table.

Listing 5-36 contains the code for a RestaurantCustomer class whose object

represents a customer in a restaurant. The run() method of the customer thread gets a

table from the restaurant, eats for a random amount of time, and returns the table to the

restaurant. When you run the Restaurant class, you may get similar but not the same

output. You may observe that you have created a restaurant with only two tables, and five

customers are trying to eat. At any given time, only two customers are eating, as shown

by the output.

Listing 5-36. A RestaurantCustomer Class to Represent a Customer in a

Restaurant

// RestaurantCustomer.java

package com.jdojo.threads;

import java.util.Random;

class RestaurantCustomer extends Thread {

 private final Restaurant r;

 private final int customerID;

 private static final Random random = new Random();

Chapter 5 threads

354

 public RestaurantCustomer(Restaurant r,

 int customerID) {

 this.r = r;

 this.customerID = customerID;

 }

 @Override

 public void run() {

 r.getTable(this.customerID); // Get a table

 try {

 // Eat for some time. Use number between 1

 // and 30 seconds

 int eatingTime = random.nextInt(30) + 1;

 System.out.println("Customer #"

 + this.customerID

 + " will eat for "

 + eatingTime + " seconds.");

 Thread.sleep(eatingTime * 1000);

 System.out.println("Customer #"

 + this.customerID

 + " is done eating.");

 } catch (InterruptedException e) {

 e.printStackTrace();

 } finally {

 r.returnTable(this.customerID);

 }

 }

}

A semaphore is not limited to the number of permits it was created with. Each

release() method adds one permit to it. Therefore, if you call the release() method

more than the times you call its acquire() method, you end up having more permits

than the one you started with. A permit is not acquired on a per-thread basis. One

thread can acquire a permit from a semaphore, and another can return it. This leaves

the burden of the correct usage of acquiring and releasing a permit on the developers.

A semaphore has other methods to acquire a permit, which will let you back off instead

of forcing you to wait if a permit is not immediately available, such as the tryAcquire()

and acquireUninterruptibly() methods.

Chapter 5 threads

355

 Barriers
A barrier is used to make a group of threads meet at a barrier point. A thread from a

group arriving at the barrier waits until all threads in that group arrive. Once the last

thread from the group arrives at the barrier, all threads in the group are released. You can

use a barrier when you have a task that can be divided into subtasks; each subtask can

be performed in a separate thread, and each thread must meet at a common point to

combine their results. Figures 5-8 through 5-11 depict how a barrier synchronizer lets a

group of three threads meet at the barrier point and lets them proceed.

Figure 5-8. Three threads arriving at a barrier

Figure 5-9. One thread waits for the two other threads to arrive at the barrier

Chapter 5 threads

356

The CyclicBarrier class in the java.util.concurrent package provides the

implementation of the barrier synchronizer. It is called a cyclic barrier because once all

waiting threads at the barrier point are released, you can reuse the barrier by calling its

reset() method. It also allows you to associate a barrier action to it, which is a Runnable

task (an object of a class that implements the Runnable interface). The barrier action

Figure 5-10. All three threads arrive at the barrier and are then released at once

Figure 5-11. All three threads pass the barrier successfully

Chapter 5 threads

357

is executed just before all threads are released. You can think of the barrier action as a

“party time” when all threads meet at the barrier, but before they are released. Here are

the steps you need to perform to use a barrier in a program:

 1. Create an object of the CyclicBarrier class with the number of

threads in the group:

CyclicBarrier barrier = new CyclicBarrier(5);

// <- 5 threads

If you want to execute a barrier action when all threads

meet at the barrier, you can use another constructor of the

CyclicBarrier class:

// Assuming a BarrierAction class implements the

// Runnable interface

Runnable barrierAction = new BarrierAction();

CyclicBarrier barrier = new CyclicBarrier(

 5, barrierAction);

 2. When a thread is ready to wait at the barrier, the thread executes

the await() method of the CyclicBarrier class. The await()

method comes in two flavors. One lets you wait for all other

threads unconditionally, and the other lets you specify a timeout.

The program in Listing 5-37 demonstrates how to use a cyclic barrier. You may get

different output. However, the sequence of events will be the same: all three threads will

work for some time, wait at the barrier for others to arrive, have a party time, and pass

the barrier.

Listing 5-37. A Class That Demonstrates How to Use a CyclicBarrier in a

Program

// MeetAtBarrier.java

package com.jdojo.threads;

import java.util.Random;

import java.util.concurrent.CyclicBarrier;

import java.util.concurrent.BrokenBarrierException;

Chapter 5 threads

358

public class MeetAtBarrier extends Thread {

 private final CyclicBarrier barrier;

 private final int ID;

 private static final Random random = new Random();

 public MeetAtBarrier(int ID, CyclicBarrier barrier) {

 this.ID = ID;

 this.barrier = barrier;

 }

 @Override

 public void run() {

 try {

 // Generate a random number between 1 and 30

 // to wait

 int workTime = random.nextInt(30) + 1;

 System.out.println("Thread #" + ID

 + " is going to work for "

 + workTime + " seconds");

 // Yes. Sleeping is working for this thread!!!

 Thread.sleep(workTime * 1000);

 System.out.println("Thread #" + ID

 + " is waiting at the barrier...");

 // Wait at barrier for other threads in group

 // to arrive

 this.barrier.await();

 System.out.println("Thread #" + ID

 + " passed the barrier...");

 } catch (InterruptedException e) {

 e.printStackTrace();

 } catch (BrokenBarrierException e) {

 System.out.println("Barrier is broken...");

 }

 }

Chapter 5 threads

359

 public static void main(String[] args) {

 // Create a barrier for a group of three threads

 // with a barrier action

 String msg =

 "We are all together. It's party time...";

 Runnable barrierAction = () ->

 System.out.println(msg);

 CyclicBarrier barrier =

 new CyclicBarrier(3, barrierAction);

 for (int i = 1; i <= 3; i++) {

 MeetAtBarrier t =

 new MeetAtBarrier(i, barrier);

 t.start();

 }

 }

}

Thread #2 is going to work for 15 seconds

Thread #3 is going to work for 2 seconds

Thread #1 is going to work for 30 seconds

Thread #3 is waiting at the barrier...

Thread #2 is waiting at the barrier...

Thread #1 is waiting at the barrier...

We are all together. It's party time...

Thread #3 passed the barrier...

Thread #2 passed the barrier...

Thread #1 passed the barrier...

You might have noticed that inside the run() method of the MeetAtBarrier class,

you are catching BrokenBarrierException. If a thread times out or it is interrupted while

waiting at the barrier point, the barrier is considered broken. The thread that times out is

released with a TimeoutException, whereas all waiting threads at the barrier are released

with a BrokenBarrierException.

Chapter 5 threads

360

Note the await() method of the CyclicBarrier class returns the arrival index of
the thread calling it. the last thread to arrive at the barrier has an index of zero,
and the first has an index of the number of threads in the group minus one. You
can use this index to do any special processing in your program. For example,
the last thread to arrive at the barrier may log the time when a particular round of
computation is finished by all participating threads.

 Phasers
The Phaser class in the java.util.concurrent package provides an implementation for

another synchronization barrier called phaser. A Phaser provides functionality similar

to the CyclicBarrier and CountDownLatch synchronizers. I cover the CountDownLatch

synchronizer in the next section. However, it is more powerful and flexible. It provides

the following features:

• Like a CyclicBarrier, a Phaser is also reusable.

• Unlike a CyclicBarrier, the number of parties to synchronize on a

Phaser can change dynamically. In a CyclicBarrier, the number

of parties is fixed at the time the barrier is created. However, in a

Phaser, you can add or remove parties at any time.

• A Phaser has an associated phase number, which starts at zero.

When all registered parties arrive at a Phaser, the Phaser advances

to the next phase, and the phase number is incremented by one. The

maximum value of the phase number is Integer.MAX_VALUE. After its

maximum value, the phase number restarts at zero.

• A Phaser has a termination state. All synchronization methods

called on a Phaser in a termination state return immediately without

waiting for an advance. The Phaser class provides different ways to

terminate a phaser.

Chapter 5 threads

361

• A Phaser has three types of parties count: a registered parties count,

an arrived parties count, and an unarrived parties count. The

registered parties count is the number of parties that are registered

for synchronization. The arrived parties count is the number of

parties that have arrived at the current phase of the phaser. The

unarrived parties count is the number of parties that have not yet

arrived at the current phase of the phaser. When the last party arrives,

the phaser advances to the next phase. Note that all three types of

party counts are dynamic.

• Optionally, a Phaser lets you execute a phaser action when all

registered parties arrive at the phaser. Recall that a CyclicBarrier

lets you execute a barrier action, which is a Runnable task. Unlike a

CyclicBarrier, you specify a phaser action by writing code in the

onAdvance() method of your Phaser class. It means you need to

use your own phaser class by inheriting it from the Phaser class and

override the onAdvance() method to provide a Phaser action.

I discuss an example of this kind shortly.

Figure 5-12 shows a phaser with three phases. It synchronizes on a different number

of parties in each phase. An arrow in the figure represents a party.

There are several steps to work with a Phaser. You can create a Phaser with no

initially registered party using its default constructor:

// A phaser with no registered parties

Phaser phaser = new Phaser();

Figure 5-12. A Phaser with three phases with a different number of parties
in each phase

Chapter 5 threads

362

Another constructor lets you register parties when the Phaser is created:

// A phaser with 5 registered parties

Phaser phaser = new Phaser(5);

A Phaser may be arranged in a tree-like structure. Other constructors let you create

a Phaser by specifying the parent of the newly created Phaser. Once you have created

a Phaser, the next step is to register parties that are interested in synchronizing on the

phaser. You can register a party in the following ways:

• By specifying the number of parties to register in the constructor of

the Phaser class when you create a Phaser object

• By using the register() method of the Phaser class to register one

party at a time

• By using the bulkRegister(int parties) method of the Phaser

class to register the specified number of parties in bulk

The registered parties of a Phaser may change at any time by registering new parties

or deregistering the already registered parties. You can deregister a registered party

using the arriveAndDeregister() method of the Phaser class. This method lets a party

arrive at the Phaser and deregister without waiting for other parties to arrive. If a party is

deregistered, the number of parties is reduced by one in the next phase of the Phaser.

Typically, a party in a Phaser means a thread. However, a Phaser does not associate

the registration of a party with a specific thread. It simply maintains a count that is

increased by one when a party is registered and decreased by one when a party is

deregistered.

The most important part of a Phaser is the way multiple parties synchronize on it.

A typical way to synchronize on a Phaser is to let the registered number of parties arrive

and wait at the Phaser for other registered parties to arrive. Once the last registered party

arrives at the Phaser, all parties advance to the next phase of the Phaser.

The arriveAndAwaitAdvance() method of the Phaser class lets a party arrive at the

Phaser and waits for other parties to arrive before it can proceed.

The arriveAndDeregister() method of the Phaser class lets a party arrive at the

Phaser and deregister without waiting for other parties to arrive. Upon deregistration,

the number of parties required to advance to the future phase reduces by one. Typically, the

arriveAndDeregister() method is used by a controller party whose job is to control

the advance of other parties without participating in the advance itself. Typically, the

Chapter 5 threads

363

controller party registers itself with the Phaser and waits for some conditions to occur;

when the required condition occurs, it arrives and deregisters itself from the Phaser so

parties can synchronize on the Phaser and advance.

Let’s walk through an example of using a Phaser to synchronize a group of tasks so

they can all start at the same time. An instance of the StartTogetherTask class, shown in

Listing 5-38, represents a task in this example.

Listing 5-38. A StartTogetherTask Class to Represent Tasks That Start Together

by Synchronizing on a Phaser

// StartTogetherTask.java

package com.jdojo.threads;

import java.util.Random;

import java.util.concurrent.Phaser;

public class StartTogetherTask extends Thread {

 private final Phaser phaser;

 private final String taskName;

 private static Random rand = new Random();

 public StartTogetherTask(String taskName,

 Phaser phaser) {

 this.taskName = taskName;

 this.phaser = phaser;

 }

 @Override

 public void run() {

 System.out.println(taskName + ":Initializing...");

 // Sleep for some time between 1 and 5 seconds

 int sleepTime = rand.nextInt(5) + 1;

 try {

 Thread.sleep(sleepTime * 1000);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 System.out.println(taskName + ":Initialized...");

 // Wait for all parties to arrive to start the task

Chapter 5 threads

364

 phaser.arriveAndAwaitAdvance();

 System.out.println(taskName + ":Started...");

 }

}

The StartTogetherTask class inherits from the Thread class. Its constructor accepts

a task name and a Phaser instance. In its run() method, it prints a message that it is

initializing. It fakes its initialization by sleeping for a random period of 1 to 5 seconds.

After that, it prints a message that it is initialized. At this stage, it waits on a Phaser

advance by calling the arriveAndAwaitAdvance() method of the Phaser. This method

will block until all registered parties arrive at the Phaser. When this method returns, it

prints a message that the task has started. Listing 5-39 contains the code to test three

tasks of StartTogetherTask type.

Listing 5-39. Testing Some Objects of the StartTogetherTask Class with a

Phaser

// StartTogetherTaskTest.java

package com.jdojo.threads;

import java.util.concurrent.Phaser;

public class StartTogetherTaskTest {

 public static void main(String[] args) {

 // Start with 1 registered party

 Phaser phaser = new Phaser(1);

 // Let's start three tasks

 final int TASK_COUNT = 3;

 for (int i = 1; i <= TASK_COUNT; i++) {

 // Register a new party with the phaser for

 // each task

 phaser.register();

 // Now create the task and start it

 String taskName = "Task #" + i;

 StartTogetherTask task =

 new StartTogetherTask(taskName, phaser);

 task.start();

 }

Chapter 5 threads

365

 // Now, deregister the self, so all tasks can

 // advance

 phaser.arriveAndDeregister();

 }

}

Task #3:Initializing...

Task #2:Initializing...

Task #1:Initializing...

Task #3:Initialized...

Task #1:Initialized...

Task #2:Initialized...

Task #2:Started...

Task #1:Started...

Task #3:Started...

First, the program creates a Phaser object by specifying 1 as the initially registered

party:

// Start with 1 registered party

Phaser phaser = new Phaser(1);

You register a task with the Phaser one at a time. If a task (or a party) is registered and

started before other tasks are registered, the first task will advance the phaser because

there will be one registered party and it will arrive at the phaser by itself. Therefore, you

need to start with one registered party in the beginning. It acts like the controller party

for other tasks.

You create three tasks in a loop. Inside the loop, you register a party (that represents

a task) with the Phaser, create a task, and start it. Once you are done setting up the

tasks, you call the arriveAndDeregister() method of the Phaser. This takes care of one

extra party that you had registered when you created the Phaser. This method makes a

party arrive at the Phaser and deregister without waiting for other registered parties to

arrive. After this method call is over, it is up to the three tasks to arrive at the Phaser and

advance. Once all three tasks arrive at the Phaser, they will all advance at the same time,

thus making them start at the same time. You may get different output. However, the last

three messages in the output will always be about starting the three tasks.

Chapter 5 threads

366

If you do not want to use an additional party to act as a controller, you need to

register all tasks in advance to make this program work correctly. You can rewrite the

code in the main() method of the StartTogetherTaskTest class as follows:

public static void main(String[] args) {

 // Start with 0 registered party

 Phaser phaser = new Phaser();

 // Let's start three tasks

 final int TASK_COUNT = 3;

 // Initialize all tasks in one go

 phaser.bulkRegister(TASK_COUNT);

 for(int i = 1; i <= TASK_COUNT; i++) {

 // Now create the task and start it

 String taskName = "Task #" + i;

 StartTogetherTask task =

 new StartTogetherTask(taskName, phaser);

 task.start();

 }

}

This time, you create a Phaser with no registered party. You register all the parties

using the bulkRegister() method in one go. Note that you do not register a party inside

the loop anymore. The new code has the same effect as the old one. It is just a different

way to write the same logic.

Like a CyclicBarrier, a Phaser lets you execute an action upon a phase advance

using its onAdvance() method. You will need to create your own phaser class by

inheriting it from the Phaser class and override the onAdvance() method to write your

custom Phaser action. On each phase advance, the onAdvance() method of the phaser

is invoked. The onAdvance() method in the Phaser class is declared as follows. The

first argument is the phase number, and the second is the number of registered parties:

protected boolean onAdvance(int phase, int registeredParties)

Besides defining a phase advance action, the onAdvance() method of the Phaser

class also controls the termination state of a Phaser. A Phaser is terminated if its

onAdvance() method returns true. You can use the isTerminated() method of the

Phaser class to check if a phaser is terminated or not. You can also terminate a phaser

using its forceTermination() method.

Chapter 5 threads

367

Listing 5-40 demonstrates how to add a Phaser action. This is a trivial example.

However, it demonstrates the concept of adding and executing a Phaser action. It uses

an anonymous class to create a custom Phaser class. The anonymous class overrides

the onAdvance() method to define a Phaser action. It simply prints a message in the

onAdvance() method as the Phaser action. It returns false, which means the phaser

will not be terminated from the onAdvance() method. Later, it registers itself as a party

and triggers a phase advance using the arriveAndDeregister() method. On every phase

advance, the Phaser action that is defined by the onAdvance() method is executed.

Listing 5-40. Adding a Phaser Action to a Phaser

// PhaserActionTest.java

package com.jdojo.threads;

import java.util.concurrent.Phaser;

public class PhaserActionTest {

 public static void main(String[] args) {

 // Create a Phaser object using an anonymous class

 // and override its onAdvance() method to define a

 // phaser action

 Phaser phaser = new Phaser() {

 @Override

 protected boolean onAdvance(int phase,

 int parties) {

 System.out.println(

 "Inside onAdvance(): phase = "

 + phase + ", Registered Parties = "

 + parties);

 // Do not terminate the phaser by returning

 // false

 return false;

 }

 };

 // Register the self (the "main" thread) as a party

 phaser.register();

 // Phaser is not terminated here

Chapter 5 threads

368

 System.out.println("#1: isTerminated(): " +

 phaser.isTerminated());

 // Since we have only one party registered, this

 // arrival will advance the phaser and registered

 // parties reduces to zero

 phaser.arriveAndDeregister();

 // Trigger another phase advance

 phaser.register();

 phaser.arriveAndDeregister();

 // Phaser is still not terminated

 System.out.println("#2: isTerminated(): " +

 phaser.isTerminated());

 // Terminate the phaser

 phaser.forceTermination();

 // Phaser is terminated

 System.out.println("#3: isTerminated(): " +

 phaser.isTerminated());

 }

}

#1: isTerminated(): false

Inside onAdvance(): phase = 0, Registered Parties = 0

Inside onAdvance(): phase = 1, Registered Parties = 0

#2: isTerminated(): false

#3: isTerminated(): true

Let’s consider using a Phaser to solve a complex task. This time, the Phaser works in

multiple phases by synchronizing multiple parties in each phase. Multiple tasks generate

random integers in each phase and add them to a List. After the Phaser is terminated,

you compute the sum of all the randomly generated integers.

Listing 5-41 contains the code for a task. Let’s call this task AdderTask. In its run()

method, it creates a random integer between 1 and 10, adds the integer to a List, and

waits for a Phaser to advance. It keeps adding an integer to the list in each phase of the

Phaser until the Phaser is terminated.

Chapter 5 threads

369

Listing 5-41. An AdderTask Class Whose Instances Can Be Used with a Phaser to

Generate Some Integers

// AdderTask.java

package com.jdojo.threads;

import java.util.List;

import java.util.Random;

import java.util.concurrent.Phaser;

public class AdderTask extends Thread {

 private final Phaser phaser;

 private final String taskName;

 private final List<Integer> list;

 private static Random rand = new Random();

 public AdderTask(String taskName, Phaser phaser,

 List<Integer> list) {

 this.taskName = taskName;

 this.phaser = phaser;

 this.list = list;

 }

 @Override

 public void run() {

 do {

 // Generate a random integer between 1 and 10

 int num = rand.nextInt(10) + 1;

 System.out.println(taskName + " added " +

 num);

 // Add the integer to the list

 list.add(num);

 // Wait for all parties to arrive at the phaser

 phaser.arriveAndAwaitAdvance();

 } while (!phaser.isTerminated());

 }

}

Chapter 5 threads

370

Listing 5-42 creates a Phaser by inheriting an anonymous class from the Phaser

class. In its onAdvance() method, it terminates the phaser after the second advance,

which is controlled by the PHASE_COUNT constant, or if the registered parties reduce to

zero. You use a synchronized List to gather the random integers generated by the adder

tasks. You plan to use three adder tasks, so you register four parties (one more than the

number of tasks) with the phaser. The additional party will be used to synchronize each

phase. It waits for each phase advance until the Phaser is terminated. At the end, the

sum of the random integers generated by all adder tasks is computed and displayed on

the standard output. You may get different output.

Listing 5-42. A Program to Use Multiple AdderTask Tasks with a Phaser

// AdderTaskTest.java

package com.jdojo.threads;

import java.util.List;

import java.util.ArrayList;

import java.util.Collections;

import java.util.concurrent.Phaser;

public class AdderTaskTest {

 public static void main(String[] args) {

 final int PHASE_COUNT = 2;

 Phaser phaser = new Phaser() {

 @Override

 public boolean onAdvance(int phase,

 int parties) {

 // Print the phaser details

 System.out.println("Phase:" + phase

 + ", Parties:"

 + parties

 + ", Arrived:"

 + this.getArrivedParties());

 boolean terminatePhaser = false;

 // Terminate the phaser when we reach the

 // PHASE_COUNT or there is no registered

 // party

Chapter 5 threads

371

 if (phase >= PHASE_COUNT - 1 ||

 parties == 0) {

 terminatePhaser = true;

 }

 return terminatePhaser;

 }

 };

 // Use a synchronized List

 List<Integer> list = Collections.synchronizedList(

 new ArrayList<>());

 // Let's start three tasks

 final int ADDER_COUNT = 3;

 // Register parties one more than the number of

 // adder tasks. The extra party will synchronize to

 // compute the result of all generated integers by

 // all adder tasks

 phaser.bulkRegister(ADDER_COUNT + 1);

 for (int i = 1; i <= ADDER_COUNT; i++) {

 // Create the task and start it

 String taskName = "Task #" + i;

 AdderTask task = new AdderTask(taskName,

 phaser, list);

 task.start();

 }

 // Wait for the phaser to terminate, so we can

 // compute the sum of all generated integers by the

 // adder tasks

 while (!phaser.isTerminated()) {

 phaser.arriveAndAwaitAdvance();

 }

 // Phaser is terminated now. Compute the sum

 int sum = 0;

 for (Integer num : list) {

 sum = sum + num;

 }

Chapter 5 threads

372

 System.out.println("Sum = " + sum);

 }

}

Task #2 added 2

Task #1 added 2

Task #3 added 5

Phase:0, Parties:4, Arrived:4

Task #3 added 5

Task #1 added 1

Task #2 added 7

Phase:1, Parties:4, Arrived:4

Sum = 22

 Latches
A latch works similar to a barrier in the sense that it also makes a group of threads wait

until it reaches its terminal state. Once a latch reaches its terminal state, it lets all threads

pass through. Unlike a barrier, it is a one-time object. Once it has reached its terminal

state, it cannot be reset and reused. A latch can be used in situations where a number of

activities cannot proceed until a certain number of one-time activities have completed.

For example, a service should not start until all services that it depends on have started.

The CountDownLatch class in the java.util.concurrent package provides the

implementation of a latch. It is initialized to a count using its constructor. All threads

that call the await() method of the latch object are blocked until the latch’s countDown()

method is called as many times as its count is set. When the number of calls to the

countDown() method is the same as its count, it reaches its terminal state, and all

blocked threads are released. Once a latch reaches its terminal state, its await() method

returns immediately. You can think of the count that is set for the latch as the same as the

number of events that a group of thread will wait to occur. Each occurrence of an event

will call its countDown() method.

Listings 5-43 and 5-44 contain classes that represent a helper service and a main

service, respectively. The main service depends on helper services to start. After all

helper services have started, only then can the main service start.

Chapter 5 threads

373

Listing 5-43. A Class to Represent a Helper Service

// LatchHelperService.java

package com.jdojo.threads;

import java.util.concurrent.CountDownLatch;

import java.util.Random;

public class LatchHelperService extends Thread {

 private final int ID;

 private final CountDownLatch latch;

 private final Random random = new Random();

 public LatchHelperService(int ID,

 CountDownLatch latch) {

 this.ID = ID;

 this.latch = latch;

 }

 @Override

 public void run() {

 try {

 int startupTime = random.nextInt(30) + 1;

 System.out.println("Service #" + ID

 + " starting in "

 + startupTime + " seconds...");

 Thread.sleep(startupTime * 1000);

 System.out.println("Service #" + ID

 + " has started...");

 } catch (InterruptedException e) {

 e.printStackTrace();

 } finally {

 // Count down on the latch to indicate that

 // it has started

 this.latch.countDown();

 }

 }

}

Chapter 5 threads

374

Listing 5-44. A Class to Represent the Main Service That Depends on Helper

Services to Start

// LatchMainService.java

package com.jdojo.threads;

import java.util.concurrent.CountDownLatch;

public class LatchMainService extends Thread {

 private final CountDownLatch latch;

 public LatchMainService(CountDownLatch latch) {

 this.latch = latch;

 }

 @Override

 public void run() {

 try {

 System.out.println(

 "Main service is waiting for helper " +

 "services to start...");

 latch.await();

 System.out.println(

 "Main service has started...");

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

}

Listing 5-45 lists a program to test the concept of helper and main services with a

latch. You create a latch that is initialized to two. The main service thread is started first,

and it calls the latch’s await() method to wait for the helper service to start. Once both

helper threads call the countDown() method of the latch, the main service starts. The

output explains the sequence of events clearly.

Chapter 5 threads

375

Listing 5-45. A Class to Test the Concept of a Latch with Helper and Main

Services

// LatchTest.java

package com.jdojo.threads;

import java.util.concurrent.CountDownLatch;

public class LatchTest {

 public static void main(String[] args) {

 // Create a countdown latch with 2 as its counter

 CountDownLatch latch = new CountDownLatch(2);

 // Create and start the main service

 LatchMainService ms = new LatchMainService(latch);

 ms.start();

 // Create and start two helper services

 for (int i = 1; i <= 2; i++) {

 LatchHelperService lhs =

 new LatchHelperService(i, latch);

 lhs.start();

 }

 }

}

Main service is waiting for helper services to start...

Service #1 starting in 12 seconds...

Service #2 starting in 2 seconds...

Service #2 has started...

Service #1 has started...

Main service has started...

 Exchangers
An exchanger is another form of a barrier. Like a barrier, an exchanger lets two threads

wait for each other at a synchronization point. When both threads arrive, they exchange

an object and continue their activities. This is useful in building a system where two

independent parties need to exchange information from time to time. Figures 5-13

through 5-15 depict how an exchanger works with two threads and lets them exchange

an object.

Chapter 5 threads

376

Figure 5-13. Two threads perform their work independently

Figure 5-14. One thread arrives at the exchange point and waits for another
thread to arrive

Figure 5-15. Two threads meet at the exchange point and exchange objects

Chapter 5 threads

377

The Exchanger<V> class provides an implementation for an exchanger synchronizer.

It has one constructor, which takes no arguments. The type parameter V is the type of

Java object that will be exchanged between two parties. You can create an exchanger that

will let two threads exchange a Long as follows:

Exchanger<Long> exchanger = new Exchanger<>();

The Exchanger class has only one method, exchange(). When a thread is ready to

exchange an object with another thread, it calls the exchange() method of the exchanger

and waits for another thread to exchange the object. A thread that is waiting to exchange

an object may be interrupted.

Another overloaded version of the exchange() method accepts a timeout period.

If the timeout period is specified, the thread calling this method will wait for another

thread to exchange an object until the timeout period is elapsed. The exchange()

method takes the object to pass on to another thread as an argument, and it returns the

object passed by another thread. You call the exchange() method like so:

objectReceived = exchanger.exchange(objectedPassed);

Listings 5-46 to 5-48 demonstrate the use of an exchanger in building a producer/

consumer system that exchanges a buffer, which is an ArrayList of Integer objects. To

declare an array list of integer objects, you have to declare it as follows:

ArrayList<Integer> buffer = new ArrayList<Integer>();

In Listing 5-48, you have created an exchanger as

Exchanger<ArrayList<Integer>> exchanger =

 new Exchanger<ArrayList<Integer>>();

The type declaration Exchanger<ArrayList<Integer» indicates that the exchanger

will let two threads exchange objects of type ArrayList<Integer>. You can also note

that the type declarations in the ExchangerProducer and ExchangerConsumer classes

match the previous declaration. The producer fills up the data and waits for some time to

give the users the impression that it is really filling up data. It waits for the consumer to

exchange the filled buffer with an empty buffer from the consumer. The consumer does

the opposite. It waits for the producer to exchange the buffer. When it gets a full buffer

from the producer, it empties the buffer and again waits for the producer to exchange its

Chapter 5 threads

378

empty buffer for a full one. Since the producer and consumer run in infinite loops, the

program will not end. You will have to end the program manually. You will get a similar

output to that shown in Listing 5-48.

Listing 5-46. A Producer Thread That Will Use an Exchanger to Exchange Data

with a Consumer

// ExchangerProducer.java

package com.jdojo.threads;

import java.util.concurrent.Exchanger;

import java.util.ArrayList;

import java.util.Random;

public class ExchangerProducer extends Thread {

 private final Exchanger<ArrayList<Integer>> exchanger;

 private ArrayList<Integer> buffer = new ArrayList<>();

 private final int bufferLimit;

 private final Random random = new Random();

 private int currentValue = 0; // to produce values

 public ExchangerProducer(

 Exchanger<ArrayList<Integer>> exchanger,

 int bufferLimit) {

 this.exchanger = exchanger;

 this.bufferLimit = bufferLimit;

 }

 @Override

 public void run() {

 // keep producing integers

 while (true) {

 try {

 System.out.println(

 "Producer is filling the buffer" +

 " with data...");

 // Wait for some time by sleeping

 int sleepTime = random.nextInt(20) + 1;

 Thread.sleep(sleepTime * 1000);

Chapter 5 threads

379

 // Fill the buffer

 this.fillBuffer();

 System.out.println(

 "Producer has produced:" + buffer);

 // Let's wait for the consumer to

 // exchange data

 System.out.println(

 "Producer is waiting to exchange" +

 " the data...");

 buffer = exchanger.exchange(buffer);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 }

 public void fillBuffer() {

 for (int i = 1; i <= bufferLimit; i++) {

 buffer.add(++currentValue);

 }

 }

}

Listing 5-47. A Consumer Thread That Will Use an Exchanger to Exchange Data

with a Producer

// ExchangerConsumer.java

package com.jdojo.threads;

import java.util.concurrent.Exchanger;

import java.util.ArrayList;

import java.util.Random;

public class ExchangerConsumer extends Thread {

 private final Exchanger<ArrayList<Integer>> exchanger;

 private ArrayList<Integer> buffer = new ArrayList<>();

 private final Random random = new Random();

Chapter 5 threads

380

 public ExchangerConsumer(

 Exchanger<ArrayList<Integer>> exchanger) {

 this.exchanger = exchanger;

 }

 @Override

 public void run() {

 // keep consuming the integers

 while (true) {

 try {

 // Let's wait for the consumer to exchange

 // data

 System.out.println(

 "Consumer is waiting to exchange" +

 " the data...");

 buffer = exchanger.exchange(buffer);

 System.out.println(

 "Consumer has received:" + buffer);

 System.out.println(

 "Consumer is emptying data from" +

 " the buffer...");

 // Wait for some time by sleeping

 int sleepTime = random.nextInt(20) + 1;

 // Sleep for some time

 Thread.sleep(sleepTime * 1000);

 // Empty the buffer

 this.emptyBuffer();

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 }

 public void emptyBuffer() {

 buffer.clear();

 }

}

Chapter 5 threads

381

Listing 5-48. A Class to Test a Producer/Consumer System with an Exchanger

// ExchangerProducerConsumerTest.java

package com.jdojo.threads;

import java.util.concurrent.Exchanger;

import java.util.ArrayList;

public class ExchangerProducerConsumerTest {

 public static void main(String[] args) {

 Exchanger<ArrayList<Integer>> exchanger =

 new Exchanger<>();

 // The producer will produce 5 integers at a time

 ExchangerProducer producer =

 new ExchangerProducer(exchanger, 5);

 ExchangerConsumer consumer =

 new ExchangerConsumer(exchanger);

 producer.start();

 consumer.start();

 }

}

Producer is filling the buffer with data...

Consumer is waiting to exchange the data...

Producer has produced:[1, 2, 3, 4, 5]

Producer is waiting to exchange the data...

Producer is filling the buffer with data...

Consumer has received:[1, 2, 3, 4, 5]

Consumer is emptying data from the buffer...

...

 The Executor Framework
A task is a logical unit of work, and typically a thread is used to represent and execute

a task. Many aspects of task execution should be considered before modeling it in a

program. A few aspects of a task are as follows:

• How it is created.

• How it is submitted for execution.

Chapter 5 threads

382

• How it is executed. Is it executed synchronously or asynchronously?

• The time at which it is executed. Is it executed immediately upon

submission or queued?

• Which thread executes it? Is it executed in the thread that submits it

or in another thread?

• How do we get the result of a task when it is finished executing?

• How do we know the error that occurs during its execution?

• Does it depend on other tasks to finish its execution?

A task may be represented as a Runnable. If you want to manage tasks using threads,

follow the steps described next. You can create a class to represent a task:

public class MyTask implements Runnable {

 public void run() {

 // Task processing logic goes here

 }

}

You create tasks as follows:

MyTask task1 = new MyTask();

MyTask task2 = new MyTask();

MyTask task3 = new MyTask();

To execute the tasks, you use threads as follows:

Thread t1 = new Thread(task1);

Thread t2 = new Thread(task2);

Thread t3 = new Thread(task3);

t1.start();

t2.start();

t3.start();

If you want to get the result of a task execution, you have to write additional code.

You may notice that managing tasks like this is difficult, if not impossible. There is

Chapter 5 threads

383

another aspect of task execution that is very important: how many threads should be

created to execute a group of tasks? One approach would be to create a thread per task.

Creating a thread per task has the following disadvantages:

• Creating and destroying threads requires overhead and takes time,

which in turn delays the start of the execution of the tasks.

• Each thread consumes resources. If the number of threads is more

than the available CPUs, other threads will be sitting idle and will

consume resources.

• Each platform has a limit on how many maximum threads it can

support. If an application exceeds that limit, it may even crash!

Another approach is to create one thread and let it handle the

execution of all tasks. This is another extreme case, which has the

following disadvantages:

• Having one thread executing all tasks makes it a sequential executor.

• This policy is deadlock-prone if one task submits another task and it

depends on the result of the task it has submitted.

• If you have long-running tasks, other tasks waiting for their execution

seem to be unresponsive because of the long time it will take to start

the pending tasks.

The executor framework attempts to solve all of these problems of task execution.

The framework provides a way to separate task submission from task execution. You

create a task and submit it to an executor. The executor takes care of the execution

details of the task. It provides configurable policies to control many aspects of the task

execution.

The Executor interface in the java.util.concurrent package is the foundation for

the executor framework. The interface contains only one method, as shown:

public interface Executor {

 void execute (Runnable command);

}

Chapter 5 threads

384

You can use the executor framework to execute the previously mentioned three tasks

as follows:

// Get an executor instance.

Executor executor = Executors.newCachedThreadPool();

// Submit three tasks to the executor

executor.execute(task1);

executor.execute(task2);

executor.execute(task3);

Note that when you used an executor, you did not create three threads to execute the

three tasks. The executor will decide that for you. You just called the execute() method

of the executor to submit a task. The executor will manage the threads that will execute

the tasks and other details about the task execution.

The executor framework provides a class library to select the policies on the thread

usage to execute the tasks. You can choose to run all tasks in one thread, in a fixed

number of threads, or in a variable number of threads. In fact, you can choose a thread

pool to execute your tasks, and the thread pool is configurable as to how many threads

will be in the pool and how those threads will be maintained. In any case, all threads

in the pool are reused as they become available. Using a thread pool to execute the

submitted tasks has two important advantages:

• The overhead of creating new threads and destroying them when you

are done with them is reduced. The executor reuses the threads from

the thread pool.

• If a thread is available in the thread pool at the time of a task

submission, the task may start immediately. This eliminates the time

delay between the thread creation and the task execution.

It is important to mention another interface called ExecutorService at this point. It

provides some advanced features of an executor, which include managing the shutdown

of the executor and checking the status of the submitted tasks. It inherits from the

Executor interface. Some of the important methods of this interface are shutdown(),

shutdownNow(), submit(), and awaitTermination(). I discuss them shortly.

It is important that you shut down the executor when it is no longer needed. The

executor framework creates non-daemon threads to execute the tasks. Generally, when a

thread is done executing a task, it is not destroyed. Rather, it is kept in the thread pool for

Chapter 5 threads

385

reuse in the future—whether a thread is destroyed or kept depends on the thread pool

configuration. A Java application will not exit if some non-daemon threads are still alive.

Therefore, if you forget to shut down the executor, your application may never exit.

How does an executor handle a task execution? To avoid a detailed and lengthy

discussion, here is a simple explanation. You specify the type of thread pool that the

executor should use to manage the tasks at the time you create the executor. All tasks

that you submit to an executor are queued in a queue known as the work queue. As a

thread becomes available, it removes a task from the work queue and executes it. When

a thread is done executing a task, depending on your thread pool type, your executor

either destroys the thread or puts it back into the pool so it can be reused to execute

another task. You have a number of options to decide on what kind of thread pool to use

for an executor:

• You can use one of the factory methods of the Executors class to

get an executor, which has a preconfigured thread pool and lets

you reconfigure it, if you desire so. You will use this approach to get

an executor in your examples. You can also use this class to get a

preconfigured executor that cannot be reconfigured. The comm

only used methods of the Executors class to get an executor service

are as follows:

 – newCachedThreadPool(): It returns an ExecutorService object.

The thread pool reuses the previously created threads if they are

available. Otherwise, it creates a new thread to execute a task. It

destroys and removes idle threads from the pool. The thread pool

has characteristics of expanding and shrinking depending on the

workload.

 – newFixedThreadPool(int nThreads): It returns an

ExecutorService object. The thread pool maintains a fixed

number of threads. At any time, the thread pool will have the

maximum nThread number of threads. If a task arrives in the work

queue and all threads are busy executing other tasks, the task has

to wait for its execution until a thread becomes available. If a

thread is terminated because of an unexpected failure during a

task execution, it is replaced with a new thread.

Chapter 5 threads

386

 – newSingleThreadExecutor(): It returns an ExecutorService

object. The thread pool maintains only one thread to execute all

tasks. It guarantees that only one task will be executed at a time. If

the lone thread dies unexpectedly, it is replaced with a new one.

• You can instantiate the ThreadPoolExecutor class and configure the

thread pool.

• You can create your own executor from scratch.

Listing 5-49 contains the complete code for a RunnableTask class.

Listing 5-49. A Runnable Task

// RunnableTask.java

package com.jdojo.threads;

import java.util.Random;

public class RunnableTask implements Runnable {

 private final int taskId;

 private final int loopCounter;

 private final Random random = new Random();

 public RunnableTask(int taskId, int loopCounter) {

 this.taskId = taskId;

 this.loopCounter = loopCounter;

 }

 @Override

 public void run() {

 for (int i = 1; i <= loopCounter; i++) {

 try {

 int sleepTime = random.nextInt(10) + 1;

 System.out.println("Task #" + this.taskId

 + " - Iteration #" + i

 + " is going to sleep for "

 + sleepTime + " seconds.");

 Thread.sleep(sleepTime * 1000);

Chapter 5 threads

387

 } catch (InterruptedException e) {

 System.out.println("Task #" + this.taskId

 + " has been interrupted.");

 break;

 }

 }

 }

}

An object of the RunnableTask class represents a task in your program. You will have

a task that will sleep for some time and print a message on the standard output. The

time to sleep will be determined randomly between 1 and 10 seconds. Every task will be

assigned a task ID and a loop counter. The task ID is used to identify the task. The loop

counter is used to control the loop inside the run() method. Listing 5-50 contains the

complete code to test the Runnable task class.

Listing 5-50. A Class to Test an Executor to Run Some Runnable Tasks

// RunnableTaskTest.java

package com.jdojo.threads;

import java.util.concurrent.Executors;

import java.util.concurrent.ExecutorService;

public class RunnableTaskTest {

 public static void main(String[] args) {

 final int THREAD_COUNT = 3;

 final int LOOP_COUNT = 3;

 final int TASK_COUNT = 5;

 // Get an executor with three threads in its

 // thread pool

 ExecutorService exec =

 Executors.newFixedThreadPool(THREAD_COUNT);

 // Create five tasks and submit them to the

 // executor

Chapter 5 threads

388

 for (int i = 1; i <= TASK_COUNT; i++) {

 RunnableTask task =

 new RunnableTask(i, LOOP_COUNT);

 exec.submit(task);

 }

 // Let's shutdown the executor

 exec.shutdown();

 }

}

Task #1 - Iteration #1 is going to sleep for 9 seconds.

Task #2 - Iteration #1 is going to sleep for 2 seconds.

Task #3 - Iteration #1 is going to sleep for 7 seconds.

Task #2 - Iteration #2 is going to sleep for 5 seconds.

Task #2 - Iteration #3 is going to sleep for 7 seconds.

Task #3 - Iteration #2 is going to sleep for 2 seconds.

...

The RunnableTaskTest class creates an Executor with three threads. It creates five

instances of the RunnableTask class—each task making three iterations in its run()

method. All five tasks are submitted to the Executor. You have used an executor with its

thread pool with a fixed number of threads. Your executor will have only three threads in

its thread pool to execute only three tasks at a time. When the executor is done with one

of the first three tasks, it starts the fourth one. Note the exec.shutdown() method call to

shut down the executor after submitting all tasks. The shutdownNow() method call of the

executor attempts to stop the executing tasks by interrupting it and discards the pending

tasks. It returns the list of all pending tasks that were discarded. If you replace the exec.

shutdown() to exec.shutdownNow() in the main() method, you may get an output

similar to the one shown:

Task #1 - Iteration #1 is going to sleep for 7 seconds.

Task #2 - Iteration #1 is going to sleep for 10 seconds.

Task #3 - Iteration #1 is going to sleep for 9 seconds.

Task #2 has been interrupted.

Task #3 has been interrupted.

Task #1 has been interrupted.

Chapter 5 threads

389

 Result-Bearing Tasks
How do you get the result of a task when it is complete? The task that can return a result

upon its execution has to be represented as an instance of the Callable<V> interface:

public interface Callable<V> {

 V call() throws Exception;

}

The type parameter V is the type of the result of the task. Note that the run() method

of the Runnable interface cannot return a value, and it cannot throw any checked

exception. The call() method of the Callable interface can return a value of any type.

It also allows you to throw an exception.

Let’s redo your RunnableTask class from Listing 5-49 as CallableTask, which is

shown in Listing 5-51.

Listing 5-51. A Callable Task

// CallableTask.java

package com.jdojo.threads;

import java.util.Random;

import java.util.concurrent.Callable;

public class CallableTask implements Callable<Integer> {

 private final int taskId;

 private final int loopCounter;

 private final Random random = new Random();

 public CallableTask(int taskId, int loopCounter) {

 this.taskId = taskId;

 this.loopCounter = loopCounter;

 }

 @Override

 public Integer call() throws InterruptedException {

 int totalSleepTime = 0;

 for (int i = 1; i <= loopCounter; i++) {

 try {

 int sleepTime = random.nextInt(10) + 1;

Chapter 5 threads

390

 System.out.println("Task #" + this.taskId

 + " - Iteration #" + i

 + " is going to sleep for "

 + sleepTime + " seconds.");

 Thread.sleep(sleepTime * 1000);

 totalSleepTime = totalSleepTime +

 sleepTime;

 } catch (InterruptedException e) {

 System.out.println("Task #" + this.taskId

 + " has been interrupted.");

 throw e;

 }

 }

 return totalSleepTime;

 }

}

The call() method of the task returns the sum of all its sleeping periods. Listing 5-52

illustrates the use of the Callable task. You may get different output every time you run

the program.

Listing 5-52. A Class to Demonstrate How to Use a Callable Task with an

Executor

// CallableTaskTest.java

package com.jdojo.threads;

import java.util.concurrent.Executors;

import java.util.concurrent.ExecutorService;

import java.util.concurrent.Future;

import java.util.concurrent.ExecutionException;

public class CallableTaskTest {

 public static void main(String[] args) {

 // Get an executor with three threads in its

 // thread pool

 ExecutorService exec =

 Executors.newFixedThreadPool(3);

Chapter 5 threads

391

 // Create the callable task with loop counter as 3

 CallableTask task = new CallableTask(1, 3);

 // Submit the callable task to executor

 Future<Integer> submittedTask = exec.submit(task);

 try {

 Integer result = submittedTask.get();

 System.out.println(

 "Task's total sleep time: " + result +

 " seconds");

 } catch (ExecutionException e) {

 System.out.println(

 "Error in executing the task.");

 } catch (InterruptedException e) {

 System.out.println(

 "Task execution has been interrupted.");

 }

 // Let's shutdown the executor

 exec.shutdown();

 }

}

Task #1 - Iteration #1 is going to sleep for 6 seconds.

Task #1 - Iteration #2 is going to sleep for 5 seconds.

Task #1 - Iteration #3 is going to sleep for 4 seconds.

Task's total sleep time: 15 seconds

I explain the logic in the two listings step by step.

The CallableTask class defines the call() method, which contains the logic for task

processing. It sums up all the sleep times for the task and returns it.

The CallableTaskTest class uses an executor with three threads in its thread pool.

The ExecutorService.submit() method returns a Future<V> object. Future is

an interface that lets you track the progress of the task that you submit. It contains the

following methods:

• boolean cancel(boolean mayInterruptIfRunning)

• V get() throws InterruptedException, ExecutionException

Chapter 5 threads

392

• V get(long timeout, TimeUnit unit) throws

InterruptedException, ExecutionException, TimeoutException

• boolean isCancelled()

• boolean isDone()

The get() method returns the result of the task execution, which is the same as

the returned value from the call() method of a Callable object. If the task has not yet

finished executing, the get() method blocks. You can use another version of the get()

method to specify a timeout period for waiting for the result of a task execution.

The cancel() method cancels a submitted task. Its call has no effect on a completed

task. It accepts a boolean argument to indicate if the executor should interrupt the task

if the task is still running. If you use cancel(true) to cancel a task, make sure the task

responds to the interruption properly.

The isDone() method tells you if the task has finished executing. It returns true

if the task is finished executing normally, it has been cancelled, or it had an exception

during its execution.

In the CallableTaskTest class, you keep the returned Future object in the

submittedTask variable. The Future<Integer> declaration indicates that your task

returns an Integer object as its result:

Future<Integer> submittedTask = exec.submit(task);

Another important method call is the get() method on submittedTask:

Integer result = submittedTask.get();

I placed the call to the get() method in a try-catch block because it may throw

an exception. If the task has not finished executing, the get() method will block. The

program prints the result of the task execution, which is the total time that the task spent

sleeping during its execution.

Finally, you shut down the executor using its shutdown() method.

 Scheduling a Task
The executor framework lets you schedule a task that will run in the future. You can

run a task to execute after a given delay or periodically. Scheduling a task is done using

an instance of the ScheduledExecutorService interface, which you can get using one

Chapter 5 threads

393

of the static factory methods of the Executors class. You can also use the concrete

implementation of this interface, which is the ScheduledThreadPoolExecutor class.

To get an instance of the ScheduledExecutorService interface, use the following

snippet of code:

// Get scheduled executor service with 3 threads

ScheduledExecutorService sexec =

 Executors.newScheduledThreadPool(3);

To schedule a task (say task1) after a certain delay (say 10 seconds), use

sexec.schedule(task1, 10, TimeUnit.SECONDS);

To schedule a task (say task2) after a certain delay (say 10 seconds), and repeat after

a certain period (say 25 seconds), use

sexec.scheduleAtFixedRate(task2, 10, 25,

 TimeUnit.SECONDS);

After a 10-second delay, task2 will execute for the first time. Subsequently, it will

keep executing after 10 + 25 seconds, 10 + 2 * 25 seconds, 10 + 3 * 25 seconds, and

so on.

You can also schedule a task with a set delay period between the end of an execution

and the start of the next execution. To schedule task3 for the first time after 40 seconds,

and every 60 seconds after every execution finishes, use

sexec.scheduleWithFixedDelay(task3, 40, 60,

 TimeUnit.SECONDS);

The ScheduledExecutorService interface does not provide a method to schedule a

task using an absolute time. However, you can schedule a task to execute at an absolute

time using the following technique. Suppose scheduledDateTime is the date and time at

which you want to execute the task:

import java.time.LocalDateTime;

import static java.time.temporal.ChronoUnit.SECONDS;

import java.util.concurrent.TimeUnit;

...

LocalDateTime scheduledDateTime =

 get the scheduled date and time for the task...

Chapter 5 threads

394

// Compute the delay from the time you schedule the task

long delay = SECONDS.between(LocalDateTime.now(),

 scheduledDateTime);

// Schedule the task

sexec.schedule(task, delay, TimeUnit.MILLISECONDS);

Note the submit() method of ExecutorService submits the task for
immediate execution. You can submit a task for immediate execution using the
ScheduledExecutorService.schedule() method by specifying an initial
delay of zero. a negative initial delay schedules a task for immediate execution.

Listing 5-53 contains the code for a Runnable task. It simply prints the date and time

when it is run.

Listing 5-53. A Scheduled Task

// ScheduledTask.java

package com.jdojo.threads;

import java.time.LocalDateTime;

public class ScheduledTask implements Runnable {

 private final int taskId;

 public ScheduledTask(int taskId) {

 this.taskId = taskId;

 }

 @Override

 public void run() {

 LocalDateTime now = LocalDateTime.now();

 System.out.println("Task #" + this.taskId +

 " ran at " + now);

 }

}

Listing 5-54 demonstrates how to schedule a task. The second task has been

scheduled to run repeatedly. To let it run a few times, make the main thread sleep for

60 seconds before you shut down the executor. Shutting down an executor discards any

Chapter 5 threads

395

pending tasks. A good way to stop a scheduled task that repeats is to cancel it after a

certain delay using another scheduled task. You may get different output when you run

the ScheduledTaskTest class.

Listing 5-54. A Class to Test Scheduled Task Executions Using the Executor

Framework

// ScheduledTaskTest.java

package com.jdojo.threads;

import java.util.concurrent.Executors;

import java.util.concurrent.ScheduledExecutorService;

import java.util.concurrent.TimeUnit;

public class ScheduledTaskTest {

 public static void main(String[] args) {

 // Get an executor with 3 threads

 ScheduledExecutorService sexec =

 Executors.newScheduledThreadPool(3);

 // Task #1 and Task #2

 ScheduledTask task1 = new ScheduledTask(1);

 ScheduledTask task2 = new ScheduledTask(2);

 // Task #1 will run after 2 seconds

 sexec.schedule(task1, 2, TimeUnit.SECONDS);

 // Task #2 runs after 5 seconds delay and keep

 // running every 10 seconds

 sexec.scheduleAtFixedRate(task2, 5, 10,

 TimeUnit.SECONDS);

 // Let the current thread sleep for 60 seconds

 // and shut down the executor that will cancel

 // the task #2 because it is scheduled

 // to run after every 10 seconds

 try {

 TimeUnit.SECONDS.sleep(60);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

Chapter 5 threads

396

 // Shut down the executor

 sexec.shutdown();

 }

}

Task #1 ran at 2020-10-07T10:47:48.800387200

Task #2 ran at 2020-10-07T10:47:51.753682400

Task #2 ran at 2020-10-07T10:48:01.754210400

Task #2 ran at 2020-10-07T10:48:11.754739100

Task #2 ran at 2020-10-07T10:48:21.755259400

Task #2 ran at 2020-10-07T10:48:31.755795600

Task #2 ran at 2020-10-07T10:48:41.756322800

 Handling Uncaught Exceptions in a Task Execution
What happens when an uncaught exception occurs during a task execution? The

executor framework handles occurrences of such uncaught exception nicely for you. If

you execute a Runnable task using the execute() method of an Executor, any uncaught

runtime exceptions will halt the task execution, and the exception stack trace will be

printed on the console, as shown in the output of Listing 5-55.

Listing 5-55. Printing the Runtime Stack Trace from the execute() Method of

the Executor

// BadRunnableTask.java

package com.jdojo.threads;

import java.util.concurrent.ExecutorService;

import java.util.concurrent.Executors;

public class BadRunnableTask {

 public static void main(String[] args) {

 Runnable badTask = () -> {

 throw new RuntimeException(

 "The task threw an exception...");

 };

 ExecutorService exec = Executors.

 newSingleThreadExecutor();

Chapter 5 threads

397

 exec.execute(badTask);

 exec.shutdown();

 }

}

Exception in thread "pool-1-thread-1" java.lang.

 RuntimeException: The task threw an exception...

 at jdojo.threads/com.jdojo.threads.

 BadRunnableTask.

 lambda$main$0(BadRunnableTask.java:10)

 at java.base/java.util.concurrent.

 ThreadPoolExecutor.runWorker(

 ThreadPoolExecutor.java:1167)

 at java.base/java.util.concurrent.

 ThreadPoolExecutor\$Worker.

 run(ThreadPoolExecutor.java:641)

 at java.base/java.lang.Thread.run(

 Thread.java:844)

If you are submitting a task using the submit() method of the ExecutorService,

the executor framework handles the exception and indicates that to you when you

use the get() method to get the result of the task execution. The get() method of the

Future instance throws an ExecutionException, wrapping the actual exception as its

cause. Listing 5-56 illustrates this kind of example. You can use the get() method of the

Future instance even if you submit a Runnable task. On successful execution of the task,

the get() method will return null. If an uncaught exception is thrown during the task

execution, it throws an ExecutionException.

Listing 5-56. Future’s get() Method Throws ExecutionException, Wrapping

the Actual Exception Thrown in Task Execution As Its Cause

// BadCallableTask.java

package com.jdojo.threads;

import java.util.concurrent.ExecutorService;

import java.util.concurrent.Executors;

import java.util.concurrent.Callable;

import java.util.concurrent.Future;

import java.util.concurrent.ExecutionException;

Chapter 5 threads

398

public class BadCallableTask {

 public static void main(String[] args) {

 Callable<Object> badTask = () -> {

 throw new RuntimeException(

 "The task threw an exception...");

 };

 // Create an executor service

 ExecutorService exec = Executors.

 newSingleThreadExecutor();

 // Submit a task

 Future submittedTask = exec.submit(badTask);

 try {

 // The get method should throw

 // ExecutionException

 Object result = submittedTask.get();

 } catch (ExecutionException e) {

 System.out.println(

 "Execution exception has occurred: "

 + e.getMessage());

 System.out.println(

 "Execution exception cause is: "

 + e.getCause().getMessage());

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 exec.shutdown();

 }

}

Execution exception has occurred:

 java.lang.RuntimeException:

 The task threw an exception...

Execution exception cause is:

 The task threw an exception...

Chapter 5 threads

399

 Executor’s Completion Service
In the previous sections, I explained how to fetch the result of a task execution using a

Future object. To fetch the result of a submitted task, you must keep the reference of the

Future object returned from the executor, as demonstrated in Listing 5-52. However,

if you have a number of tasks that you have submitted to an executor and you want to

know their results as they become available, you need to use the completion service of

the executor. It is represented by an instance of the CompletionService<V> interface.

It combines an executor and a blocking queue to hold the completed task references.

The ExecutorCompletionService<V> class is a concrete implementation of the

CompletionService<V> interface. Here are the steps to use it:

 1. Create an executor object:

ExecutorService exec = Executors.

 newScheduledThreadPool(3);

 2. Create an object of the ExecutorCompletionService class, passing

the executor created in the previous step to its constructor:

ExecutorCompletionService CompletionService =

 new ExecutorCompletionService(exec);

The executor completion service uses a blocking queue internally

to hold the completed task. You can also use your own blocking

queue to hold the completed tasks.

 3. The take() method of the completion service returns the

reference of a completed task. It blocks if no completed task is

present. If you do not want to wait, in case there is no completed

task, you can use the poll() method, which returns null if there

is no completed task in the queue. Both methods remove the

completed task from the queue if they find one.

Listings 5-57 to 5-59 illustrate the use of the completion service. An instance of the

TaskResult class represents the result of a task. It was necessary to have a custom object

like a TaskResult to represent the result of a task because the completion service just

tells you that a task is completed and you get its result. It does not tell you which task is

Chapter 5 threads

400

completed. To identify the task that was completed, you need to identify the task in the

result of the task. Your SleepingTask returns a TaskResult from its call() method by

embedding the task ID and the total sleeping time for the task.

Listing 5-57. A Class to Represent the Result of a Task

// TaskResult.java

package com.jdojo.threads;

public class TaskResult {

 private final int taskId;

 private final int result;

 public TaskResult(int taskId, int result) {

 this.taskId = taskId;

 this.result = result;

 }

 public int getTaskId() {

 return taskId;

 }

 public int getResult() {

 return result;

 }

 @Override

 public String toString() {

 return "Task Name: Task #" + taskId +

 ", Task Result:" + result + " seconds";

 }

}

Listing 5-58. A Class Whose Object Represents a Callable Task and Produces a

TaskResult As Its Result

// SleepingTask.java

package com.jdojo.threads;

import java.util.Random;

import java.util.concurrent.Callable;

Chapter 5 threads

401

public class SleepingTask implements Callable<TaskResult> {

 private int taskId;

 private int loopCounter;

 private Random random = new Random();

 public SleepingTask(int taskId, int loopCounter) {

 this.taskId = taskId;

 this.loopCounter = loopCounter;

 }

 @Override

 public TaskResult call() throws InterruptedException {

 int totalSleepTime = 0;

 for (int i = 1; i <= loopCounter; i++) {

 try {

 int sleepTime = random.nextInt(10) + 1;

 System.out.println("Task #" + this.taskId

 + " - Iteration #" + i

 + " is going to sleep for "

 + sleepTime + " seconds.");

 Thread.sleep(sleepTime * 1000);

 totalSleepTime = totalSleepTime +

 sleepTime;

 } catch (InterruptedException e) {

 System.out.println("Task #" + this.taskId

 + " has been interrupted.");

 throw e;

 }

 }

 return new TaskResult(taskId, totalSleepTime);

 }

}

Chapter 5 threads

402

Listing 5-59. A Class to Test the Completion Service

// CompletionServiceTest.java

package com.jdojo.threads;

import java.util.concurrent.Future;

import java.util.concurrent.Executors;

import java.util.concurrent.ExecutorService;

import java.util.concurrent.ExecutionException;

import java.util.concurrent.ExecutorCompletionService;

public class CompletionServiceTest {

 public static void main(String[] args) {

 // Get an executor with three threads in its thread

 // pool

 ExecutorService exec = Executors.

 newFixedThreadPool(3);

 // Completed task returns an object of the

 // TaskResult class

 ExecutorCompletionService<TaskResult>

 completionService

 = new ExecutorCompletionService<>(exec);

 // Submit five tasks and each task will sleep three

 // times for a random period between 1 and 10

 // seconds

 for (int i = 1; i <= 5; i++) {

 SleepingTask task = new SleepingTask(i, 3);

 completionService.submit(task);

 }

 // Print the result of each task as they are

 // completed

 for (int i = 1; i <= 5; i++) {

 try {

 Future<TaskResult> completedTask =

 completionService.take();

 TaskResult result = completedTask.get();

Chapter 5 threads

403

 System.out.println("Completed a task - " +

 result);

 } catch (ExecutionException ex) {

 System.out.println(

 "Error in executing the task.");

 } catch (InterruptedException ex) {

 System.out.println("Task execution" +

 " has been interrupted.");

 }

 }

 // Let's shut down the executor

 exec.shutdown();

 }

}

Task #3 - Iteration #1 is going to sleep for 3 seconds.

...

Task #4 - Iteration #1 is going to sleep for 5 seconds.

Completed a task - Task Name: Task #2, Task Result:15

 seconds

...

Completed a task - Task Name: Task #4, Task Result:15

 seconds

Completed a task - Task Name: Task #5, Task Result:18

 seconds

 The Fork/Join Framework
The fork/join framework is an implementation of the executor service whose focus is

to solve those problems efficiently, which may use the divide-and-conquer algorithm

by taking advantage of the multiple processors or multiple cores on a machine. The

framework helps solve the problems that involve parallelism. Typically, the fork/join

framework is suitable in a situation where

• A task can be divided in multiple subtasks that can be executed in

parallel.

Chapter 5 threads

404

• When subtasks are finished, the partial results can be combined to

get the final result.

The fork/join framework creates a pool of threads to execute the subtasks. When a

thread is waiting on a subtask to finish, the framework uses that thread to execute other

pending subtasks of other threads. The technique of an idle thread executing other

threads’ task is called work-stealing. The framework uses the work-stealing algorithm

to enhance the performance. The following four classes in the java.util.concurrent

package are central to learning the fork/join framework:

• ForkJoinPool

• ForkJoinTask<V>

• RecursiveAction

• RecursiveTask<V>

An instance of the ForkJoinPool class represents a thread pool. An instance of the

ForkJoinTask class represents a task. The ForkJoinTask class is an abstract class. It has

two concrete subclasses: RecursiveAction and RecursiveTask. Java 8 added an abstract

subclass of the ForkJoinTask class that is called CountedCompleter<T>. The framework

supports two types of tasks:

• A task that does not yield a result and a task that yields a result.

An instance of the RecursiveAction class represents a task that

does not yield a result.

• An instance of the RecursiveTask class represents a task that yields

a result.

A CountedCompleter task may or may not yield a result. Both classes,

RecursiveAction and RecursiveTask, provide an abstract compute() method. Your

class whose object represents a fork/join task should inherit from one of these classes

and provide an implementation for the compute() method. Typically, the logic inside the

compute() method is written similar to the following:

if (Task is small) {

 Solve the task directly.

} else {

 Divide the task into subtasks.

 Launch the subtasks asynchronously (the fork stage).

Chapter 5 threads

405

 Wait for the subtasks to finish (the join stage).

 Combine the results of all subtasks.

}

The following two methods of the ForkJoinTask class provide two important features

during a task execution:

• The fork() method launches a new subtask from a task for an

asynchronous execution.

• The join() method lets a task wait for another task to complete.

 Steps in Using the Fork/Join Framework
Using the fork/join framework involves the following five steps.

Step 1: Declaring a Class to Represent a Task

Create a class inheriting from the RecursiveAction or RecursiveTask class. An instance

of this class represents a task that you want to execute. If the task yields a result, you

need to inherit it from the RecursiveTask class. Otherwise, you will inherit it from the

RecursiveAction class. The RecursiveTask is a generic class. It takes a type parameter,

which is the type of the result of your task. A MyTask class that returns a Long result may

be declared as follows:

public class MyTask extends RecursiveTask<Long> {

 // Code for your task goes here

}

Step 2: Implementing the compute() Method

The logic to execute your task goes inside the compute() method of your class. The return

type of the compute() method is the same as the type of the result that your task returns.

The declaration for the compute() method of the MyTask class looks like the following:

public class MyTask extends RecursiveTask<Long> {

 public Long compute() {

 // Logic for the task goes here

 }

}

Chapter 5 threads

406

Step 3: Creating a Fork/Join Thread Pool

You can create a pool of worker threads to execute your task using the ForkJoinPool

class. The default constructor of this class creates a pool of threads, which has the same

parallelism as the number of processors available on the machine:

ForkJoinPool pool = new ForkJoinPool();

Other constructors let you specify the parallelism and other properties of the pool.

Step 4: Creating the Fork/Join Task

You need to create an instance of your task:

MyTask task = MyTask();

Step 5: Submitting the Task to the Fork/Join Pool for Execution

You need to call the invoke() method of the ForkJoinPool class, passing your task as an

argument. The invoke() method will return the result of the task if your task returns a

result. The following statement will execute your task:

long result = pool.invoke(task);

 A Fork/Join Example
Let’s consider a simple example of using the fork/join framework. Your task will generate

a few random integers and compute their sum. Listing 5-60 shows the complete code for

your task.

Listing 5-60. A ForkJoinTask Class to Compute the Sum of a Few Random

Integers

// RandomIntSum.java

package com.jdojo.threads;

import java.util.ArrayList;

import java.util.List;

import java.util.Random;

import java.util.concurrent.RecursiveTask;

Chapter 5 threads

407

public class RandomIntSum extends RecursiveTask<Long> {

 private static final Random randGenerator =

 new Random();

 private final int count;

 public RandomIntSum(int count) {

 this.count = count;

 }

 @Override

 protected Long compute() {

 long result = 0;

 if (this.count <= 0) {

 return 0L; // We do not have anything to do

 }

 if (this.count == 1) {

 // Compute the number directly and return the

 // result

 return (long) this.getRandomInteger();

 }

 // Multiple numbers. Divide them into many single

 // tasks. Keep the references of all tasks to call

 // their join() method later

 List<RecursiveTask<Long>> forks =

 new ArrayList<>();

 for (int i = 0; i < this.count; i++) {

 RandomIntSum subTask = new RandomIntSum(1);

 subTask.fork(); // Launch the subtask

 // Keep the subTask references to combine the

 // results later

 forks.add(subTask);

 }

 // Now wait for all subtasks to finish and combine

 // the results

 for (RecursiveTask<Long> subTask : forks) {

 result = result + subTask.join();

 }

Chapter 5 threads

408

 return result;

 }

 public int getRandomInteger() {

 // Generate the next random integer between

 // 1 and 100

 int n = randGenerator.nextInt(100) + 1;

 System.out.println("Generated a random integer: " +

 n);

 return n;

 }

}

The RandomIntSum class inherits from the RecursiveTask<Long> class because it

yields a result of the type Long. The result is the sum of all random integers. It declares a

randGenerator instance variable that is used to generate random numbers. The count

instance variable stores the number of random numbers that you want to use. The value

for the count instance variable is set in the constructor.

The getRandomInteger() method generates a random integer between 1 and 100,

prints the integer value on the standard output, and returns the random integer.

The compute() method contains the main logic to perform the task. If the number

of random numbers to use is one, it computes the result and returns it to the caller. If

the number of random numbers is more than one, it launches as many subtasks as the

number of random numbers. Note that if you use ten random numbers, it will launch ten

subtasks because each random number can be computed independently. Finally, you

need to combine the results from all subtasks. Therefore, you need to keep the references

of the subtask for later use. You used a List to store the references of all subtasks.

Note the use of the fork() method to launch a subtask. The following snippet of code

performs this logic:

List<RecursiveTask<Long>> forks = new ArrayList<>();

for(int i = 0; i < this.count; i++) {

 RandomIntSum subTask = new RandomIntSum(1);

 subTask.fork(); // Launch the subtask

 // Keep the subTask references to combine the

 // results at the end

 forks.add(subTask);

}

Chapter 5 threads

409

Once all subtasks are launched, you need to wait for all subtasks to finish and

combine all random integers to get the sum. The following snippet of code performs this

logic. Note the use of the join() method, which will make the current task wait for the

subtask to finish:

for(RecursiveTask<Long> subTask : forks) {

 result = result + subTask.join();

}

Finally, the compute() method returns the result, which is the sum of all the

random integers. Listing 5-61 has the code to execute a task, which is an instance of the

RandomIntSum class. You may get different output.

Listing 5-61. Using a Fork/Join Pool to Execute a Fork/Join Task

// ForkJoinTest.java

package com.jdojo.threads;

import java.util.concurrent.ForkJoinPool;

public class ForkJoinTest {

 public static void main(String[] args) {

 // Create a ForkJoinPool to run the task

 ForkJoinPool pool = new ForkJoinPool();

 // Create an instance of the task

 RandomIntSum task = new RandomIntSum(3);

 // Run the task

 long sum = pool.invoke(task);

 System.out.println("Sum is " + sum);

 }

}

Generated a random integer: 26

Generated a random integer: 5

Generated a random integer: 68

Sum is 99

This is a very simple example of using the fork/join framework. You are advised to

explore the fork/join framework classes to know more about the framework. Inside the

Chapter 5 threads

410

compute() method of your task, you can have complex logic to divide tasks into subtasks.

Unlike in this example, you may not know in advance how many subtasks you need to

launch. You may launch a subtask that may launch another subtask and so on.

 Thread-Local Variables
A thread-local variable provides a way to maintain a separate value for a variable

for each thread. The ThreadLocal<T> class in the java.lang package provides the

implementation of a thread-local variable. It has five methods:

• T get()

• protected T initialValue()

• void remove()

• void set(T value)

• static <S> ThreadLocal<S> withInitial(Supplier<? extends

S> supplier)

The get() and set() methods are used to get and set the value for a thread-local

variable, respectively. The initialValue() method is used to set the initial value of the

variable, and it has a protected access. To use it, you need to subclass the ThreadLocal

class and override this method. You can remove the value by using the remove()

method. The withInitial() method lets you create a ThreadLocal with an initial value.

Let’s create a CallTracker class, shown in Listing 5-62, to keep track of the number

of times a thread calls its call() method.

Listing 5-62. A Class That Uses a ThreadLocal Object to Track Calls to Its

Method

// CallTracker.java

package com.jdojo.threads;

public class CallTracker {

 // threadLocal variable is used to store counters for

 // all threads

 private static final ThreadLocal<Integer>

 threadLocal = new ThreadLocal<Integer>();

Chapter 5 threads

411

 public static void call() {

 Integer counterObject = threadLocal.get();

 // Initialize counter to 1

 int counter = 1;

 if (counterObject != null) {

 counter = counterObject + 1;

 }

 // Set the new counter

 threadLocal.set(counter);

 // Print how many times this thread has called

 // this method

 String threadName = Thread.currentThread().

 getName();

 System.out.println("Call counter for " +

 threadName + " = " + counter);

 }

}

The get() method of the ThreadLocal class works on a thread basis. It returns the

value set by the set() method by the same thread, which is executing the get() method.

If a thread calls the get() method the very first time, it returns null. The program sets the

call counter for the caller thread to 1 if it is its first call. Otherwise, it increments the call

counter by 1. It sets the new counter back in the threadLocal object. In the end, the call()

method prints a message about how many times the current thread has called this method.

Listing 5-63 uses the CallTracker class in three threads. Each thread calls this

method a random number of times between 1 and 5. You can observe in the output that

the counter is maintained for each thread’s call separately. You may get different output.

Listing 5-63. A Test Class for the CallTracker Class

// CallTrackerTest.java

package com.jdojo.threads;

import java.util.Random;

public class CallTrackerTest {

 public static void main(String[] args) {

 // Let's start three threads to the

 // CallTracker.call() method

Chapter 5 threads

412

 new Thread(CallTrackerTest::run).start();

 new Thread(CallTrackerTest::run).start();

 new Thread(CallTrackerTest::run).start();

 }

 public static void run() {

 Random random = new Random();

 // Generate a random value between 1 and 5

 int counter = random.nextInt(5) + 1;

 // Print the thread name and the generated random

 // number by the thread

 System.out.println(Thread.currentThread().getName()

 + " generated counter: " + counter);

 for (int i = 0; i < counter; i++) {

 CallTracker.call();

 }

 }

}

Thread-0 generated counter: 4

Thread-1 generated counter: 2

Thread-2 generated counter: 3

Call counter for Thread-0 = 1

Call counter for Thread-2 = 1

Call counter for Thread-1 = 1

Call counter for Thread-2 = 2

Call counter for Thread-0 = 2

Call counter for Thread-2 = 3

Call counter for Thread-1 = 2

Call counter for Thread-0 = 3

Call counter for Thread-0 = 4

The initialValue() method sets the initial value of the thread-local variable for

each thread. If you have set the initial value, the call to the get() method, before you

call the set() method, will return that initial value. It is a protected method. You must

override it in a subclass. You can set the initial value for the call counter to 1000 by using

an anonymous class as shown:

Chapter 5 threads

413

// Create an anonymous subclass ThreadLocal class and

// override its initialValue()

// method to return 1000 as the initial value

private static ThreadLocal<Integer> threadLocal =

 new ThreadLocal<Integer>() {

 @Override

 public Integer initialValue() {

 return 1000;

 }

 };

Subclassing the ThreadLocal class just to have an instance of ThreadLocal with an

initial value was overkill. Finally, the class designers realized it (in Java 8) and provided a

factory method called withInitial() in the ThreadLocal class that can specify an initial

value. The method is declared as follows:

public static <S> ThreadLocal<S> withInitial(Supplier<? extends S> supplier)

The specified supplier provides the initial value for the ThreadLocal. The get()

method of the supplier is used to get the initial value. You can rewrite this logic and

replace the anonymous class with a lambda expression as follows:

// Create a ThreadLocal with an initial value of 1000

ThreadLocal<Integer> threadLocal = T

 hreadLocal.withInitial(() -> 1000);

Having a Supplier as the supplier for the initial value, you can generate the initial

value lazily and based on some logic. The following statement creates a ThreadLocal

with the initial value as the second part of the current time when the initial value is

retrieved:

// Return the second part of the current time as the

// initial value

ThreadLocal<Integer> threadLocal =

 ThreadLocal.withInitial(() ->

 LocalTime.now().getSecond()

);

Chapter 5 threads

414

You can use the remove() method to reset the value of the thread-local variable for a

thread. After the call to the remove() method, the first call to the get() method works as

if it were called the first time by returning the initial value.

The typical use of a thread-local variable is to store user ID, transaction ID,

or transaction context for a thread. The thread sets those values in the beginning,

and any code during the execution of that thread can use those values. Sometimes,

a thread may start child threads that may need to use the value set for a thread-

local variable in the parent thread. You can achieve this by using an object of the

InheritableThreadLocal<T> class, which is inherited from the ThreadLocal class. The

child thread inherits its initial value from the parent thread. However, the child thread

can set its own value using the set() method.

 Setting Stack Size of a Thread
Each thread in a JVM is allocated its own stack. A thread uses its stack to store all local

variables during its execution. Local variables are used in constructors, methods, or

blocks (static or non-static). The stack size of each thread will limit the number of

threads that you can have in a program. Local variables are allocated memory on stack

during their scope. Once they are out of scope, the memory used by them is reclaimed.

It is essential to optimize the stack size of a thread in your program if it uses too many

threads. If the stack size is too big, you can have a fewer number of threads in your

program. The number of threads will be limited by the available memory to the JVM. If

the stack size is too small to store all local variables used at a time, you may encounter a

StackOverflowError. To set the stack size for each thread, you can use a non-standard

JVM option called -Xss<size>, where <size> is the size of the thread stack. To set the

stack size to 512 KB, you can use a command, like so:

java –Xss512k <other-arguments>

 Summary
A thread is a unit of execution in a program. An instance of the Thread class represents

a thread in a Java program. The thread starts its execution in the run() method of the

Thread class or its subclass. To execute your code in a thread, you need to subclass

the Thread class and override its run() method; you can also use an instance of the

Chapter 5 threads

415

Runnable interface as the target for a thread. Beginning with Java 8, you can use a

method reference of any method that takes no parameters and returns void as the target

for a thread. A thread is scheduled by using the start() method of the Thread class.

There are two types of threads: daemon and non-daemon. A non-daemon thread is

also known as a user thread. The JVM exits when only threads running in the JVM are all

daemon threads.

Each thread in Java has a priority that is an integer between 1 and 10, 1 being the

lowest priority and 10 being the highest priority. The priority of a thread is a hint, which

can be ignored, to the operating system about its importance for getting the CPU time.

In a multi-threaded program, a section of code that may have undesirable effects

on the outcome of the program if executed by multiple threads concurrently is called a

critical section. You can mark a critical section in a Java program using the synchronized

keyword. Methods can also be declared as synchronized. Only one synchronized

instance method of an object can be executed at a time by any threads. Only one

synchronized class method of a class can be executed at a time by any threads.

A thread in a Java program goes through a set of states that determines its lifecycle.

A thread can be in any one of these states: new, runnable, blocked, waiting, timed-waiting,

or terminated. States are represented by constants of the Thread.State enum. Use the

getState() method of the Thread class to get the current state of the thread.

A thread can be interrupted, stopped, suspended, and resumed. A stopped thread or

a thread that has finished executing cannot be restarted.

Atomic variables, explicit locks, the synchronizer, the executor framework, and

the fork/join framework are provided as class libraries to the Java developers to assist

in developing concurrent applications. Atomic variables are variables that can be

atomically updated without using explicit synchronization. Explicit locks have features

that let you acquire locks and back off if the locks are not available. The executor

framework helps schedule tasks. The fork/join framework is written on top of the

executor framework to assist in working with tasks that can be divided in subtasks, and

finally their results can be combined.

Thread-local variables are implemented through the ThreadLocal<T> class. They

store values based on threads. They are suitable for values that are local to threads and

that cannot be seen by other threads.

Chapter 5 threads

416

 Exercises
Exercise 1

What is a thread? Can threads share memory? What is thread-local storage?

Exercise 2

What is a multi-threaded program?

Exercise 3

What is the name of the class whose objects represent threads in Java programs?

Exercise 4

Suppose you create an object of the Thread class:

Thread t = new Thread();

What do you need to do next so that this Thread object will get CPU time?

Exercise 5

What is a race condition when using multiple threads? How do you avoid a race

condition in your program?

Exercise 6

What is a critical section in a program?

Exercise 7

What is the effect of using the synchronized keyword in a method’s declaration?

Exercise 8

What is thread synchronization? How is thread synchronization achieved in a Java

program?

Exercise 9

What are an entry set and a wait set of an object?

Exercise 10

Describe the user of the wait(), notify(), and notifyAll() methods in thread

synchronization.

Exercise 11

What method of the Thread class do you use to check if a thread is terminated or

alive?

Exercise 12

Describe the following six states of a thread: new, runnable, blocked, waiting, timed-

waiting, and terminated. What method in the Thread class returns the state of a thread?

Exercise 13

Can you restart a thread by calling its start() method after the thread is terminated?

Chapter 5 threads

417

Exercise 14

What is thread starvation?

Exercise 15

What is a daemon thread? What happens when the JVM detects that there are only

daemon threads running in the application? Are the main thread and garbage collector

thread daemon threads?

Exercise 16

How do you interrupt a thread? What is the difference in calling the instance

isInterrupted() method and static interrupted() method of the Thread class?

What happens when a blocked thread is interrupted?

Exercise 17

What is a thread group? What is the default thread group of a thread? How do you get

an estimate of active threads in a thread group?

Exercise 18

Describe the use of volatile variables in Java programs.

Exercise 19

What is the difference between using an AtomicLong variable and a long variable

with a synchronized getter and setter?

Exercise 20

What are semaphores, barriers, phasers, latches, and exchangers? Name the classes

in Java that represent instances of these synchronizers.

Exercise 21

What is the executor framework? What is the difference between an instance of the

Executor interface and an instance of the ExecutorService interface? What class do you

use to get a preconfigured Executor instance?

Exercise 22

If you want to submit a result-bearing task to an Executor, the task needs to be an

instance of which interface: Runnable or Callable<T>?

Exercise 23

What does an instance of the Future<T> interface represent?

Exercise 24

What is the difference in using the shutdown() and shutdownNow() methods to shut

down an executor?

Exercise 25

What is the fork/join framework?

Chapter 5 threads

418

Exercise 26

Describe the use of the ThreadLocal<T> class.

Exercise 27

What JVM option do you use to set the Java thread’s stack size?

Exercise 28

Create a class inheriting it from the Thread class. When an instance of the class is

run as a thread, it should print text like 1<name> 2<name> ...N<name> where <name> is

the name of the thread you specify and N is the upper limit on the number of integers

starting from 1 to be printed. For example, if you create an instance of your class with 100

and “A,” it should print 1A 2A 3A ...100A. Create three threads of your class and run

them simultaneously.

Exercise 29

Create a class named BankAccount. An instance of this class represents a bank

account. It should contain three methods: deposit(), withdraw(), and balance(). They

deposit, withdraw, and return the balance in the account. Its balance instance variable

should store the balance in the account, and it is initialized to 100. The balance in the

account must not go below 100. Do not use any thread synchronization constructs or

keywords in this class. Create an instance of the BankAccount class. Pass this instance to

four threads—two threads should deposit money, and two should withdraw money. The

deposit and withdrawal amount should be selected randomly between 1 and 10. Start

another thread, a monitor thread, that keeps calling the balance() method to check if

the balance goes below 100. When the balance goes below 100, it should print a message

and exit the application.

Exercise 30

Create another copy of the BankAccount class and name it Account. Use thread

synchronization to guard the access to the balance instance variable in the Account

class, so its value never goes below 100. Run the same number of threads as in the

previous exercise for five minutes. This time, the monitor thread should not print any

message. After five minutes, all your threads should be interrupted, and your threads

should respond to the interruption by finishing its task. This way, your application

should exit normally after five minutes.

Chapter 5 threads

419
© Kishori Sharan, Peter Späth 2021
K. Sharan and P. Späth, More Java 17, https://doi.org/10.1007/978-1-4842-7135-3_6

CHAPTER 6

Streams
In this chapter, you will learn:

• What streams are

• Differences between collections and streams

• How to create streams from different types of data sources

• How to represent an optional value using the Optional class

• Applying different types of operations on streams

• Collecting data from streams using collectors

• Grouping and partitioning a stream’s data

• Finding and matching data in streams

• How to work with parallel streams

All example programs in this chapter are members of a jdojo.streams module, as

declared in Listing 6-1.

Listing 6-1. The Declaration of a jdojo.streams Module

// module-info.java

module jdojo.streams {

 exports com.jdojo.streams;

}

https://doi.org/10.1007/978-1-4842-7135-3_6#DOI

420

 What Are Streams?
An aggregate operation computes a single value from a collection of values. The result of

an aggregate operation may be simply a primitive value, an object, or a void. Note that

an object may represent a single entity such as a person or a collection of values such as

a list, a set, a map, etc.

A stream is a sequence of data elements supporting sequential and parallel aggregate

operations. Computing the sum of all elements in a stream of integers, mapping all

names in a list to their lengths, etc. are examples of aggregate operations on streams.

Looking at the definition of streams, it seems that they are like collections. So,

how do streams differ from collections? Both are abstractions for a collection of data

elements. Collections focus on storage of data elements for efficient access, whereas

streams focus on aggregate computations on data elements from a data source that is

typically, but not necessarily, collections.

In this section, I discuss the following features of streams, comparing them with

collections when necessary:

• Streams have no storage.

• Streams can represent a sequence of infinite elements.

• The design of streams is based on internal iteration.

• Streams are designed to be processed in parallel with no additional

work from the developers.

• Streams are designed to support functional programming.

• Streams support lazy operations.

• Streams can be ordered or unordered.

• Streams cannot be reused.

The following sections present brief snippets of code using streams. The code is

meant to give you a feel for the Streams API and to compare the Streams API with the

Collections API. You do not need to understand the code fully at this point. I explain it

later in detail.

Chapter 6 StreamS

421

 Streams Have No Storage
A collection is an in-memory data structure that stores all its elements. All elements

must exist in memory before they are added to the collection. A stream has no storage;

it does not store elements. A stream pulls elements from a data source on demand and

passes them to a pipeline of operations for processing.

 Infinite Streams
A collection cannot represent a group of infinite elements, whereas a stream can. A

collection stores all its elements in memory, and therefore it is not possible to have an

infinite number of elements in a collection. Having a collection of an infinite number

of elements will require an infinite amount of memory, and the storage process will

continue forever. A stream pulls its elements from a data source that can be a collection,

a function that generates data, an I/O channel, etc. Because a function can generate an

infinite number of elements and a stream can pull data from it on demand, it is possible

to have a stream representing a sequence of infinite data elements.

 Internal Iteration vs. External Iteration
Collections are based on external iteration. You obtain an iterator for a collection and

process elements of the collections in serial using the iterator. Suppose you have a list of

integers from 1 to 5. You would compute the sum of the squares of all odd integers in the

list as follows:

List<Integer> numbers = List.of(1, 2, 3, 4, 5);

int sum = 0;

for (int n : numbers) {

 if (n % 2 == 1) {

 int square = n * n;

 sum = sum + square;

 }

}

Chapter 6 StreamS

422

This example uses a for-each loop that performs an external iteration on the list of

integers. Simply put, the client code (the for loop in this case) pulls the elements out

of the collection and applies the logic to get the result. Consider the following snippet

of code that uses a stream to compute the sum of the squares of all odd integers in the

same list:

int sum = numbers.stream()

 .filter(n -> n % 2 == 1)

 .map(n -> n * n)

 .reduce(0, Integer::sum);

Did you notice the power and the simplicity of streams? You replaced five statements

with just one statement. However, the code brevity is not the point that I want to make.

The point is that you did not iterate over the elements in the list when you used the

stream. The stream did that for you internally. This is what I meant by internal iteration

supported by streams. You specify to a stream what you want by passing an algorithm

using lambda expressions to the stream, and the stream applies your algorithm to its

data element by iterating over its elements internally and gives you the result.

Using external iteration, typically, produces sequential code; that is, the code can

be executed only by one thread. For example, when you wrote the logic to compute the

sum using a for-each loop, the loop must be executed only by one thread. All modern

computers come with a multicore processor. Wouldn’t it be nice to take advantage of the

multicore processor to execute the logic in parallel? The Java library provides a fork/join

framework to divide a task into subtasks recursively and execute the subtasks in parallel,

taking advantage of a multicore processor. However, the fork/join framework is not so

simple to use, especially for beginners.

Streams come to your rescue! They are designed to process their elements in parallel

without you even noticing it! This does not mean that streams automatically decide for

you when to process their elements in serial or parallel. You just need to tell a stream

that you want to use parallel processing, and the stream will take care of the rest. Streams

take care of the details of using the fork/join framework internally. You can compute the

sum of squares of odd integers in the list in parallel, like so:

int sum = numbers.parallelStream()

 .filter(n -> n % 2 == 1)

 .map(n -> n * n)

 .reduce(0, Integer::sum);

Chapter 6 StreamS

423

All you had to do was replace the method called stream() with parallelStream().

The Streams API uses multiple threads to filter the odd integers, compute their squares,

and add them to compute partial sums. Finally, it joins the partial sums to give you

the result. In this example, you have only five elements in the list, and using multiple

threads to process them is overkill. You will not use parallel processing for such a trivial

computation. I have presented this example to drive home the point that parallelizing

your computation using streams is free; you get it by just using a different method name!

The second point is that parallelizing the computation was made possible because of the

internal iteration provided by the stream.

Streams are designed to use internal iteration. They provide an iterator() method

that returns an Iterator to be used for external iteration of its elements. You will “never”

need to iterate elements of a stream yourself using its iterator. If you ever need it, here is

how to use it:

// Get a list of integers from 1 to 5

List<Integer> numbers = List.of(1, 2, 3, 4, 5);

...

// Get an iterator from the stream

Iterator<Integer> iterator = numbers.stream().iterator();

// That's not normally the way you'd use streams!

while(iterator.hasNext()) {

 int n = iterator.next();

 ...

}

 Imperative vs. Functional
Collections support imperative programming, whereas streams support declarative

programming. This is an offshoot of collections supporting external iteration, whereas

streams support internal iteration. When you use collections, you need to know “what”

you want and “how” to get it; this is the feature of imperative programming. When

you use streams, you specify only “what” you want in terms of stream operations; the

“how” part is taken care of by the Streams API. The Streams API supports functional

programming. Operations on a stream produce a result without modifying the data

source. Like in functional programming, when you use streams, you specify “what”

Chapter 6 StreamS

424

operations you want to perform on its elements using the built-in methods provided by

the Streams API, typically by passing a lambda expression to those methods, customizing

the behavior of those operations.

 Stream Operations
A stream supports two types of operations:

• Intermediate operations

• Terminal operations

Intermediate operations are also known as lazy operations. Terminal operations are

also known as eager operations. Operations are known as lazy and eager based on the

way they pull the data elements from the data source. A lazy operation on a stream does

not process the elements of the stream until another eager operation is called on the

stream.

Streams connect through a chain of operations forming a stream pipeline. A stream

is inherently lazy until you call a terminal operation on it. An intermediate operation

on a stream produces another stream. When you call a terminal operation on a stream,

the elements are pulled from the data source and pass through the stream pipeline.

Each intermediate operation takes elements from an input stream and transforms the

elements to produce an output stream. The terminal operation takes inputs from a

stream and produces the result. Figure 6-1 shows a stream pipeline with a data source,

three streams, and three operations. The filter and map operations are intermediate

operations, and the reduce operation is a terminal operation.

Figure 6-1. A stream pipeline

Chapter 6 StreamS

425

In the figure, the first stream (on the left) pulls data from the data source and becomes

the input source for the filter operation. The filter operation produces another stream

containing data for which the filter condition is true. The stream produced by the filter

operation becomes the input for the map operation. The map operation produces

another stream that contains the mapped data. The stream produced by the map

operation becomes the input for the reduce operation. The reduce operation is a terminal

operation. It computes and returns the result, and then the stream processing is over.

Note I use the phrase “a stream pulls/consumes elements from its data source”
in the preceding discussion. this does not mean that the stream removes the
elements from the data source; it only reads them. Streams are designed to
support functional programming in which data elements are read and operations
on the read data elements produce new data elements. however, the data
elements are not modified (or at least should not be modified).

Stream processing does not start until a terminal operation is called. If you just call

intermediate operations on a stream, nothing exciting happens, except that they create

another stream of objects in memory, without reading data from the data source. This

implies that you must use a terminal operation on a stream for it to process the data to

produce a result. This is also the reason that the terminal operation is called a result-

bearing operation, and intermediate operations are also called nonresult-bearing

operations.

You saw the following code that uses a pipeline of stream operations to compute the

sum of the squares of odd integers from 1 to 5:

List<Integer> numbers = List.of(1, 2, 3, 4, 5);

int sum = numbers.stream()

 .filter(n -> n % 2 == 1)

 .map(n -> n * n)

 .reduce(0, Integer::sum);

Figures 6-2 through 6-5 show the states of the stream pipeline as operations are

added. Notice that no data flows through the stream until the reduce operation is called.

The last figure shows the integers in the input stream for an operation and the mapped

(or transformed) integers produced by the operation. The reduce terminal operation

produces the result 35.

Chapter 6 StreamS

426

 Ordered Streams
A stream can be ordered or unordered. An ordered stream preserves the order of its

elements. The Streams API lets you convert an ordered stream into an unordered stream.

A stream can be ordered because it represents an ordered data source such as a list or a

Figure 6-3. The stream pipeline after the filter operation is called

Figure 6-4. The stream pipeline after the map operation is called

Figure 6-5. The stream pipeline after the reduce operation is called

Figure 6-2. The stream pipeline after the stream object is created

Chapter 6 StreamS

427

sorted set. You can also convert an unordered stream into an ordered stream by applying

an intermediate operation such as sorting.

A data source is said to have an encounter order if the order in which the elements

are traversed by an iterator is predictable and meaningful. For example, arrays and lists

always have an encounter order that is from the element at index 0 to the element at the

last index. All ordered data sources have an encounter order for their elements. Streams

based on data sources having an encounter order also have an encounter order for

their elements. Sometimes, a stream operation may impose an encounter order on an

otherwise unordered stream. For example, a HashSet does not have an encounter order

for its elements. However, applying a sort operation on a stream based on a HashSet

imposes an encounter order so that elements are yielded in sorted order.

 Streams Are Not Reusable
Unlike collections, streams are not reusable. They are one-shot objects. A stream cannot

be reused after calling a terminal operation on it. If you need to perform a computation

on the same elements from the same data source again, you must recreate the stream

pipeline. A stream implementation may throw an IllegalStateException if it detects

that the stream is being reused.

 Architecture of the Streams API
Figure 6-6 shows a class diagram for the stream-related interfaces. Stream-related

interfaces and classes are in the java.util.stream package.

Figure 6-6. A class diagram for stream-related interfaces in the Streams API

Chapter 6 StreamS

428

All stream interfaces inherit from the BaseStream interface, which inherits from the

AutoCloseable interface from the java.lang package. In practice, most streams use

collections as their data source, and collections do not need to be closed. When a stream

is based on a closeable data source such as a file I/O channel, you may create the instance

of the stream using a try-with-resources statement to get it closed automatically. Methods

common to all types of streams are declared in the BaseStream interface as follows:

• Iterator<T> iterator(): It returns an iterator for the stream. You

will almost never need to use this method in your code. This is a

terminal operation. After calling this method, you cannot call any

other methods on the stream.

• S sequential(): It returns a sequential stream. If the stream is

already sequential, it returns itself. Use this method to convert a

parallel stream into a sequential stream. This is an intermediate

operation.

• S parallel(): It returns a parallel stream. If the stream is already

parallel, it returns itself. Use this method to convert a parallel stream

into a sequential stream. This is an intermediate operation.

• boolean isParallel(): It returns true if the stream is parallel, false

otherwise. The result is unpredictable when this method is called

after invoking a terminal stream operation method.

• S unordered(): It returns an unordered version of the stream. If the

stream is already unordered, it returns itself. This is an intermediate

operation.

• void close(): It closes the stream. You do not need to close

collection-based streams. Operating on a closed stream throws an

IllegalState-Exception.

• S onClose(Runnable closeHandler): It returns an equivalent

stream with an additional close handler. Close handlers are run when

the close() method is called on the stream and are executed in the

order they were added.

The Stream<T> interface represents a stream of the element type T; for example, a

Stream<Person> represents a stream of Person objects. The interface contains methods

Chapter 6 StreamS

429

representing intermediate and terminal operations such as filter(), map(), reduce(),

collect(), max(), min(), etc. When you work with streams, you will use these methods

most of the time. I discuss each method in detail shortly.

Note that the Stream<T> interface takes a type parameter T, which means that you

can use it only to work with the elements of the reference type. If you have to work

with a stream of primitive type such as int, long, etc., using Stream<T> will involve

an additional cost of boxing and unboxing the elements when primitive values are

needed. For example, adding all elements of a Stream<Integer> will require unboxing

all Integer elements to int. The designers of the Streams API realized this, and they

provided three specialized stream interfaces called IntStream, LongStream, and

DoubleStream to work with primitives; these interfaces contain methods to deal with

primitive values. Note that you do not have stream interfaces representing other

primitive types such as float, short, etc. because the three stream types can be used to

work with other primitive type values.

 A Quick Example
Let’s look at a quick example of using streams. The code reads a list of integers and

computes the sum of the squares of all odd integers in the list.

The stream() method in the Collection interface returns a sequential stream

where the Collection acts as the data source. The following snippet of code creates a

List<Integer> and obtains a Stream<Integer> from the list:

// Get a list of integers from 1 to 5

List<Integer> numbersList = List.of(1, 2, 3, 4, 5);

// Get a stream from the list

Stream<Integer> numbersStream = numbersList.stream();

The filter() method of the Stream<T> interface takes a Predicate<? super T> as

an argument and returns a Stream<T> with elements of the original stream for which the

specified Predicate returns true. The following statement obtains a stream of only odd

integers:

// Get a stream of odd integers

Stream<Integer> oddNumbersStream =

 numbersStream.filter(n -> n % 2 == 1);

Chapter 6 StreamS

430

Notice the use of the lambda expression as the argument for the filter() method.

The lambda expression returns true if the element in the stream is not divisible by 2.

The map() method of the Stream<T> interface takes Function<? super T,? extends

R> as an argument. Each element in the stream is passed to this Function, and a new

stream is generated containing the returned values from the Function. The following

statement takes all odd integers and maps them to their squares:

// Get a stream of the squares of odd integers

Stream<Integer> squaredNumbersStream =

 oddNumbersStream.map(n -> n * n);

Finally, you need to add the squares of all odd integers to get the result. The

reduce(T identity, BinaryOperator<T> accumulator) method of the Stream<T>

interface performs a reduction operation on the stream to reduce the stream to a single

value. It takes an initial value and an accumulator that is a BinaryOperator<T> as

arguments. The first time, the accumulator receives the initial value and the first element

of the stream as arguments and returns a value. The second time, the accumulator

receives the value returned from its previous call and the second element from the

stream. This process continues until all elements of the stream have been passed to the

accumulator. The returned value from the last call of the accumulator is returned from

the reduce() method. The following snippet of code performs the sum of all integers in

the stream:

// Sum all integers in the stream

int sum = squaredNumbersStream.

 reduce(0, (n1, n2) -> n1 + n2);

The Integer class contains a static sum() method to perform the sum of two integers.

You can rewrite the previous statement using a method reference, like so:

// Sum all integers in the stream

int sum = squaredNumbersStream.

 reduce(0, Integer::sum);

In this example, I break down each operation on the stream into a single statement.

You cannot use the returned streams from intermediate operations, except to apply

other operations on them. Typically, you care about the result of the terminal operation,

Chapter 6 StreamS

431

not the intermediate streams. Streams are designed to support method chaining to avoid

temporary variables, which you used in this example. You can combine these statements

into one statement as follows:

// Sum the squares of all odd integers in the numbers list

int sum = numbersList.stream()

 .filter(n -> n % 2 == 1)

 .map(n -> n * n)

 .reduce(0, Integer::sum);

I chain all method calls on streams to form only one statement in subsequent

examples. Listing 6-2 contains the complete program for this example. Note that you are

working with only integers in this example. For better performance, you could have used

an IntStream in this example. I show you how to use an IntStream later.

Listing 6-2. Computing the Sum of the Squares of All Odd Integers from 1 to 5

// SquaredIntsSum.java

package com.jdojo.streams;

import java.util.List;

public class SquaredIntsSum {

 public static void main(String[] args) {

 // Get a list of integers from 1 to 5

 List<Integer> numbers = List.of(1, 2, 3, 4, 5);

 // Compute the sum of the squares of all odd

 // integers in the list

 int sum = numbers.stream()

 .filter(n -> n % 2 == 1)

 .map(n -> n * n)

 .reduce(0, Integer::sum);

 System.out.println("Sum = " + sum);

 }

}

Sum = 35

Chapter 6 StreamS

432

I show many examples of performing aggregate operations on different types of

streams. Most of the time, it is easier to explain the stream operations using streams

of numbers and strings. I show some real-world examples of using streams by using a

stream of Person objects. Listing 6-3 contains the declaration for the Person class.

Listing 6-3. A Person Class

// Person.java

package com.jdojo.streams;

import java.time.LocalDate;

import java.time.Month;

import java.util.List;

public class Person {

 // An enum to represent the gender of a person

 public static enum Gender {

 MALE, FEMALE

 }

 private long id;

 private String name;

 private Gender gender;

 private LocalDate dob;

 private double income;

 public Person(long id, String name, Gender gender,

 LocalDate dob, double income) {

 this.id = id;

 this.name = name;

 this.gender = gender;

 this.dob = dob;

 this.income = income;

 }

 public long getId() {

 return id;

 }

 public void setId(long id) {

 this.id = id;

 }

Chapter 6 StreamS

433

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 public Gender getGender() {

 return gender;

 }

 public boolean isMale() {

 return this.gender == Gender.MALE;

 }

 public boolean isFemale() {

 return this.gender == Gender.FEMALE;

 }

 public void setGender(Gender gender) {

 this.gender = gender;

 }

 public LocalDate getDob() {

 return dob;

 }

 public void setDob(LocalDate dob) {

 this.dob = dob;

 }

 public double getIncome() {

 return income;

 }

 public void setIncome(double income) {

 this.income = income;

 }

 public static List<Person> persons() {

 Person ken = new Person(1, "Ken",

 Gender.MALE,

 LocalDate.of(

 1970, Month.MAY, 4), 6000.0);

Chapter 6 StreamS

434

 Person jeff = new Person(2, "Jeff",

 Gender.MALE,

 LocalDate.of(

 1970, Month.JULY, 15), 7100.0);

 Person donna = new Person(3, "Donna",

 Gender.FEMALE,

 LocalDate.of(

 1962, Month.JULY, 29), 8700.0);

 Person chris = new Person(4, "Chris",

 Gender.MALE,

 LocalDate.of(

 1993, Month.DECEMBER, 16), 1800.0);

 Person laynie = new Person(5, "Laynie",

 Gender.FEMALE,

 LocalDate.of(

 2012, Month.DECEMBER, 13), 0.0);

 Person lee = new Person(6, "Li",

 Gender.MALE,

 LocalDate.of(

 2001, Month.MAY, 9), 2400.0);

 // Create a list of persons

 List<Person> persons = List.of(

 ken, jeff, donna, chris, laynie, lee);

 return persons;

 }

 @Override

 public String toString() {

 String str = String.format(

 "(%s, %s, %s, %s, %.2f)",

 id, name, gender, dob, income);

 return str;

 }

}

Chapter 6 StreamS

435

The Person class contains a static Gender enum to represent the gender of a person.

The class declares five instance variables (id, name, gender, dob, and income), getters,

and setters. The isMale() and isFemale() methods have been declared to be used as

method references in lambda expressions. You will use a list of people frequently, and,

for that purpose, the class contains a static method called persons() to get a list of

people.

 Creating Streams
There are many ways to create streams. Many existing classes in the Java libraries have

received new methods that return a stream. Based on the data source, stream creation

can be categorized as follows:

• Streams from values

• Empty streams

• Streams from function

• Streams from arrays

• Streams from collection

• Streams from files

• Streams from other sources

 Streams from Values
The Stream interface contains the following three static methods to create a sequential

Stream from a single value and multiple values:

• <T> Stream<T> of(T t)

• <T> Stream<T> of(T...values)

• <T> Stream<T> ofNullable(T t)

Chapter 6 StreamS

436

The following snippet of code creates two streams:

// Creates a stream with one string element

Stream<String> stream = Stream.of("Hello");

// Creates a stream with four string elements

Stream<String> stream = Stream.of(

 "Ken", "Jeff", "Chris", "Ellen");

The ofNullable() method returns a stream with a single value if the specified value

is non-null. Otherwise, it returns an empty stream:

String str = "Hello";

// Stream s1 will have one element "Hello"

Stream<String> s1 = Stream.ofNullable(str);

str = null;

// Stream s2 is an empty stream because str is null

Stream<String> s2 = Stream.ofNullable(str);

You created a List<Integer> and called its stream() method to get a stream object

in Listing 6-2. You can rewrite that example using the Stream.of() method as follows:

import java.util.stream.Stream;

...

// Compute the sum of the squares of all odd integers in

// the list

int sum = Stream.of(1, 2, 3, 4, 5)

 .filter(n -> n % 2 == 1)

 .map(n -> n * n)

 .reduce(0, Integer::sum);

System.out.println("Sum = " + sum);

Sum = 35

Note that the second version of the of() method takes a varargs argument, and you

can use it to create a stream from an array of objects as well. The following snippet of

code creates a stream from a String array:

String[] names = {"Ken", "Jeff", "Chris", "Ellen"};

// Creates a stream of four strings in the names array

Stream<String> stream = Stream.of(names);

Chapter 6 StreamS

437

Note the Stream.of() method creates a stream whose elements are of
reference type. If you want to create a stream of primitive values from an array of
primitive types, you need to use the Arrays.stream() method, which I explain
shortly.

The following snippet of code creates a stream of strings from a String array

returned from the split() method of the String class:

String str = "Ken,Jeff,Chris,Ellen";

// The stream will contain 4 elements:

// "Ken", "Jeff", "Chris", and "Ellen"

Stream<String> stream = Stream.of(str.split(","));

The Stream interface also supports creating a stream using the builder pattern using

the Stream.Builder<T> interface whose instance represents a stream builder. The

builder() static method of the Stream interface returns a stream builder:

// Gets a stream builder

Stream.Builder<String> builder = Stream.builder();

The Stream.Builder<T> interface contains the following methods:

• void accept(T t)

• Stream.Builder<T> add(T t)

• Stream<T> build()

The accept() and add() methods add elements to the stream being built. You might

wonder about the existence of two methods in the builder to add elements. The Stream.

Builder<T> interface inherits from the Consumer<T> interface, and therefore it inherits

the accept() method from the Consumer<T> interface. You can pass a builder’s instance

to a method that accepts a consumer, and the method can add elements to the builder

using the accept() method.

The add() method returns the reference to the builder that makes it suitable for

adding multiple elements using method chaining. Once you are done adding elements,

call the build() method to create the stream. You cannot add elements to the stream

Chapter 6 StreamS

438

after you call the build() method; doing so results in an IllegalStateException

runtime exception. The following snippet of code uses the builder pattern to create a

stream of four strings:

Stream<String> stream = Stream.<String>builder()

 .add("Ken")

 .add("Jeff")

 .add("Chris")

 .add("Ellen")

.build();

Note that the code specifies the type parameter as String when it obtains the builder

Stream.<String>builder(). The compiler fails to infer the type parameter if you do not

specify it. If you obtain the builder separately, the compiler will infer the type as String,

as shown:

// Obtain a builder

Stream.Builder<String> builder = Stream.builder();

// Add elements and build the stream

Stream<String> stream = builder.add("Ken")

 .add("Jeff")

 .add("Chris")

 .add("Ellen")

.build();

The IntStream interfaces contain four static methods that let you create IntStream

from values:

• IntStream of(int value)

• IntStream of(int... values)

• IntStream range(int start, int end)

• IntStream rangeClosed(int start, int end)

The of() methods let you create an IntStream by specifying individual values. The

range() and rangeClosed() methods produce an IntStream that contains ordered

integers between the specified start and end. The specified end is exclusive in the

Chapter 6 StreamS

439

range() method, whereas it is inclusive in the rangeClosed() method. The following

snippet of code uses both methods to create an IntStream having integers 1, 2, 3, 4, and 5

as their elements:

// Create an IntStream containing 1, 2, 3, 4, and 5

IntStream oneToFive = IntStream.range(1, 6);

// Create an IntStream containing 1, 2, 3, 4, and 5

IntStream oneToFive = IntStream.rangeClosed(1, 5);

The LongStream interface also contains range() and rangeClosed() methods,

which take arguments of type long and return a LongStream. The LongStream and

DoubleStream interfaces also contain of() methods, which work with the long and

double values and return a LongStream and a DoubleStream, respectively.

 Empty Streams
An empty stream is a stream with no elements. The Stream interface contains an empty()

static method to create an empty sequential stream:

// Creates an empty stream of strings

Stream<String> stream = Stream.empty();

The IntStream, LongStream, and DoubleStream interfaces also contain an empty()

static method to create an empty stream of primitive types. Here is one example:

// Creates an empty stream of integers

IntStream numbers = IntStream.empty();

 Streams from Functions
An infinite stream is a stream with a data source capable of generating an infinite

number of elements. Note that I am saying that the data source should be “capable of

generating” an infinite number of elements, not that the data source should have or

contain an infinite number of elements. It is impossible to store an infinite number of

elements of any kind because of memory and time constraints. However, it is possible to

have a function that can generate an infinite number of values on demand. The Stream

interface contains the following two static methods to generate an infinite stream:

Chapter 6 StreamS

440

• <T> Stream<T> iterate(T seed, Predicate<? super T> hasNext,

Unary-Operator<T> next)

• <T> Stream<T> iterate(T seed, UnaryOperator<T> f)

• <T> Stream<T> generate(Supplier<? extends T> s)

The iterate() method creates a sequential ordered stream, whereas the generate()

method creates a sequential unordered stream. The following sections show you how to

use these methods.

The stream interfaces for primitive values IntStream, LongStream, and

DoubleStream also contain iterate() and generate() static methods that take

parameters specific to their primitive types. For example, these methods are defined as

follows in the IntStream interface:

• static IntStream iterate(int seed, IntPredicate hasNext,

IntUnaryOperator next)

• IntStream iterate(int seed, IntUnaryOperator f)

• IntStream generate(IntSupplier s)

The first version of the iterate() method is declared as follows:

static <T> Stream<T> iterate(

 T seed,

 Predicate<? super T> hasNext,

 UnaryOperator<T> next)

The method takes three arguments: a seed, a predicate, and a function. It produces

elements by iteratively applying the next function as long as the hasNext predicate is

true. The seed argument is the initial element. Calling this method is similar to using a

for loop as follows:

for (int index = seed;

 hasNext.test(index);

 index = next.applyAsInt(index)) {

 // index is the next element in the stream

}

Chapter 6 StreamS

441

The following snippet of code produces a stream of integers from 1 to 10:

Stream<Integer> nums =

 Stream.iterate(1, n -> n <= 10, n -> n + 1);

The second version of the iterate() method is declared as follows:

static <T> Stream<T> iterate(T seed, UnaryOperator<T> f)

The method takes two arguments: a seed and a function. The first argument is a

seed that is the first element of the stream. The second element is generated by applying

the function to the first element. The third element is generated by applying the

function on the second element and so on. Its elements are seed, f(seed), f(f(seed)),

f(f(f(seed))), and so on. The following statement creates an infinite stream of natural

numbers and an infinite stream of all odd natural numbers:

// Creates a stream of natural numbers

Stream<Long> naturalNumbers =

 Stream.iterate(1L, n -> n + 1);

// Creates a stream of odd natural numbers

Stream<Long> oddNaturalNumbers =

 Stream.iterate(1L, n -> n + 2);

What do you do with an infinite stream? You understand that it is not possible to

consume all elements of an infinite stream. This is simply because the stream processing

will take forever to complete. Typically, you convert the infinite stream into a fixed-size

stream by applying a limit operation that truncates the input stream to be no longer than

a specified size. The limit operation is an intermediate operation that produces another

stream. You apply the limit operation using the limit(long maxSize) method of the

Stream interface. The following snippet of code creates a stream of the first 10 natural

numbers:

// Creates a stream of the first 10 natural numbers

Stream<Long> tenNaturalNumbers =

 Stream.iterate(1L, n -> n + 1).

 limit(10);

You can apply a forEach operation on a stream using the forEach(Consumer<?

super T> action) method of the Stream interface. The method returns void.

Chapter 6 StreamS

442

It is a terminal operation. The following snippet of code prints the first five odd

natural numbers on the standard output:

Stream.iterate(1L, n -> n + 2)

 .limit(5)

 .forEach(System.out::println);

1

3

5

7

9

Let’s look at a realistic example of creating an infinite stream of prime numbers.

Listing 6-4 contains a utility class called PrimeUtil. The class contains two utility

methods. The next() instance method returns the next prime number after the last

found prime number. The next(long after) static method returns the prime number

after the specified number. The isPrime() static method checks if a number is a prime

number.

Listing 6-4. A Utility Class to Work with Prime Numbers

// PrimeUtil.java

package com.jdojo.streams;

public class PrimeUtil {

 // Used for a stateful PrimeUtil

 private long lastPrime = 0L;

 // Computes the prime number after the last generated

 // prime

 public long next() {

 lastPrime = next(lastPrime);

 return lastPrime;

 }

 // Computes the prime number after the specified

 // number

 public static long next(long after) {

 long counter = after;

 // Keep looping until you find the next prime

Chapter 6 StreamS

443

 // number

 while (!isPrime(++counter));

 return counter;

 }

 // Checks if the specified number is a prime number

 public static boolean isPrime(long number) {

 // <= 1 is not a prime number

 if (number <= 1) {

 return false;

 }

 // 2 is a prime number

 if (number == 2) {

 return true;

 }

 // Even numbers > 2 are not prime numbers

 if (number % 2 == 0) {

 return false;

 }

 long maxDivisor = (long) Math.sqrt(number);

 for (int counter = 3;

 counter <= maxDivisor;

 counter += 2) {

 if (number % counter == 0) {

 return false;

 }

 }

 return true;

 }

}

The following snippet of code creates an infinite stream of prime numbers and prints

the first five prime numbers on the standard output:

Stream.iterate(2L, PrimeUtil::next)

 .limit(5)

 .forEach(System.out::println);

Chapter 6 StreamS

444

2

3

5

7

11

There is another way to get the first five prime numbers. You can generate an infinite

stream of natural numbers, apply a filter operation to pick only the prime numbers, and

limit the filtered stream to five. The following snippet of code shows this logic using the

isPrime() method of the PrimeUtil class:

// Print the first 5 prime numbers

Stream.iterate(2L, n -> n + 1)

 .filter(PrimeUtil::isPrime)

 .limit(5)

 .forEach(System.out::println);

2

3

5

7

11

Sometimes, you may want to discard some elements of a stream. This is

accomplished using the skip operation. The skip(long n) method of the Stream

interface discards (or skips) the first n elements of the stream. This is an intermediate

operation. The following snippet of code uses this operation to print five prime numbers,

skipping the first 100 prime numbers:

Stream.iterate(2L, PrimeUtil::next)

 .skip(100)

 .limit(5)

 .forEach(System.out::println);

547

557

563

569

571

Chapter 6 StreamS

445

Using everything you have learned about streams, can you write a stream pipeline

to print five prime numbers that are greater than 3000? This is left as an exercise for the

readers.

The generate(Supplier<? extends T> s) method uses the specified Supplier to

generate an infinite sequential unordered stream. The following snippet of code prints

five random numbers greater than or equal to 0.0 and less than 1.0 using the random()

static method of the Math class. You may get different output:

Stream.generate(Math::random)

 .limit(5)

 .forEach(System.out::println);

0.05958352209327644

0.8122226657626394

0.5073323815997652

0.9327951597282766

0.4314430923877808

If you want to use the generate() method to generate an infinite stream in which

the next element is generated based on the value of the previous element, you need

to use a Supplier that stores the last generated element. Note that a PrimeUtil object

can act as a Supplier whose next() instance method remembers the last generated

prime number. The following snippet of code prints five prime numbers after skipping

the first 100:

Stream.generate(new PrimeUtil()::next)

 .skip(100)

 .limit(5)

 .forEach(System.out::println);

547

557

563

569

571

Chapter 6 StreamS

446

The Random class in the java.util package contains specially tailored methods to work

with streams. So we have methods like ints(), longs(), and doubles() that return infinite

IntStream, LongStream, and DoubleStream, respectively, which contain random numbers of

the int, long, and double types. The following snippet of code prints five random int values

from an IntStream returned from the ints() method of the Random class:

// Print five random integers

new Random().ints()

 .limit(5)

 .forEach(System.out::println);

-1147567659

285663603

-412283607

412487893

-22795557

You may get different output every time you run the code. You can use the nextInt()

method of the Random class as the Supplier in the generate() method to achieve the

same result:

// Print five random integers

Stream.generate(new Random()::nextInt)

 .limit(5)

 .forEach(System.out::println);

If you want to work with only primitive values, you can use the generate() method

of the primitive type stream interfaces. For example, the following snippet of code prints

five random integers using the generate() static method of the IntStream interface:

IntStream.generate(new Random()::nextInt)

 .limit(5)

 .forEach(System.out::println);

How would you generate an infinite stream of repeating values? For example, how

would you generate an infinite stream of zeroes? The following snippet of code shows

you how to do this:

IntStream zeroes = IntStream.generate(() -> 0);

Chapter 6 StreamS

447

 Streams from Arrays
The Arrays class in the java.util package contains an overloaded stream() static

method to create sequential streams from arrays. You can use it to create an IntStream

from an int array, a LongStream from a long array, a DoubleStream from a double array,

and a Stream<T> from an array of the reference type T. The following snippet of code

creates an IntStream and a Stream<String> from an int array and a String array:

// Creates a stream from an int array with elements

// 1, 2, and 3

IntStream numbers = Arrays.stream(new int[]{1, 2, 3});

// Creates a stream from a String array with elements

// "Ken", and "Jeff"

Stream<String> names = Arrays.stream(

 new String[] {"Ken", "Jeff"});

Note You can create a stream from a reference type array using two methods:
Arrays.stream(T[] t) and Stream.of(T...t). providing two methods in
the library to accomplish the same thing is intentional.

 Streams from Collections
The Collection interface contains the stream() and parallelStream() methods that

create sequential and parallel streams from a Collection, respectively. The following

snippet of code creates streams from a set of strings:

import java.util.HashSet;

import java.util.Set;

import java.util.stream.Stream;

...

// Create and populate a set of strings

Set<String> names = Set.of("Ken", "jeff");

// Create a sequential stream from the set

Stream<String> sequentialStream = names.stream();

// Create a parallel stream from the set

Stream<String> parallelStream = names.parallelStream();

Chapter 6 StreamS

448

 Streams from Files
There are many methods in the classes of the java.io and java.nio.file packages to

support I/O operations using streams. For example:

• You can read text from a file as a stream of strings in which each

element represents one line of text from the file.

• You can obtain a stream of JarEntry from a JarFile.

• You can obtain the list of entries in a directory as a stream of Path.

• You can obtain a stream of Path that is a result of a file search in a

specified directory.

• You can obtain a stream of Path that contains the file tree of a

specified directory.

I show some examples of using streams with file I/O in this section. Refer to the API

documentation for the java.nio.file.Files, java.io.BufferedReader, and java.

util.jar.JarFile classes for more details on the stream-related methods.

The BufferedReader and Files classes contain a lines() method that reads a

file lazily and returns the contents as a stream of strings. Each element in the stream

represents one line of text from the file. The file needs to be closed when you are done

with the stream. Calling the close() method on the stream will close the underlying

file. Alternatively, you can create the stream in a try-with-resources statement so the

underlying file is closed automatically.

The program in Listing 6-5 shows how to read contents of a file using a stream. It

also walks the entire file tree for the current working directory and prints the entries in

the directory. The program assumes that you have the luci1.txt file, which is supplied

with the source code, in the current working directory. If the file does not exist, an error

message with the absolute path of the expected file is printed. You may get different

output when you run the program.

Listing 6-5. Performing File I/O Using Streams

// IOStream.java

package com.jdojo.streams;

Chapter 6 StreamS

449

import java.io.IOException;

import java.nio.file.Files;

import java.nio.file.Path;

import java.nio.file.Paths;

import java.util.stream.Stream;

public class IOStream {

 public static void main(String[] args) {

 // Read the contents of the file luci1.txt

 readFileContents("luci1.txt");

 // Print the file tree for the current working

 // directory

 listFileTree();

 }

 public static void readFileContents(String filePath) {

 Path path = Paths.get(filePath);

 if (!Files.exists(path)) {

 System.out.println("The file "

 + path.toAbsolutePath()

 + " does not exist.");

 return;

 }

 try (Stream<String> lines = Files.lines(path)) {

 // Read and print all lines

 lines.forEach(System.out::println);

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 public static void listFileTree() {

 Path dir = Paths.get("");

 System.out.printf("%nThe file tree for %s%n",

 dir.toAbsolutePath());

 try (Stream<Path> fileTree = Files.walk(dir)) {

 fileTree.forEach(System.out::println);

 } catch (IOException e) {

Chapter 6 StreamS

450

 e.printStackTrace();

 }

 }

}

STRANGE fits of passion have I known:

And I will dare to tell,

But in the lover's ear alone,

What once to me befell.

The file tree for C:\Java9LanguageFeatures

build

build\modules

build\modules\com

build\modules\com\jdojo

...

 Streams from Other Sources
Many classes that hold some kind of contents provide methods that return the data they

represent in a stream. Two such methods that you may use frequently are explained

next:

• The chars() method in the CharSequence interface returns an

IntStream whose elements are int values representing the characters

of the CharSequence. You can use the chars() method on a String, a

StringBuilder, and a StringBuffer to obtain a stream of characters

of their contents as these classes implement the CharSequence

interface.

• The splitAsStream(CharSequence input) method of the java.

util.regex. Pattern class returns a stream of String whose

elements match the pattern.

Let’s look at an example in both categories. The following snippet of code creates

a stream of characters from a string, filters out all digits and whitespace, and prints the

remaining characters:

Chapter 6 StreamS

451

String str = "5 apples and 25 oranges";

str.chars()

 .filter(n -> !Character.isDigit((char)n)

 && !Character.isWhitespace((char)n))

 .forEach(n -> System.out.print((char)n));

applesandoranges

The following snippet of code obtains a stream of strings by splitting a string using a

regular expression (“,”). The matched strings are printed on the standard output:

String str = "Ken,Jeff,Lee";

Pattern.compile(",")

 .splitAsStream(str)

 .forEach(System.out::println);

Ken

Jeff

Lee

 Representing an Optional Value
In Java, null is used to represent “nothing” or an “empty” result. Most often, a method

returns null if it does not have a result to return. This has been a source of frequent

NullPointerException in Java programs. Consider printing a person’s year of birth,

like so:

Person ken = new Person(1, "Ken", Person.Gender.MALE,

 null, 6000.0);

int year = ken.getDob().getYear();

// <- Throws a NullPointerException

System.out.println("Ken was born in the year " + year);

The code throws a NullPointerException at runtime. The problem is in the return

value of the ken.getDob() method that returns null. Calling the getYear() method

on a null reference results in the NullPointerException. So, what is the solution?

In fact, unless you want to replace Java by a new language, there is no real solution

to this on a language level. But Java provides a library construct which helps to avoid

Chapter 6 StreamS

452

NullPointerExceptions. There exists an Optional<T> class in the java.util package to

deal with NullPointerExceptions gracefully. Methods that may return nothing should

return an Optional instead of null.

An Optional is a container object that may or may not contain a non-null value.

Its isPresent() method returns true if it contains a non-null value, and false

otherwise. Its get() method returns the non-null value if it contains a non-null

value, and throws a NoSuchElementException otherwise. This implies that when a

method returns an Optional, you must, as a practice, check if it contains a non-null

value before asking it for the value. If you use the get() method before making sure it

contains a non-null value, you may get a NoSuchElementException instead of getting a

NullPointerException. This is why I said in the previous paragraph that there is no real

solution to the NullPointerException. However, returning an Optional is certainly a

better way to deal with null, as developers will get used to using the Optional objects in

the way they are designed to be used.

How do you create an Optional<T> object? The Optional<T> class provides the

following static factory methods to create its objects:

• <T> Optional<T> empty(): Returns an empty Optional. That is,

the Optional returned from this method does not contain a

non-null value.

• <T> Optional<T> of(T value): Returns an Optional containing

the specified value as the non-null value. If the specified value is

null, it throws a NullPointerException.

• <T> Optional<T> ofNullable(T value): Returns an Optional

containing the specified value if the value is non-null. If the specified

value is null, it returns an empty Optional.

The following snippet of code shows how to create Optional objects:

// Create an empty Optional

Optional<String> empty = Optional.empty();

// Create an Optional for the string "Hello"

Optional<String> str = Optional.of("Hello");

// Create an Optional with a String that may be null

String nullableString = "";

// <- get a string that may be null...

Optional<String> str2 = Optional.of(nullableString);

Chapter 6 StreamS

453

The following snippet of code prints the value in an Optional if it contains a non-

null value:

// Create an Optional for the string "Hello"

Optional<String> str = Optional.of("Hello");

// Print the value in Optional

if (str.isPresent()) {

 String value = str.get();

 System.out.println("Optional contains " + value);

} else {

 System.out.println("Optional is empty.");

}

Optional contains Hello

You can use the ifPresent(Consumer<? super T> action) method of the Optional

class to take an action on the value contained in the Optional. If the Optional is empty,

this method does not do anything. You can rewrite the previous code to print the value in

an Optional as follows. Note that if the Optional were empty, the code would not print

anything:

// Create an Optional for the string "Hello"

Optional<String> str = Optional.of("Hello");

// Print the value in the Optional, if present

str.ifPresent(value ->

 System.out.println("Optional contains " + value));

Optional contains Hello

The following are four methods to get the value of an Optional:

• T get(): Returns the value contained in the Optional. If the

Optional is empty, it throws a NoSuchElementException.

• T orElse(T defaultValue): Returns the value contained in

the Optional. If the Optional is empty, it returns the specified

defaultValue.

Chapter 6 StreamS

454

• T orElseGet(Supplier<? extends T> defaultSupplier): Returns

the value contained in the Optional. If the Optional is empty, it

returns the value returned from the specified defaultSupplier.

• <X extends Throwable> T orElseThrow(Supplier<? extends X>

exceptionSupplier) throws X extends Throwable: Returns the

value contained in the Optional. If the Optional is empty, it throws

the exception returned from the specified exceptionSupplier.

The Optional<T> class describes a non-null reference type value or its absence. The

java.util package contains three more classes named OptionalInt, OptionalLong,

and OptionalDouble to deal with optional primitive values. They contain similarly

named methods that apply to primitive data types, except for getting their values. They

do not contain a get() method. To return their values, the OptionalInt class contains a

getAsInt(), the OptionalLong class contains a getAsLong(), and the OptionalDouble

class contains a getAsDouble() method. Like the get() method of the Optional class,

the getters for primitive optional classes also throw a NoSuchElementException when

they are empty. Unlike the Optional class, they do not contain an ofNullable() factory

method because primitive values cannot be null. The following snippet of code shows

how to use the OptionalInt class:

// Create an empty OptionalInt

OptionalInt empty = OptionalInt.empty();

// Use an OptionalInt to store 287

OptionalInt number = OptionalInt.of(287);

if (number.isPresent()){

 int value = number.getAsInt();

 System.out.println("Number is " + value);

} else {

 System.out.println("Number is absent.");

}

Number is 287

Several methods in the Streams API return an instance of the Optional,

OptionalInt, OptionalLong, and OptionalDouble when they do not have anything

to return. For example, all types of streams let you compute the maximum element in

the stream. If the stream is empty, there is no maximum element. Note that in a stream

Chapter 6 StreamS

455

pipeline, you may start with a non-empty stream and end up with an empty stream

because of filtering or other operations such as limit, skip, etc. For this reason, the max()

method in all stream classes returns an optional object. The program in Listing 6-6

shows how to get the maximum integer from IntStream.

Listing 6-6. Working with Optional Values

// OptionalTest.java

package com.jdojo.streams;

import java.util.Comparator;

import java.util.Optional;

import java.util.OptionalInt;

import java.util.stream.IntStream;

import java.util.stream.Stream;

public class OptionalTest {

 public static void main(String[] args) {

 // Get the maximum of odd integers from the stream

 OptionalInt maxOdd = IntStream.of(10, 20, 30)

 .filter(n -> n % 2 == 1)

 .max();

 if (maxOdd.isPresent()) {

 int value = maxOdd.getAsInt();

 System.out.println("Maximum odd integer is " +

 value);

 } else {

 System.out.println("Stream is empty.");

 }

 // Get the maximum of odd integers from the stream

 OptionalInt numbers = IntStream.of(

 1, 10, 37, 20, 31)

 .filter(n -> n % 2 == 1)

 .max();

Chapter 6 StreamS

456

 if (numbers.isPresent()) {

 int value = numbers.getAsInt();

 System.out.println("Maximum odd integer is " +

 value);

 } else {

 System.out.println("Stream is empty.");

 }

 // Get the longest name

 Optional<String> name =

 Stream.of("Ken", "Ellen", "Li")

 .max(Comparator.comparingInt(String::length));

 if (name.isPresent()) {

 String longestName = name.get();

 System.out.println("Longest name is " +

 longestName);

 } else {

 System.out.println("Stream is empty.");

 }

 }

}

Stream is empty.

Maximum odd integer is 37

Longest name is Ellen

In addition, the Optional<T> class contains the following methods:

• void ifPresentOrElse(Consumer<? super T> action, Runnable

empty-Action)

• Optional<T> or(Supplier<? extends Optional<? extends T»

supplier)

• Stream<T> stream()

Chapter 6 StreamS

457

Before I describe these methods and present a complete program showing their use,

consider the following list of an Optional<Integer>:

List<Optional<Integer>> optionalList = List.of(

 Optional.of(1),

 Optional.empty(),

 Optional.of(2),

 Optional.empty(),

 Optional.of(3));

The list contains five Optional elements, two of which are empty and three contain

values as 1, 2, and 3. I refer to this list in the subsequent discussion.

The ifPresentOrElse() method lets you provide two alternate courses of actions. If

a value is present, it performs the specified action with the value.

Otherwise, it performs the specified emptyAction. The following snippet of code

iterates over all the elements in the list using a stream to print the value if Optional

contains a value and an “Empty” string if Optional is empty:

optionalList.stream()

 .forEach(p -> p.ifPresentOrElse(

 System.out::println,

 () -> System.out.println("Empty")));

1

Empty

2

Empty

3

The or() method returns the Optional itself if the Optional contains a non-null

value. Otherwise, it returns the Optional returned by the specified supplier. The

following snippet of code creates a stream from a list of Optional and uses the or()

method to map all empty Optionals to an Optional with a value of zero:

optionalList.stream()

 .map(p -> p.or(() -> Optional.of(0)))

 .forEach(System.out::println);

Chapter 6 StreamS

458

Optional[1]

Optional[0]

Optional[2]

Optional[0]

Optional[3]

The stream() method returns a sequential stream of elements containing the value

present in the Optional. If the Optional is empty, it returns an empty stream. Suppose

you have a list of Optional and you want to collect all present values in another list. You

can achieve this as follows:

// Print the values in all non-empty Optionals

optionalList.stream()

 .filter(Optional::isPresent)

 .map(Optional::get)

 .forEach(System.out::println);

1

2

3

You had to use a filter to filter out all empty Optionals and map the remaining

Optionals to their values. With the new stream() method, you can combine the

filter() and map() operations into one flatMap() operation as shown. I discuss

flattening streams in detail in the “Flattening Streams” section later in this chapter.

// Print the values in all non-empty Optionals

optionalList.stream()

 .flatMap(Optional::stream)

 .forEach(System.out::println);

1

2

3

Chapter 6 StreamS

459

 Applying Operations to Streams
Table 6-1 lists some of the commonly used stream operations, their types, and

descriptions. The Stream interface contains a method with the same name as the

name of the operation in the table. You have seen some of these operations in previous

sections. Subsequent sections cover them in detail.

Table 6-1. List of Commonly Used Stream Operations Supported by the

Streams API

Operation Type Description

Distinct Intermediate returns a stream consisting of the distinct elements of this stream.

elements e1 and e2 are considered equal if e1.equals(e2)

returns true.

Filter Intermediate returns a stream consisting of the elements of this stream that

match the specified predicate.

flatMap Intermediate returns a stream consisting of the results of applying the specified

function to the elements in this stream. the function produces a

stream for each input element, and the output streams are flattened.

performs one-to-many mapping.

Limit Intermediate returns a stream consisting of the elements in this stream, truncated

to be no longer than the specified size.

Map Intermediate returns a stream consisting of the results of applying the specified

function to the elements in this stream. performs one-to-one mapping.

peek Intermediate returns a stream whose elements consist of this stream. It applies

the specified action as it consumes elements of this stream. It is

mainly used for debugging purposes.

Skip Intermediate Discards the first N elements in the stream and returns the remaining

stream. If this stream contains fewer than N elements, an empty

stream is returned.

dropWhile Intermediate returns the elements of the stream, discarding the elements from

the beginning for which a predicate is true. this operation was added

to the Streams apI in Java 9.

(continued)

Chapter 6 StreamS

460

 Debugging a Stream Pipeline
You apply a sequence of operations on a stream. Each operation transforms the elements

of the input stream, either producing another stream or a result. Sometimes, you may

need to look at the elements of the streams as they pass through the pipeline. You can do

so by using the peek(Consumer<? super T> action) method of the Stream<T> interface

that is meant only for debugging purposes. It produces a stream after applying an

Table 6-1. (continued)

Operation Type Description

takeWhile Intermediate returns elements from the beginning of the stream, which match a

predicate, discarding the rest of the elements. this operation was

added to the Streams apI in Java 9.

sorted Intermediate returns a stream consisting of the elements in this stream, sorted

according to natural order or the specified Comparator. For an

ordered stream, the sort is stable.

allMatch terminal returns true if all elements in the stream match the specified

predicate, false otherwise. returns true if the stream is empty.

anyMatch terminal returns true if any element in the stream matches the specified

predicate, false otherwise. returns false if the stream is empty.

findAny terminal returns any element from the stream. an empty Optional is

returned for an empty stream.

findFirst terminal returns the first element of the stream. For an ordered stream, it

returns the first element in the encounter order; for an unordered

stream, it returns any element.

noneMatch terminal returns true if no elements in the stream match the specified

predicate, false otherwise. returns true if the stream is empty.

forEach terminal applies an action for each element in the stream.

Reduce terminal applies a reduction operation to compute a single value from the

stream.

Chapter 6 StreamS

461

action on each input element. The IntStream, LongStream, and DoubleStream methods

also contain a peek() method that takes an IntConsumer, a LongConsumer, and a

DoubleConsumer as an argument. Typically, you use a lambda expression with the peek()

method to log messages describing elements being processed. The following snippet of

code uses the peek() method at three places to print the elements passing through the

stream pipeline:

int sum = Stream.of(1, 2, 3, 4, 5)

 .peek(e -> System.out.println("Taking integer: "

 + e))

 .filter(n -> n % 2 == 1)

 .peek(e -> System.out.println("Filtered integer: "

 + e))

 .map(n -> n * n)

 .peek(e -> System.out.println("Mapped integer: "

 + e))

 .reduce(0, Integer::sum);

System.out.println("Sum = " + sum);

Taking integer: 1

Filtered integer: 1

Mapped integer: 1

Taking integer: 2

Taking integer: 3

Filtered integer: 3

Mapped integer: 9

Taking integer: 4

Taking integer: 5

Filtered integer: 5

Mapped integer: 25

Sum = 35

Notice that the output shows the even numbers being taken from the data source,

but not passing the filter operation.

Chapter 6 StreamS

462

 Applying the ForEach Operation
The forEach operation takes an action for each element of the stream. The action may

simply print each element of the stream to the standard output or increase the income

of every person in a stream by 10%. The Stream<T> interface contains two methods to

perform the forEach operation:

• void forEach(Consumer<? super T> action)

• void forEachOrdered(Consumer<? super T> action)

IntStream, LongStream, and DoubleStream also contain the same methods, except

that their parameter type is the specialized consumer types for primitives; for example,

the parameter type for the forEach() method in the IntStream is IntConsumer.

Why do you have two methods to perform the forEach operation? Sometimes,

the order in which the action is applied for the elements in a stream is important, and

sometimes it is not. The forEach() method does not guarantee the order in which

the action for each element in the stream is applied. The forEachOrdered() method

performs the action in the encounter order of elements defined by the stream. Use the

forEachOrdered() method for a parallel stream only when necessary because it may

slow down processing. The following snippet of code prints the details of females in the

person list:

Person.persons()

 .stream()

 .filter(Person::isFemale)

 .forEach(System.out::println);

(3, Donna, FEMALE, 1962-07-29, 8700.00)

(5, Laynie, FEMALE, 2012-12-13, 0.00)

The program in Listing 6-7 shows how to use the forEach() method to increase the

income of all females by 10%. The output shows that only Donna got an increase because

another female named Laynie had 0.0 income before.

Listing 6-7. Applying the ForEach Operation on a List of Persons

// ForEachTest.java

package com.jdojo.streams;

import java.util.List;

Chapter 6 StreamS

463

public class ForEachTest {

 public static void main(String[] args) {

 // Get the list of persons

 List<Person> persons = Person.persons();

 // Print the list

 System.out.println(

 "Before increasing the income: " + persons);

 // Increase the income of females by 10%

 persons.stream()

 .filter(Person::isFemale)

 .forEach(->

 p.setIncome(p.getIncome() * 1.10));

 // Print the list again

 System.out.println(

 "After increasing the income: " + persons);

 }

}

Before increasing the income:

 [(1, Ken, MALE, 1970-05-04, 6000.00),

 (2, Jeff, MALE, 197007-15, 7100.00),

 (3, Donna, FEMALE, 1962-07-29, 8700.00),

 (4, Chris, MALE, 1993-12-16,1800.00),

 (5, Laynie, FEMALE, 2012-12-13, 0.00),

 (6, Li, MALE, 2001-05-09, 2400.00)]

After increasing the income:

 [(1, Ken, MALE, 1970-05-04, 6000.00),

 (2, Jeff, MALE, 197007-15, 7100.00),

 (3, Donna, FEMALE, 1962-07-29, 9570.00),

 (4, Chris, MALE, 1993-12-16,1800.00),

 (5, Laynie, FEMALE, 2012-12-13, 0.00),

 (6, Li, MALE, 2001-05-09, 2400.00)]

Chapter 6 StreamS

464

 Applying the Map Operation
A map operation (also known as mapping) applies a function to each element of the input

stream to produce another stream (also called an output stream or a mapped stream).

The number of elements in the input and output streams is the same. The operation does

not modify the elements of the input stream—at least it is not supposed to.

Figure 6-7 depicts the application of the map operation on a stream. It shows

element e1 from the input stream being mapped to element et1 in the mapped stream,

element e2 mapped to et2, etc.

Mapping a stream to another stream is not limited to any specific type of elements.

You can map a stream of T to a stream of type S, where T and S may be the same or

different types. For example, you can map a stream of Person to a stream of int where

each Person element in the input stream maps to the Person’s ID in the mapped stream.

You can apply the map operation on a stream using one of the following methods of the

Stream<T> interface:

• <R> Stream<R> map(Function<? super T,? extends R> mapper)

• DoubleStream mapToDouble(ToDoubleFunction<? super T>

mapper)

Figure 6-7. A pictorial view of the map operation

Chapter 6 StreamS

465

• IntStream mapToInt(ToIntFunction<? super T> mapper)

• LongStream mapToLong(ToLongFunction<? super T> mapper)

The map operation takes a function as an argument. Each element from the input

stream is passed to the function. The returned value from the function is the mapped

element in the mapped stream. Use the map() method to perform the mapping to

reference type elements. If the mapped stream is of a primitive type, use other methods;

for example, use the mapToInt() method to map a stream of a reference type to a stream

of int. The IntStream, LongStream, and DoubleStream interfaces contain similar

methods to facilitate mapping of one type of stream to another. The methods supporting

the map operation on an IntStream are as follows:

• IntStream map(IntUnaryOperator mapper)

• DoubleStream mapToDouble(IntToDoubleFunction mapper)

• LongStream mapToLong(IntToLongFunction mapper)

• <U> Stream<U> mapToObj(IntFunction<? extends U> mapper)

The following snippet of code creates an IntStream whose elements are integers

from 1 to 5, maps the elements of the stream to their squares, and prints the mapped

stream on the standard output. Note that the map() method used in the code is the map()

method of the IntStream interface:

IntStream.rangeClosed(1, 5)

 .map(n -> n * n)

 .forEach(System.out::println);

1

4

9

16

25

The following snippet of code maps the elements of a stream of people to their

names and prints the mapped stream. Note that the map() method used in the code is

the map() method of the Stream interface:

Chapter 6 StreamS

466

Person.persons()

 .stream()

 .map(Person::getName)

 .forEach(System.out::println);

Ken

Jeff

Donna

Chris

Laynie

Li

 Flattening Streams
In the previous section, you saw the map operation that facilitates a one-to-one

mapping. Each element of the input stream is mapped to an element in the output

stream. The Streams API also supports one-to-many mapping through the flatMap

operation. It works as follows:

 1. It takes an input stream and produces an output stream using a

mapping function.

 2. The mapping function takes an element from the input stream

and maps the element to a stream. The type of input element

and the elements in the mapped stream may be different. This

step produces a stream of streams. Suppose the input stream is a

Stream<T> and the mapped stream is Stream<Stream<R» where T

and R may be the same or different.

 3. Finally, it flattens the output stream (i.e., a stream of streams) to

produce a stream. That is, the Stream<Stream<R» is flattened to

Stream<R>.

It takes some time to understand the flat map operation. Suppose that you have a

stream of three numbers: 1, 2, and 3. You want to produce a stream that contains the

numbers and the squares of the numbers. You want the output stream to contain 1, 1, 2,

4, 3, and 9. The following is the first, incorrect attempt to achieve this:

Chapter 6 StreamS

467

Stream.of(1, 2, 3)

 .map(n -> Stream.of(n, n * n))

 .forEach(System.out::println);

java.util.stream.ReferencePipeline$Head@372f7a8d

java.util.stream.ReferencePipeline$Head@2f92e0f4

java.util.stream.ReferencePipeline\$Head@28a418fc

Are you surprised by the output? You do not see numbers in the output. The

input stream to the map() method contains three integers: 1, 2, and 3. The map()

method produces one element for each element in the input stream. In this case,

the map() method produces a Stream<Integer> for each integer in the input stream.

It produces three Stream<Integer>s. The first stream contains 1 and 1; the second

one contains 2 and 4; the third one contains 3 and 9. The forEach() method receives

the Stream<Integer> object as its argument and prints the string returned from the

toString() method of each Stream<Integer>. You can call the forEach() on a stream,

so let’s nest its call to print the elements of the stream of streams, like so:

Stream.of(1, 2, 3)

 .map(n -> Stream.of(n, n * n))

 .forEach(e -> e.forEach(System.out::println));

1

1

2

4

3

9

You were able to print the numbers and their squares. But you have not achieved

the goal of getting those numbers in a Stream<Integer>. They are still in the

Stream<Stream<Integer». The solution is to use the flatMap() method instead of the

map() method. The following snippet of code does this:

Stream.of(1, 2, 3)

 .flatMap(n -> Stream.of(n, n * n))

 .forEach(System.out::println);

Chapter 6 StreamS

468

1

1

2

4

3

9

Figure 6-8 shows the pictorial view of how the flatMap() method works in this

example. If you still have doubts about the workings of the flatMap operation, you

can think of its name in the reverse order. Read it as mapFlat, which means “map the

elements of the input stream to streams, and then flatten the mapped streams.”

Let’s take another example of the flat map operation. Suppose you have a stream of

strings. How will you count the number of the Es in the strings? The following snippet of

code shows you how to do it:

long count = Stream.of("Ken", "Jeff", "Ellen")

 .map(name -> name.chars())

 .flatMap(intStream -> intStream.

 mapToObj(n -> (char)n))

 .filter(ch -> ch == 'e' || ch == 'E')

 .count();

System.out.println("Es count: " + count);

Es count: 4

Figure 6-8. Flattening a stream using the flatMap method

Chapter 6 StreamS

469

The code maps the strings to IntStream. Note that the chars() method of the

String class returns an IntStream, not a Stream<Character>. The output of the map()

method is Stream<IntStream>. The flatMap() method maps the Stream<IntStream>

to Stream<Stream<Character» and, finally, flattens it to produce a Stream<Character>.

So, the output of the flatMap() method is Stream<Character>. The filter() method

filters out any characters that are not an E or e. Finally, the count() method returns the

number of elements in the stream. The main logic is to convert the Stream<String> to a

Stream<Character>. You can achieve the same using the following code as well:

long count = Stream.of("Ken", "Jeff", "Ellen")

 .flatMap(name ->

 IntStream.range(0, name.length())

 .mapToObj(name::charAt))

 .filter(ch -> ch == 'e' || ch == 'E')

 .count();

The IntStream.range() method creates an IntStream that contains the indexes of

all characters in the input string. The mapToObj() method converts the IntStream into a

Stream<Character> whose elements are the characters in the input string.

 Applying the Filter Operation
The filter operation is applied on an input stream to produce another stream, which

is known as the filtered stream. The filtered stream contains all elements of the input

stream for which a predicate evaluates to true. A predicate is a function that accepts an

element of the stream and returns a boolean value. Unlike a mapped stream, the filtered

stream is of the same type as the input stream.

The filter operation produces a subset of the input stream. If the predicate evaluates

to false for all elements of the input stream, the filtered stream is an empty stream.

Figure 6-9 shows a pictorial view of applying a filter operation to a stream. The figure

shows that two elements (e1 and en) from the input stream made it to the filtered stream,

and the other two elements (e2 and e3) were filtered out.

Chapter 6 StreamS

470

You can apply a filter operation to a stream using the filter() method of the

Stream, IntStream, LongStream, and DoubleStream interfaces. The method accepts

a Predicate. The Streams API offers different flavors of the filter operations, which

I discuss after a few examples of using the filter() method.

Note In a map operation, the new stream contains the same number of elements
with different values from the input stream. In a filter operation, the new stream
contains a different number of elements with the same values from the input
stream.

The following snippet of code uses a stream of people and filters in only females.

It maps the females to their names and prints them to the standard output:

Person.persons()

 .stream()

 .filter(Person::isFemale)

 .map(Person::getName)

 .forEach(System.out::println);

Donna

Laynie

Figure 6-9. A pictorial view of the filter operation

Chapter 6 StreamS

471

The following snippet of code applies two filter operations to print the names of all

males having income more than 5000.0:

Person.persons()

 .stream()

 .filter(Person::isMale)

 .filter(p -> p.getIncome() > 5000.0)

 .map(Person::getName)

 .forEach(System.out::println);

Ken

Jeff

You could have accomplished the same using the following statement that uses only

one filter operation that includes both predicates for filtering into one predicate:

Person.persons()

 .stream()

 .filter(p -> p.isMale() && p.getIncome() > 5000.0)

 .map(Person::getName)

 .forEach(System.out::println);

Ken

Jeff

The following methods can be used to apply filter operations to streams:

• Stream<T> skip(long count)

• Stream<T> limit(long maxCount)

• default Stream<T> dropWhile(Predicate<? super T> predicate)

• default Stream<T> takeWhile(Predicate<? super T> predicate)

The skip() method returns the elements of the stream after skipping the specified

count elements from the beginning. The limit() method returns elements from the

beginning of the stream that are equal to or less than the specified maxCount. One of

these methods drops elements from the beginning, and another takes elements from

the beginning dropping the remaining. Both work based on the number of elements.

The dropWhile() and takeWhile() are like skip() and limit() methods, respectively;

however, they work on a Predicate rather than on the number of elements.

Chapter 6 StreamS

472

You can think of the dropWhile() and takeWhile() methods similar to the filter()

method with an exception. The filter() method evaluates the predicate on all

elements, whereas the dropWhile() and takeWhile() methods evaluate the predicate on

elements from the beginning on the stream until the predicate evaluates to false.

For an ordered stream, the dropWhile() method returns the elements of the stream

discarding the elements from the beginning for which the specified predicate is true.

Consider the following ordered stream of integers:

1, 2, 3, 4, 5, 6, 7

If you use a predicate in the dropWhile() method that returns true for an integer less

than 5, the method will drop the first four elements and return the rest:

Stream.of(1, 2, 3, 4, 5, 6, 7)

 .dropWhile(e -> e < 5)

 .forEach(System.out::println);

5

6

7

For an unordered stream, the behavior of the dropWhile() method is

non- deterministic. It may choose to drop any subset of elements matching the

predicate. The current implementation drops the matching elements from the

beginning until it finds a non-matching element. The following snippet of code uses the

dropWhile() method on an unordered stream, and only one of the elements matching

the predicate is dropped:

Stream.of(1, 5, 6, 2, 3, 4, 7)

 .dropWhile(e -> e < 5)

 .forEach(System.out::println);

5

6

2

3

4

7

Chapter 6 StreamS

473

There are two extreme cases for the dropWhile() method. If the first element does

not match the predicate, the method returns the original stream. If all elements match

the predicate, the method returns an empty stream.

The takeWhile() method works the same way as the dropWhile() method, except

that it returns the matching elements from the beginning of the stream and discards the

rest.

Caution Use the dropWhile() and takeWhile() methods with ordered,
parallel streams with great care because you may see a performance hit. In an
ordered, parallel stream, elements must be ordered and returned from all threads
before these methods can return. these methods perform best with sequential
streams.

 Applying the Reduce Operation
The reduce operation combines all elements of a stream to produce a single value by

applying a combining function repeatedly. It is also called a reduction operation or a

fold. Computing the sum, maximum, average, count, etc. of elements of a stream of

integers are examples of reduce operations. Collecting elements of a stream in a List,

Set, or Map is also an example of the reduce operation.

The reduce operation takes two parameters called a seed (also called an initial

value) and an accumulator. The accumulator is a function. If the stream is empty, the

seed is the result. Otherwise, the seed represents a partial result. The partial result and

an element are passed to the accumulator, which returns another partial result. This

repeats until all elements are passed to the accumulator. The last value returned from

the accumulator is the result of the reduce operation. Figure 6-10 shows a pictorial view

of the reduce operation.

Chapter 6 StreamS

474

The stream-related interfaces contain two methods called reduce() and collect()

to perform generic reduce operations. Methods such as sum(), max(), min(), count(),

etc. are also available to perform specialized reduce operations. Note that the specialized

methods are not available for all types of streams. For example, having a sum() method

in the Stream<T> interface does not make sense because adding reference type elements,

such as adding two people, is meaningless. So, you will find methods like sum() only in

IntStream, LongStream, and DoubleStream interfaces. Counting the number of elements

in a stream makes sense for all types of streams. So, the count() method is available

for all types of streams. I discuss the reduce() method in this section. I discuss the

collect() method in several subsequent sections.

Let’s consider the following snippet of code, which performs the reduce operation in

the imperative programming style. The code computes the sum of all integers in a list:

// Create the list of integers

List<Integer> numbers = List.of(1, 2, 3, 4, 5);

// Declare an accumulator called sum and initialize

// (or seed) it to zero

int sum = 0;

Figure 6-10. A pictorial view of applying the reduce operation

Chapter 6 StreamS

475

for(int num : numbers) {

 // Accumulate the partial result in sum

 sum = sum + num;

}

// Print the result

System.out.println(sum);

15

The code declares a variable named sum and initializes the variable to 0. If there

is no element in the list, the initial value of sum becomes the result. The for-each

loop traverses the list and keeps storing the partial results in the sum variable, using

it as an accumulator. When the for-each loop finishes, the sum variable contains the

result. As pointed out at the beginning of this chapter, such a for loop has no room for

parallelization; the entire logic must be executed in a single thread.

Consider another example that computes the sum of incomes of persons in a list:

// Declare an accumulator called sum and initialize

// it to zero

double sum = 0.0;

for(Person person : Person.persons()) {

 // Map the Person to his income double

 double income = person.getIncome();

 // Accumulate the partial result in sum

 sum = sum + income;

}

System.out.println(sum);

This time, you had to perform an additional step to map the Person to their income

before you could accumulate the partial results in the sum variable.

The Stream<T> interface contains a reduce() method to perform the reduce

operation. The method has three overloaded versions:

• T reduce(T identity, BinaryOperator<T> accumulator)

• <U> U reduce(U identity, BiFunction<U,? super T,U>

accumulator, BinaryOperator<U> combiner)

• Optional<T> reduce(BinaryOperator<T> accumulator)

Chapter 6 StreamS

476

The first version of the reduce() method takes an identity and an accumulator as

arguments and reduces the stream to a single value of the same type. You can rewrite the

example of computing the sum of integers in a list as follows:

List<Integer> numbers = List.of(1, 2, 3, 4, 5);

int sum = numbers.stream()

 .reduce(0, Integer::sum);

System.out.println(sum);

15

Let’s attempt to do the same with the second example, which computes the sum of

the incomes. The following code generates a compile-time error. Only the relevant part

of the error message is shown:

double sum = Person.persons()

 .stream()

 .reduce(0.0, Double::sum);

error: no suitable method found for

 reduce(double,Double::sum)

 .reduce(0.0, Double::sum);

 ^

 method Stream.reduce(Person,BinaryOperator

 <Person>) is not applicable

 (argument mismatch;

 double cannot be converted to Person) ...

The stream() method in Person.persons().stream() returns a Stream<Person>,

and, therefore, the reduce() method is supposed to perform a reduction on the Person

objects. However, the first argument to the method is 0.0, which implies that the method

is attempting to operate on the Double type, not the Person type. This mismatch in the

expected argument type Person and the actual argument type Double resulted in the

error.

Chapter 6 StreamS

477

You wanted to compute the sum of the incomes of all people. You need to map the

stream of people to a stream of their incomes using the map operation as follows:

double sum = Person.persons()

 .stream()

 .map(Person::getIncome)

 .reduce(0.0, Double::sum);

System.out.println(sum);

26000.0

Performing a map-reduce operation is typical in functional programming. The

second version of the reduce method, shown again for easy reference, lets you perform a

map operation, followed by a reduce operation.

<U> U reduce(U identity,

 BiFunction<U,? super T,U> accumulator,

 BinaryOperator<U> combiner)

Note that the second argument, which is the accumulator, takes an argument whose

type may be different from the type of the stream. This is used for the map operation as

well as for accumulating the partial results. The third argument is used for combining

the partial results when the reduce operation is performed in parallel, which I elaborate

on shortly. The following snippet of code prints the sum of the incomes of all people:

double sum = Person.persons()

 .stream()

 .reduce(0.0, (partialSum, person) ->

 partialSum + person.getIncome(), Double::sum);

System.out.println(sum);

26000.0

If you examine the code, the second argument to the reduce() method is sufficient

to produce the desired result in this case. So, what is the purpose of the third argument,

Double::sum, which is the combiner? In fact, the combiner was not used in the reduce()

operation at all, even if you specified it. You can verify that the combiner was not used

using the following code, which prints a message from the combiner:

Chapter 6 StreamS

478

double sum = Person.persons()

 .stream()

 .reduce(0.0, (partialSum, person) ->

 partialSum + person.getIncome(),

 (a, b) -> {

 System.out.println(

 "Combiner called: a = " + a + "b = " + b);

 return a + b;

 });

System.out.println(sum);

26000.0

The output proves that the combiner was not called. Why do you need to provide

the combiner when it is not used? It is used when the reduce operation is performed

in parallel. In that case, each thread will accumulate the partial results using the

accumulator. At the end, the combiner is used to combine the partial results from all

threads to get the result. The following snippet of code shows how the sequential reduce

operation works. The code prints a message at several steps along with the current

thread name that is performing the operation:

double sum = Person.persons()

 .stream()

 .reduce(0.0,

 (Double partialSum, Person p) -> {

 double accumulated = partialSum + p.getIncome();

 System.out.println(

 Thread.currentThread().getName() +

 " - Accumulator: partialSum = " +

 partialSum + ", person = " + p +

 ", accumulated = " + accumulated);

 return accumulated;

 },

 (a, b) -> {

 double combined = a + b;

Chapter 6 StreamS

479

 System.out.println(

 Thread.currentThread().getName() +

 " - Combiner: a = " + a + ", b = " + b +

 ", combined = " + combined);

 return combined;

 });

System.out.println(sum);

main - Accumulator: partialSum = 0.0,

 person = (1, Ken, MALE, 1970-05-04, 6000.00),

 accumulated = 6000.0

main - Accumulator: partialSum = 6000.0,

 person = (2, Jeff, MALE, 1970-07-15, 7100.00),

 accumulated = 13100.0

main - Accumulator: partialSum = 13100.0,

 person = (3, Donna, FEMALE, 1962-07-29, 8700.00),

 accumulated = 21800.0

main - Accumulator: partialSum = 21800.0,

 person = (4, Chris, MALE, 1993-12-16, 1800.00),

 accumulated = 23600.0

main - Accumulator: partialSum = 23600.0,

 person = (5, Laynie, FEMALE, 2012-12-13, 0.00),

 accumulated = 23600.0

main - Accumulator: partialSum = 23600.0,

 person = (6, Li, MALE, 2001-05-09, 2400.00),

 accumulated = 26000.0

26000.0

The output shows that the accumulator was sufficient to produce the result, and

the combiner was never called. Notice that there was only one thread named main that

processed all people in the stream.

Let’s turn the stream into a parallel stream, keeping all the debugging messages. The

following code uses a parallel stream to get the sum of the incomes of all people. You

may get different output containing a different message, but the sum value would be the

same as 26000.0.

Chapter 6 StreamS

480

double sum = Person.persons()

 .parallelStream()

 .reduce(0.0,

 (Double partialSum, Person p) -> {

 double accumulated = partialSum + p.getIncome();

 System.out.println(

 Thread.currentThread().getName() +

 " - Accumulator: partialSum = " +

 partialSum + ", person = " + p +

 ", accumulated = " + accumulated);

 return accumulated;

 },

 (a, b) -> {

 double combined = a + b;

 System.out.println(

 Thread.currentThread().getName() +

 " - Combiner: a = " + a + ", b = " + b +

 ", combined = " + combined);

 return combined;

 });

System.out.println(sum);

ForkJoinPool.commonPool-worker-4 -

 Accumulator: partialSum = 0.0,

 person = (5, Laynie, FEMALE, 2012-12-13, 0.00),

 accumulated = 0.0

ForkJoinPool.commonPool-worker-2 -

 Accumulator: partialSum = 0.0,

 person = (6, Li, MALE, 2001-05-09, 2400.00),

 accumulated = 2400.0

ForkJoinPool.commonPool-worker-1 -

 Accumulator: partialSum = 0.0,

 person = (2, Jeff, MALE, 1970-07-15, 7100.00),

 accumulated = 7100.0

ForkJoinPool.commonPool-worker-2 -

 Combiner: a = 0.0, b = 2400.0, combined = 2400.0

Chapter 6 StreamS

481

ForkJoinPool.commonPool-worker-5 -

 Accumulator: partialSum = 0.0,

 person = (3, Donna, FEMALE, 1962-07-29, 8700.00),

 accumulated = 8700.0

main - Accumulator: partialSum = 0.0,

 person = (4, Chris, MALE, 1993-12-16, 1800.00),

 accumulated = 1800.0

ForkJoinPool.commonPool-worker-3 -

 Accumulator: partialSum = 0.0,

 person = (1, Ken, MALE, 1970-05-04, 6000.00),

 accumulated = 6000.0

main - Combiner: a = 1800.0, b = 2400.0,

 combined = 4200.0

ForkJoinPool.commonPool-worker-5 -

 Combiner: a = 7100.0, b = 8700.0, combined = 15800.0

ForkJoinPool.commonPool-worker-5 -

 Combiner: a = 6000.0, b = 15800.0, combined = 21800.0

ForkJoinPool.commonPool-worker-5 -

 Combiner: a = 21800.0, b = 4200.0, combined = 26000.0

26000.0

The output shows that six threads (five fork/join worker threads and one main

thread) performed the parallel reduce operation. They all performed partial reduction

using the accumulator to obtain partial results. Finally, the partial results were combined

using the combiner to get the result.

Sometimes, you cannot specify a default value for a reduce operation. Suppose you

want to get a maximum integer value from a stream of integers. If the stream is empty,

you cannot default the maximum value to 0. In such a case, the result is not defined.

The third version of the reduce(BinaryOperator<T> accumulator) method is used to

perform such a reduction operation. The method returns an Optional<T> that wraps the

result or the absence of a result. If the stream contains only one element, that element

is the result. If the stream contains more than one element, the first two elements are

passed to the accumulator, and subsequently the partial result and the remaining

elements are passed to the accumulator. The following snippet of code computes the

maximum of integers in a stream:

Chapter 6 StreamS

482

Optional<Integer> max = Stream.of(1, 2, 3, 4, 5)

 .reduce(Integer::max);

if (max.isPresent()) {

 System.out.println("max = " + max.get());

} else {

 System.out.println("max is not defined.");

}

max = 5

The following snippet of code tries to get the maximum of integers in an empty

stream:

Optional<Integer> max = Stream.<Integer>empty()

 .reduce(Integer::max);

if (max.isPresent()) {

 System.out.println("max = " + max.get());

} else {

 System.out.println("max is not defined.");

}

max is not defined.

The following snippet of code prints the details of the highest earner in the

person’s list:

Optional<Person> person = Person.persons()

 .stream()

 .reduce((p1, p2) ->

 p1.getIncome() > p2.getIncome() ? p1 : p2);

if (person.isPresent()) {

 System.out.println(

 "Highest earner: " + person.get());

} else {

 System.out.println(

 "Could not get the highest earner.");

}

Highest earner: (3, Donna, FEMALE, 1962-07-29, 8700.00)

Chapter 6 StreamS

483

To compute the sum, max, min, average, etc. of a numeric stream, you do not need

to use the reduce() method. You can map the non-numeric stream into one of the

three numeric stream types (IntStream, LongStream, or DoubleStream) and use the

specialized methods for these purposes. The following snippet of code prints the sum

of the incomes of all people. Note the use of the mapToDouble() method that converts a

Stream<Person> to a DoubleStream. The sum() method is called on the DoubleStream.

double totalIncome = Person.persons()

 .stream()

 .mapToDouble(Person::getIncome)

 .sum();

System.out.println("Total Income: " + totalIncome);

Total Income : 26000.0

To get the minimum and maximum values of a stream, use the min() and max()

methods of the specific stream. These methods in the Stream<T> interface take a

Comparator as an argument and return an Optional<T>. They do not take any arguments

in the IntStream, LongStream, and DoubleStream interfaces and return OptionalInt,

OptionalLong, and OptionalDouble, respectively. The following snippet of code prints

the details of the highest earner in a list of people:

Optional<Person> person = Person.persons()

 .stream()

 .max(Comparator.comparingDouble(Person::getIncome));

if (person.isPresent()) {

 System.out.println(

 "Highest earner: " + person.get());

} else {

 System.out.println(

 "Could not get the highest earner.");

}

Highest earner: (3, Donna, FEMALE, 1962-07-29, 8700.00)

Chapter 6 StreamS

484

The following snippet of code prints the highest income in the person list using the

max() method of the DoubleStream:

OptionalDouble income = Person.persons()

 .stream()

 .mapToDouble(Person::getIncome)

 .max();

if (income.isPresent()) {

 System.out.println(

 "Highest income: " + income.getAsDouble());

} else {

 System.out.println(

 "Could not get the highest income.");

}

Highest income: 8700.0

How will you get the highest earner among males and the highest among females in

one stream pipeline? So far, you have learned how to compute a single value using the

reduce operation. In this case, you need to group the people into two groups, males and

females, and then compute the person with the highest income in each group. I show

you how to perform grouping and collect multiple values when I discuss the collect()

method in the next section.

Streams support a count operation through the count() method, which simply

returns the number of elements in the stream as a long. The following snippet of code

prints the number of elements in the stream of people:

long personCount = Person.persons()

 .stream()

 .count();

System.out.println("Person count: " + personCount);

Person count: 6

The count operation is a specialized reduce operation. Were you thinking of using

the map() and reduce() methods to count the number of elements in a stream? The

easier way is to map each element in the stream to 1 and compute the sum. This

approach does not use the reduce() method. Here is how you do this:

Chapter 6 StreamS

485

long personCount = Person.persons()

 .stream()

 .mapToLong(p -> 1L)

 .sum();

The following snippet of code uses the map() and reduce() methods to implement

the count operation:

long personCount = Person.persons()

 .stream()

 .map(p -> 1L)

 .reduce(0L, Long::sum);

The following snippet of code uses only the reduce() method to implement the

count operation:

long personCount = Person.persons()

 .stream()

 .reduce(0L, (partialCount, person) ->

 partialCount + 1L,

 Long::sum);

Note this section showed you many ways to perform the same reduction
operation on a stream. Some ways may perform better than others depending on
the stream type and the parallelization used. Use primitive type streams whenever
possible to avoid the overhead of unboxing; use parallel streams whenever
possible to take advantage of the multicores available on the machine.

 Collecting Data Using Collectors
So far, you have been applying reduction on a stream to produce a single value (a

primitive value or a reference value) or void. For example, you used the reduce()

method of the Stream<Integer> interface to compute a long value that is the sum of its

elements. There are several cases in which you want to collect the results of executing a

stream pipeline into a collection such as a List, a Set, a Map, etc. Sometimes, you may

Chapter 6 StreamS

486

want to apply complex logic to summarize the stream’s data. For example, you may want

to group people by their gender and compute the highest earner in every gender group.

This is possible using the collect() method of the Stream<T> interface. The collect()

method is overloaded with two versions:

• <R> R collect(Supplier<R> supplier, BiConsumer<R,? super

T> accumulator, BiConsumer<R,R> combiner)

• <R,A> R collect(Collector<? super T,A,R> collector): The

method uses a mutable reduction operation. It uses a mutable

container such as a mutable Collection to compute the results from

the input stream. The first version of the collect() method takes

three arguments:

 – A supplier that supplies a mutable container to store (or collect)

the results

 – An accumulator that accumulates the results into the mutable

container

 – A combiner that combines the partial results when the reduction

operation takes place in parallel

Note the container to collect the data using the collect() method need not be
a Collection. It can be any mutable object that can accumulate results, such as
a StringBuilder.

Suppose you have a stream of people and you want to collect the names of all of the

people in an ArrayList<String>. Here are the steps to accomplish this.

First, you need to have a supplier that will return an ArrayList<String> to store the

names. You can use either of the following statements to create the supplier:

// Using a lambda expression

Supplier<ArrayList<String>> supplier =

 () -> new ArrayList<>();

// Using a constructor reference

Supplier<ArrayList<String>> supplier =

 ArrayList::new;

Chapter 6 StreamS

487

Second, you need to create an accumulator that receives two arguments. The first

argument is the container returned from the supplier, which is the ArrayList<String>

in this case. The second argument is the element of the stream. Your accumulator should

simply add the names to the list. You can use either of the following statements to create

an accumulator:

// Using a lambda expression

BiConsumer<ArrayList<String>, String> accumulator =

 (list, name) -> list.add(name);

// Using a method reference

BiConsumer<ArrayList<String>, String> accumulator =

 ArrayList::add;

Finally, you need a combiner that will combine the results of two

ArrayList<String>s into one ArrayList<String>. Note that the combiner is used

only when you collect the results using a parallel stream. In a sequential stream, the

accumulator is sufficient to collect all results. Your combiner will be simple; it will add

all the elements of the second list to the first list using the addAll() method. You can use

either of the following statements to create a combiner:

// Using a lambda expression

BiConsumer<ArrayList<String>,

 ArrayList<String>> combiner =

 (list1, list2) -> list1.addAll(list2);

// Using a method reference

BiConsumer<ArrayList<String>,

 ArrayList<String>> combiner =

 ArrayList::addAll;

Chapter 6 StreamS

488

Now you are ready to use the collect() method to collect the names of all people in

a list using the following snippet of code:

List<String> names = Person.persons()

 .stream()

 .map(Person::getName)

 .collect(ArrayList::new,

 ArrayList::add,

 ArrayList::addAll);

System.out.println(names);

[Ken, Jeff, Donna, Chris, Laynie, Li]

You can use a similar approach to collect data in a Set and a Map. It seems to be a lot

of plumbing just to collect data in a simple collection like a list. Another version of the

collect() method provides a simpler solution. It takes an instance of the Collector

interface as an argument and collects the data for you. The Collector interface is in

the java.util.stream package, and it is declared as follows. Only abstract methods are

shown:

public interface Collector<T,A,R> {

 Supplier<A> supplier();

 BiConsumer<A,T> accumulator();

 BinaryOperator<A> combiner();

 Function<A,R> finisher();

 Set<Collector.Characteristics> characteristics();

}

The Collector interface takes three type parameters called T, A, and R, where T is the

type of input elements, A is the type of the accumulator, and R is the type of the result.

The first three methods look familiar; you just used them in the previous example. The

finisher is used to transform the intermediate type A to result type R. The characteristics

of a Collector describe the properties that are represented by the constants of the

Collector.Characteristics enum.

The designers of the Streams API realized that rolling out your own collector is

too much work. They provided a utility class called Collectors that provides out-of-

the-box implementations for commonly used collectors. Three of the most commonly

used methods of the Collectors class are toList(), toSet(), and toCollection().

Chapter 6 StreamS

489

The toList() method returns a Collector that collects the data in a List; the toSet()

method returns a Collector that collects data in a Set; the toCollection() takes a

Supplier that returns a Collection to be used to collect data. The following snippet of

code collects all names of people in a List<String>:

List<String> names = Person.persons()

 .stream()

 .map(Person::getName)

 .collect(Collectors.toList());

System.out.println(names);

[Ken, Jeff, Donna, Chris, Laynie, Li]

Notice that this time you achieved the same result in a much cleaner way.

The following snippet of code collects all names in a Set<String>. Note that a Set

keeps only unique elements.

Set<String> uniqueNames = Person.persons()

 .stream()

 .map(Person::getName)

 .collect(Collectors.toSet());

System.out.println(uniqueNames);

[Donna, Ken, Chris, Jeff, Laynie, Li]

The output is not in a particular order because a Set does not impose any ordering

on its elements. You can collect names in a sorted set using the toCollection() method

as follows:

SortedSet<String> uniqueSortedNames= Person.persons()

 .stream()

 .map(Person::getName)

 .collect(Collectors.toCollection(TreeSet::new));

System.out.println(uniqueSortedNames);

[Chris, Donna, Jeff, Ken, Laynie, Li]

Recall that the toCollection() method takes a Supplier as an argument that is used

to collect the data. In this case, you have used the constructor reference TreeSet::new as

the Supplier. This has an effect of using a TreeSet, which is a sorted set, to collect the data.

Chapter 6 StreamS

490

You can also sort the list of names using the sorted operation. The sorted() method

of the Stream interface produces another stream containing the same elements in a

sorted order. The following snippet of code shows how to collect sorted names in a list:

List<String> sortedName = Person.persons()

 .stream()

 .map(Person::getName)

 .sorted()

 .collect(Collectors.toList());

System.out.println(sortedName);

[Chris, Donna, Jeff, Ken, Laynie, Li]

Note that the code applies the sorting before it collects the names. The collector

notices that it is collecting an ordered stream (sorted names) and preserves the ordering

during the collection process.

You will find many static methods in the Collectors class that return a Collector

meant to be used as a nested collector. One of these methods is the counting() method

that returns the number of input elements. Here is an example of counting the number

of people in the streams:

long count = Person.persons()

 .stream()

 .collect(Collectors.counting());

System.out.println("Person count: " + count);

Person count: 6

You may argue that you could have achieved the same result using the count()

method of the Stream interface as follows:

long count = Person.persons()

 .stream()

 .count();

System.out.println("Persons count: " + count);

Persons count: 6

Chapter 6 StreamS

491

When do you use the Collectors.counting() method instead of the Stream.

count() method to count the number of elements in a stream? As mentioned before,

collectors can be nested. You will see examples of nested collectors shortly. These

methods in the Collectors class are meant to be used as nested collectors, not in this

case just to count the number of elements in the stream. Another difference between

the two is their type: the Stream.count() method represents an operation on a stream,

whereas the Collectors. counting() method returns a Collector. Listing 6-8 shows

the complete program to collect sorted names in a list.

Listing 6-8. Collecting Results into a Collection

// CollectTest.java

package com.jdojo.streams;

import java.util.List;

import java.util.stream.Collectors;

public class CollectTest {

 public static void main(String[] args) {

 List<String> sortedNames = Person.persons()

 .stream()

 .map(Person::getName)

 .sorted()

 .collect(Collectors.toList());

 System.out.println(sortedNames);

 }

}

[Chris, Donna, Jeff, Ken, Laynie, Li]

 Collecting Summary Statistics
In a data-centric application, you need to compute the summary statistics on a group

of numeric data. For example, you may want to know the maximum, minimum, sum,

average, and count of the incomes of all people. The java.util package contains three

classes to collect statistics:

• DoubleSummaryStatistics

Chapter 6 StreamS

492

• LongSummaryStatistics

• IntSummaryStatistics

These classes do not necessarily need to be used with streams. You can use them

to compute the summary statistics on any group of numeric data. Using these classes

is simple: create an object of the class, keep adding numeric data using the accept()

method, and, finally, call the getter methods such as getCount(), getSum(), getMin(),

getAverage(), and getMax() to get the statistics for the group of data. Listing 6-9 shows

how to compute the statistics on a number of double values.

Listing 6-9. Computing Summary Statistics on a Group of Numeric Data

// SummaryStats.java

package com.jdojo.streams;

import java.util.DoubleSummaryStatistics;

public class SummaryStats {

 public static void main(String[] args) {

 DoubleSummaryStatistics stats =

 new DoubleSummaryStatistics();

 stats.accept(100.0);

 stats.accept(500.0);

 stats.accept(400.0);

 // Get stats

 long count = stats.getCount();

 double sum = stats.getSum();

 double min = stats.getMin();

 double avg = stats.getAverage();

 double max = stats.getMax();

 System.out.printf("count=%d, sum=%.2f, " +

 "min=%.2f, max=%.2f, average=%.2f%n",

 count, sum, min, max, avg);

 }

}

count=3, sum=1000.00, min=100.00, max=500.00,

average=333.33

Chapter 6 StreamS

493

The summary statistics classes were designed to be used with streams. They contain

a combine() method that combines two summary statistics. Can you guess its use?

Recall that you need to specify a combiner when you collect data from a stream, and this

method can act as a combiner for two summary statistics. The following snippet of code

computes the summary statistics for incomes of all people:

DoubleSummaryStatistics incomeStats =

 Person.persons()

 .stream()

 .map(Person::getIncome)

 .collect(DoubleSummaryStatistics::new,

 DoubleSummaryStatistics::accept,

 DoubleSummaryStatistics::combine);

System.out.println(incomeStats);

DoubleSummaryStatistics{count=6, sum=26000.000000,

min=0.000000, average=4333.333333,

max=8700.000000}

The Collectors class contains methods to obtain a collector to compute

the summary statistics of the specific type of numeric data. The methods are

named summarizingDouble(), summarizingLong(), and summarizingInt().

They take a function to be applied on the elements of the stream and return a

DoubleSummaryStatistics, a LongSummaryStatistics, and an IntSummaryStatistics,

respectively. You can rewrite the code for the previous example as follows:

DoubleSummaryStatistics incomeStats =

 Person.persons()

 .stream()

 .collect(Collectors.summarizingDouble(Person::getIncome));

System.out.println(incomeStats);

DoubleSummaryStatistics{count=6, sum=26000.000000, min=0.000000,

average=4333.333333,

max=8700.000000}

Chapter 6 StreamS

494

The Collectors class contains methods such as counting(), summingXxx(),

averagingXxx(), minBy(), and maxBy() that return a collector to perform a specific type

of summary computation on a group of numeric data that you get in one shot using the

summarizingXxx() method. Here, Xxx can be Double, Long, and Int.

 Collecting Data in Maps
You can collect data from a stream into a Map. The toMap() method of the Collectors

class returns a collector to collect data in a Map. The method is overloaded and it has

three versions:

• toMap(Function<? super T,? extends K> keyMapper, Function<?

super T,? extends U> valueMapper)

• toMap(Function<? super T,? extends K> keyMapper, Function<?

super T,? extends U> valueMapper, BinaryOperator<U>

mergeFunction)

• toMap(Function<? super T,? extends K> keyMapper, Function<?

super T,? extends U> valueMapper, BinaryOperator<U>

mergeFunction, Supplier<M> mapSupplier)

The first version takes two arguments. Both arguments are Functions. The first

argument maps the stream elements to keys in the map. The second argument

maps stream elements to values in the map. If duplicate keys are found, an

IllegalStateException is thrown. The following snippet of code collects a person’s

data in a Map<long,String> whose keys are the person’s IDs and values are the person’s

names:

Map<Long,String> idToNameMap = Person.persons()

 .stream()

 .collect(Collectors.toMap(Person::getId,

Person::getName));

System.out.println(idToNameMap);

{1=Ken, 2=Jeff, 3=Donna, 4=Chris, 5=Laynie, 6=Li}

Chapter 6 StreamS

495

Suppose you want to collect a person’s name based on gender. The following is the

first, incorrect attempt, which throws an IllegalStateException. Only partial output is

shown.

Map<Person.Gender,String> genderToNamesMap =

 Person.persons()

 .stream()

 .collect(Collectors.toMap(Person::getGender,

 Person::getName));

Exception in thread "main"

java.lang.IllegalStateException: Duplicate key Ken ...

The runtime is complaining about the duplicate keys because Person::getGender

will return the gender of the person as the key, and you have multiple males and females

in the stream.

The solution is to use the second version of the toMap() method to obtain the

collection. It lets you specify a merge function as a third argument. The merge function

is passed the old and new values for the duplicate key. The function is supposed to

merge the two values and return a new value that will be used for the key. In your case,

you can concatenate the names of all males and females. The following snippet of code

accomplishes this:

Map<Person.Gender,String> genderToNamesMap =

 Person.persons()

 .stream()

 .collect(Collectors.toMap(

 Person::getGender,

 Person::getName,

 (oldValue, newValue) ->

 String.join(", ", oldValue, newValue)));

System.out.println(genderToNamesMap);

{FEMALE=Donna, Laynie, MALE=Ken, Jeff, Chris, Li}

The first two versions of the toMap() method create the Map for you. The third version

lets you pass a Supplier to provide a Map yourself. I do not cover an example of using this

version of the toMap() method.

Chapter 6 StreamS

496

Armed with two examples of collecting the data in maps, can you think of the logic

for collecting data in a map that summarizes the number of people by gender? Here is

how you accomplish this:

Map<Person.Gender, Long> countByGender = Person.persons()

 .stream()

 .collect(Collectors.toMap(

 Person::getGender,

 p -> 1L,

 (oldCount, newCount) -> oldCount + 1));

System.out.println(countByGender);

{MALE=4, FEMALE=2}

The key mapper function remains the same. The value mapper function is p -> 1L,

which means when a person belonging to a gender is encountered the first time, its value

is set to 1. In case of a duplicate key, the merge function is called that simply increments

the old value by 1.

The last example in this category that collects the highest earner by gender in a Map is

shown in Listing 6-10.

Listing 6-10. Collecting the Highest Earner by Gender in a Map

// CollectIntoMapTest.java

package com.jdojo.streams;

import java.util.Map;

import java.util.function.Function;

import java.util.stream.Collectors;

public class CollectIntoMapTest {

 public static void main(String[] args) {

 Map<Person.Gender, Person> highestEarnerByGender =

 Person.persons()

 .stream()

 .collect(Collectors.toMap(

 Person::getGender,

 Function.identity(),

Chapter 6 StreamS

497

 (oldPerson, newPerson) ->

 newPerson.getIncome() >

 oldPerson.getIncome() ?

 newPerson:oldPerson));

 System.out.println(highestEarnerByGender);

 }

}

{ FEMALE=(3, Donna, FEMALE, 1962-07-29, 8700.00),

 MALE=(2, Jeff, MALE, 1970-07-15, 7100.00)

}

The program stores the Person object as the value in the map. Note the use of

Function.identity() as the function to map values. This method returns an identity

function that simply returns the value that was passed to it. You could have used a

lambda expression of person -> person in its place. The merge function compares the

income of the person already stored as the value for a key. If the new person has more

income than the existing one, it returns the new person.

Collecting data into a map is a very powerful way of summarizing data. You will see

maps again when I discuss grouping and partitioning of data shortly.

Note the toMap() method returns a non-concurrent map that has performance
overhead when streams are processed in parallel. It has a companion method
called toConcurrentMap() that returns a concurrent collector that should be
used when streams are processed in parallel.

 Joining Strings Using Collectors
The joining() method of the Collectors class returns a collector that concatenates

the elements of a stream of CharSequence and returns the result as a String. The

concatenation occurs in the encounter order. The joining() method is overloaded, and

it has three versions:

• joining()

• joining(CharSequence delimiter)

Chapter 6 StreamS

498

• joining(CharSequence delimiter, CharSequence prefix,

CharSequence suffix)

The version with no arguments simply concatenates all elements. The second

version uses a delimiter between two elements. The third version uses a delimiter, a

prefix, and a suffix. The prefix is added to the beginning of the result, and the suffix is

added to the end of the result. Listing 6-11 shows how to use the joining() method.

Listing 6-11. Joining a Stream of CharSequence Using a Collector

// CollectJoiningTest.java

package com.jdojo.streams;

import java.util.List;

import java.util.stream.Collectors;

public class CollectJoiningTest {

 public static void main(String[] args) {

 List<Person> persons = Person.persons();

 String names = persons.stream()

 .map(Person::getName)

 .collect(Collectors.joining());

 String delimitedNames = persons.stream()

 .map(Person::getName)

 .collect(Collectors.joining(", "));

 String prefixedNames = persons.stream()

 .map(Person::getName)

 .collect(Collectors.joining(

 ", ", "Hello ", ". Goodbye."));

 System.out.println("Joined names: " + names);

 System.out.println("Joined, delimited names: " +

 delimitedNames);

 System.out.println(prefixedNames);

 }

}

Joined names: KenJeffDonnaChrisLaynieLi

Joined, delimited names:

 Ken, Jeff, Donna, Chris, Laynie, Li

Hello Ken, Jeff, Donna, Chris, Laynie, Li. Goodbye.

Chapter 6 StreamS

499

 Grouping Data
Grouping data for reporting purposes is common. For example, you may want to know

the average income by gender, the youngest person by gender, etc. In previous sections,

you used the toMap() method of the Collectors class to get collectors that can be used

to group data in maps. The groupingBy() method of the Collectors class returns a

collector that groups the data before collecting them in a Map. If you have worked with

SQL statements, it is similar to using a “group by” clause. The groupingBy() method is

overloaded, and it has three versions:

• groupingBy(Function<? super T,? extends K> classifier)

• groupingBy(Function<? super T,? extends K> classifier,

super T,A,D> downstream)

• groupingBy(Function<? super T,? extends K> classifier,

Supplier<M> mapFactory, Collector<? super T,A,D>

downstream)

I discuss the first and second versions. The third version is the same as the second

one, except that it lets you specify a Supplier that is used as the factory to get the Map. In

the first two versions, the collector takes care of creating the Map for you.

Note the groupingBy() method returns a non-concurrent map that has
performance overhead when the stream is processed in parallel. It has a
companion method called groupingByConcurrent() that returns a concurrent
collector that should be used in parallel stream processing for better performance.

In the most generic version, the groupingBy() method takes two parameters:

• A classifier that is a function to generate the keys in the map

• A collector that performs a reduction operation on the values

associated with each key

The first version of the groupingBy() method returns a collector that collects data

into a Map<K, List<T», where K is the return type of the classifier function and T is the

Chapter 6 StreamS

500

type of elements in the input stream. Note that the value of a grouped key in the map is a

list of elements from the stream. The following snippet of code collects the list of people

by gender:

Map<Person.Gender, List<Person>> personsByGender =

 Person.persons()

 .stream()

 .collect(Collectors.groupingBy(

 Person::getGender));

System.out.println(personsByGender);

{FEMALE=[(3, Donna, FEMALE, 1962-07-29, 8700.00),

 (5, Laynie, FEMALE, 2012-12-13, 0.00)],

MALE=[(1, Ken, MALE, 1970-05-04, 6000.00),

 (2, Jeff, MALE, 1970-07-15, 7100.00),

 (4, Chris, MALE, 1993-12-16, 1800.00),

 (6, Li, MALE, 2001-05-09, 2400.00)]}

Suppose you want to get a list of names grouped by gender. You need to use the

second version of the groupingBy() method that lets you perform a reduction operation

on the values of each key. Notice that the type of the second argument is Collector. The

Collectors class contains many methods that return a Collector that you will be using

as the second argument.

Let’s try a simple case where you want to group people by gender and count the

number of people in each group. The counting() method of the Collectors class

returns a Collector to count the number of elements in a stream. The following snippet

of code accomplishes this:

Map<Person.Gender, Long> countByGender =

 Person.persons()

 .stream()

 .collect(Collectors.groupingBy(

 Person::getGender,

 Collectors.counting()));

System.out.println(countByGender);

{MALE=4, FEMALE=2}

Chapter 6 StreamS

501

Let’s get back to the example of listing a person’s name by gender. You need to use

the mapping() method of the Collectors class to get a collector that will map the list of

people in the value of a key to their names and join them. The signature of the mapping()

method is as follows:

mapping(Function<? super T,? extends U> mapper,

 Collector<? super U,A,R> downstream)

Notice the type of the second argument of the mapping() method. It is another

Collector. This is where dealing with grouping data gets complex. You need to nest

collectors inside collectors. To simplify the grouping process, you break down the things

you want to perform on the data. You have already grouped people by their gender.

The value of each key in the map was a List<Person>. Now you want to reduce the

List<Person> to a String that contains a comma-separated list of the names of all the

people. You need to think about this operation separately to avoid confusion. You can

accomplish this reduction as follows:

 1. Use a function to map each person to their name. This function

could be as simple as a method reference like Person::getName.

Think of the output of this step as a stream of person names in a

group.

 2. What do you want to do with the stream of names generated in

the first step? You may want to collect them in a String, a List,

a Set, or some other data structure. In this case, you want to join

the names of people, so you use the collector returned from the

joining() method of the Collectors class.

The following snippet of code shows how to group the names of people by gender:

Map<Person.Gender, String> namesByGender =

 Person.persons()

 .stream()

 .collect(Collectors.groupingBy(Person::getGender,

 Collectors.mapping(

 Person::getName,

 Collectors.joining(", "))));

System.out.println(namesByGender);

{MALE=Ken, Jeff, Chris, Li, FEMALE=Donna, Laynie}

Chapter 6 StreamS

502

The code collects the names for a group in a comma-separated String. Can you

think of a way to collect the names in a List? It is easy to accomplish this. Use the

collector returned by the toList() method of the Collectors class, like so:

Map<Person.Gender, List<String>> namesByGender =

 Person.persons()

 .stream()

 .collect(Collectors.groupingBy(Person::getGender,

 Collectors.mapping(

 Person::getName,

 Collectors.toList())));

System.out.println(namesByGender);

{FEMALE=[Donna, Laynie], MALE=[Ken, Jeff, Chris, Li]}

Groups can be nested. Let’s create a report that groups people by gender. Within

each gender group, it creates another group based on the month of their births and

lists the names of the people born in this group. This is a very simple computation to

perform. You already know how to group people by gender.

All you need to do is perform another grouping on the values of the keys, which is

simply another collector obtained using the groupingBy() method again. In this case,

the value for a key in the map representing the top-level grouping (by gender) is a Map.

Listing 6-12 contains the complete code to accomplish this.

Notice the use of the static imports to import the static methods from the

Collectors class for better code readability. The program assumes that every person

has a date of birth.

Listing 6-12. Using Nested Groupings

// NestedGroupings.java

package com.jdojo.streams;

import java.time.Month;

import java.util.Map;

import static java.util.stream.Collectors.groupingBy;

import static java.util.stream.Collectors.mapping;

import static java.util.stream.Collectors.joining;

Chapter 6 StreamS

503

public class NestedGroupings {

 public static void main(String[] args) {

 Map<Person.Gender, Map<Month, String>>

 personsByGenderAndDobMonth

 = Person.persons()

 .stream()

 .collect(groupingBy(Person::getGender,

 groupingBy(p ->

 p.getDob().getMonth(),

 mapping(Person::getName,

 joining(", ")))));

 System.out.println(personsByGenderAndDobMonth);

 }

}

{FEMALE={DECEMBER=Laynie, JULY=Donna},

MALE={DECEMBER=Chris, JULY=Jeff, MAY=Ken, Li}}

Notice that the output has two top-level groups based on gender: Male and Female.

With each gender group, there are nested groups based on the month of the person’s

birth. For each month group, you have a list of those born in that month. For example,

Ken and Li were born in the month of May and they are males, so they are listed in the

output together.

As the final example in this section, let’s summarize the income of people grouped

by gender. The program in Listing 6-13 computes the summary statistics of income by

gender. I used static imports to use the method names from the Collectors class to keep

the code a bit cleaner. Looking at the output, you can tell the average income of females

is 25 dollars more than that of males. You can keep nesting groups inside another group.

There is no limit on levels of nesting for groups.

Listing 6-13. Summary Statistics of Income Grouped by Gender

// IncomeStatsByGender.java

package com.jdojo.streams;

import java.util.DoubleSummaryStatistics;

import java.util.Map;

Chapter 6 StreamS

504

import static

 java.util.stream.Collectors.groupingBy;

import static

 java.util.stream.Collectors.summarizingDouble;

public class IncomeStatsByGender {

 public static void main(String[] args) {

 Map<Person.Gender, DoubleSummaryStatistics>

 incomeStatsByGender =

 Person.persons()

 .stream()

 .collect(

 groupingBy(Person::getGender,

 summarizingDouble(Person::getIncome)));

 System.out.println(incomeStatsByGender);

 }

}

{MALE=DoubleSummaryStatistics{count=4, sum=17300.000000,

min=1800.000000,average=4325.000000, max=7100.000000},

FEMALE=DoubleSummaryStatistics{count=2, sum=8700.000000,

min=0.000000, average=4350.000000, max=8700.000000}}

 Partitioning Data
Partitioning data is a special case of grouping data. Grouping data is based on the keys

returned from a function. There are as many groups as the number of distinct keys

returned from the function. Partitioning collects data into two groups: for one group, a

condition is true; for the other, the same condition is false. The partitioning condition is

specified using a Predicate. By now, you might have guessed the name of the method in

the Collectors class that returns a collector to perform the partitioning. The method is

partitioningBy(). It is overloaded and it has two versions:

• partitioningBy(Predicate<? super T> predicate)

• partitioningBy(Predicate<? super T> predicate, Collector<?

super T,A,D> downstream)

Chapter 6 StreamS

505

Like the groupingBy() method, the partitioningBy() method also collects data

in a Map whose keys are always of the type Boolean. Note that the Map returned from the

collector always contains two entries: one with the key value as true and another with

the key value as false.

The first version of the partitioningBy() method returns a collector that performs

the partitioning based on the specified predicate. The values for a key are stored in a

List. If the predicate evaluates to true for an element, the element is added to the list

for the key with a true value; otherwise, the value is added to the list of values for the key

with a false value. The following snippet of code partitions people based on whether

the person is a male:

Map<Boolean, List<Person>> partitionedByMaleGender =

 Person.persons()

 .stream()

 .collect(Collectors.partitioningBy(

 Person::isMale));

System.out.println(partionedByMaleGender);

{false=[(3, Donna, FEMALE, 1962-07-29, 8700.00),

 (5, Laynie, FEMALE, 2012-12-13, 0.00)],

true=[(1, Ken, MALE, 1970-05-04, 6000.00),

 (2, Jeff, MALE, 1970-07-15, 7100.00),

 (4, Chris, MALE, 1993-12-16, 1800.00),

 (6, Li, MALE, 2001-05-09, 2400.00)]}

The second version of the method lets you specify another collector that can perform

a reduction operation on the values for each key. You have seen several examples of this

kind in the previous section when you grouped data using the groupingBy() method.

The following snippet of code partitions people into male and non-male and collects

their names in a comma-separated string:

Map<Boolean,String> partionedByMaleGender =

 Person.persons()

 .stream()

Chapter 6 StreamS

506

 .collect(Collectors.partitioningBy(

 Person::isMale,

 Collectors.mapping(Person::getName,

 Collectors.joining(", "))));

System.out.println(partionedByMaleGender);

{false=Donna, Laynie, true=Ken, Jeff, Chris, Li}

 Adapting the Collector Results
So far, you have seen collectors doing great work on their own: you specify what you

want, and the collector does all the work for you. There is one more type of collector that

collects the data and lets you modify the result before and after collecting the data. You

can adapt the result of the collector to a different type; you can filter the elements after

they are grouped but before they are collected; you map elements as they are grouped,

but before they are collected. The following static methods in the Collectors class

return such collectors:

• <T,A,R,RR> Collector<T,A,RR> collectingAndThen(Collector

<T,A,R> downstream, Function<R,RR> finisher)

• <T,A,R> Collector<T,?,R> filtering(Predicate<? super T>

predicate, Collector<? super T,A,R> downstream)

• <T,U,A,R> Collector<T,?,R> flatMapping(Function<? super

T,? extends Stream<? extends U» mapper, Collector<? super

U,A,R> downstream)

The filtering() and flatMapping() methods were added to the Collectors class

in Java 9.

The collectingAndThen() method lets you modify the results of a collector after

the collector has collected all elements. Its first argument is a collector that collects

the data. The second argument is a finisher that is a function. The finisher is passed a

result, and it is free to modify the result, including its type. The return type of such a

collector is the return type of the finisher. One of the common uses for the finisher is to

return an unmodifiable view of the collected data. Here is an example that returns an

unmodifiable list of person names:

Chapter 6 StreamS

507

List<String> names = Person.persons()

 .stream()

 .map(Person::getName)

 .collect(Collectors.collectingAndThen(

 Collectors.toList(),

 result ->

 Collections.unmodifiableList(result)));

System.out.println(names);

[Ken, Jeff, Donna, Chris, Laynie, Li]

The collector collects the names in a mutable list, and the finisher wraps the mutable

list in an unmodifiable list. Let’s take another example of using the finisher. Suppose you

want to print a calendar that contains the names of people by the month of their dates of

birth. You have already collected the list of names grouped by months of their birth. You

may have a month that doesn’t contain any birthdays. However, you want to print the

month’s name anyway and just add “None.” Here is the first attempt:

Map<Month,String> dobCalendar = Person.persons()

 .stream()

 .collect(groupingBy(p -> p.getDob().getMonth(),

 mapping(Person::getName, joining(", "))));

dobCalendar.entrySet().forEach(System.out::println);

MAY=Ken, Li

DECEMBER=Chris, Laynie

JULY=Jeff, Donna

This calendar has three issues:

• It is not sorted by month.

• It does not include all months.

• It is modifiable. The returned Map from the collect() method is

modifiable.

You can fix all three issues by using the collector returned from the

collectingAndThen() method and specifying a finisher. The finisher will add the

Chapter 6 StreamS

508

missing months in the map, convert the map to a sorted map, and, finally, wrap the map

in an unmodifiable map. The collect() method returns the map returned from the

finisher. Listing 6-14 contains the complete code.

Listing 6-14. Adapting the Collector Result

// DobCalendar.java

package com.jdojo.streams;

import java.time.Month;

import java.util.Collections;

import java.util.Map;

import java.util.TreeMap;

import static

 java.util.stream.Collectors.collectingAndThen;

import static

 java.util.stream.Collectors.groupingBy;

import static

 java.util.stream.Collectors.joining;

import static

 java.util.stream.Collectors.mapping;

public class DobCalendar {

 public static void main(String[] args) {

 Map<Month, String> dobCalendar = Person.persons()

 .stream().collect(collectingAndThen(

 groupingBy(p -> p.getDob().getMonth(),

 mapping(Person::getName, joining(", "))),

 result -> {

 // Add missing months

 for (Month m : Month.values()) {

 result.putIfAbsent(m, "None");

 }

 // Return a sorted, unmodifiable map

 return Collections.unmodifiableMap(

 new TreeMap<>(result));

 }));

Chapter 6 StreamS

509

 dobCalendar.entrySet().

 forEach(System.out::println);

 }

}

JANUARY=None

FEBRUARY=None

MARCH=None

APRIL=None

MAY=Ken, Li

JUNE=None

JULY=Jeff, Donna

AUGUST=None

SEPTEMBER=None

OCTOBER=None

NOVEMBER=None

DECEMBER=Chris, Laynie

The filtering() method lets you group the elements, apply a filter in each group,

and collect the filtered elements. The following snippet of code shows you how to group

people by gender and collect only those people who make more than 8000.00:

Map<Person.Gender, List<Person>> makingOver8000 =

 Person.persons()

 .stream()

 .collect(groupingBy(

 Person::getGender,

 filtering(p ->

 p.getIncome() > 8000.00, toList())));

System.out.println(makingOver8000);

{MALE=[], FEMALE=[(3, Donna, FEMALE, 1962-07-29, 8700.00)]}

Notice an empty list in the male group. In the collector, two groups were collected:

male and female. The filtering() method filtered out all elements in the male group,

so you got an empty list. If you had used the filter() method on the original stream to

filter out people making 8000.00 or less, you would not have seen the male group in the

output because the collector would have not seen the male group at all.

Chapter 6 StreamS

510

You have already seen the use of the collector returned by the mapping() function

of the Collectors class in the “Grouping Data” section, which lets you apply a function

to each element before accumulating the elements in a collector. The flatMapping()

method lets you apply a flat mapping function on each element. Consider the list of

people in Table 6-2. Suppose you want to summarize the table’s data by grouping people

by their gender and the list of unique languages spoken by people of each gender type.

For this example, I use a Map.Entry<String,Set<String» instance to represent

a row in this table. I use only gender and spoken languages in each row of the table,

ignoring the person’s name. Listing 6-15 contains the complete code.

Listing 6-15. Applying a Flat Mapping Operation After Grouping

// FlatMappingTest.java

package com.jdojo.streams;

import java.util.List;

import java.util.Map;

import java.util.Map.Entry;

import static java.util.Map.entry;

import java.util.Set;

import static java.util.stream.Collectors.flatMapping;

import static java.util.stream.Collectors.groupingBy;

import static java.util.stream.Collectors.toSet;

Table 6-2. A List of People, Their Genders,

and the List of Languages They Speak

Name Gender Language

Ken male english, French

Jeff male Spanish, Wu

Donna Female english, French

Chris male Wu, Lao

Laynie Female english, German

Li male english

Chapter 6 StreamS

511

public class FlatMappingTest {

 public static void main(String[] args) {

 // Represent the gender and the list of spoken

 // languages

 List<Entry<String, Set<String>>> list = List.of(

 entry("Male", Set.of("English", "French")),

 entry("Male", Set.of("Spanish", "Wu")),

 entry("Female", Set.of("English", "French")),

 entry("Male", Set.of("Wu", "Lao")),

 entry("Female", Set.of("English", "German")),

 entry("Male", Set.of("English")));

 Map<String, Set<String>> langByGender =

 list.stream()

 .collect(groupingBy(Entry::getKey,

 flatMapping(e ->

 e.getValue().stream(), toSet())));

 System.out.println(langByGender);

 }

}

{Female=[English, French, German],

Male=[English, French, Spanish, Lao, Wu]}

The Entry::getKey method reference is used to group the elements of the list by

gender. The first argument maps each entry in the list to a Stream<String>, which

contains the languages spoken for that element. The flatMapping() method flattens the

stream produced and collects the results, which are the names of the spoken languages

in a Set<String>, giving you a unique list of spoken languages by gender.

 Finding and Matching in Streams
The Streams API supports different types of find and match operations on stream

elements. For example, you can check if any elements in the stream match a predicate,

if all elements match a predicate, etc. The following methods in the Stream interface are

used to perform find and match operations:

• boolean allMatch(Predicate<? super T> predicate)

Chapter 6 StreamS

512

• boolean anyMatch(Predicate<? super T> predicate)

• boolean noneMatch(Predicate<? super T> predicate)

• Optional<T> findAny()

• Optional<T> findFirst()

The primitive type streams such as IntStream, LongStream, and DoubleStream also

contain the same methods that work with a predicate and an optional one for primitive

types. For example, the allMatch() method in the IntStream takes an IntPredicate as

an argument, and the findAny() method returns an OptionalInt.

All find and match operations are terminal operations. They are also short-circuiting

operations. A short-circuiting operation may not have to process the entire stream to

return the result. For example, the allMatch() method checks if the specified predicate

is true for all elements in the stream. It is sufficient for this method to return false if

the predicate evaluates to false for one element. Once the predicate evaluates to false

for one element, it stops further processing (short-circuits) of elements and returns the

result as false. The same argument goes for all other methods. Note that the return type

of the findAny() and findFirst() methods is Optional<T> because these methods may

not have a result if the stream is empty.

The program in Listing 6-16 shows how to perform find and match operations on

streams. The program uses sequential stream because the stream size is very small.

Consider using a parallel stream if the match has to be performed on large streams.

In that case, any thread can find a match or not find a match to end the matching

operations.

Listing 6-16. Performing Find and Match Operations on Streams

// FindAndMatch.java

package com.jdojo.streams;

import java.util.List;

import java.util.Optional;

public class FindAndMatch {

public static void main(String[] args) {

 // Get the list of persons

 List<Person> persons = Person.persons();

 // Check if all persons are males

Chapter 6 StreamS

513

 boolean allMales = persons.stream()

 .allMatch(Person::isMale);

 System.out.println("All males: " + allMales);

 // Check if any person was born in 1970

 boolean anyoneBornIn1970 = persons.stream()

 .anyMatch(p -> p.getDob().getYear() == 1970);

 System.out.println("Anyone born in 1970: " +

 anyoneBornIn1970);

 // Check if any person was born in 1955

 boolean anyoneBornIn1955 = persons.stream()

 .anyMatch(p -> p.getDob().getYear() == 1955);

 System.out.println("Anyone born in 1955: " +

 anyoneBornIn1955);

 // Find any male

 Optional<Person> anyMale = persons.stream()

 .filter(Person::isMale)

 .findAny();

 if (anyMale.isPresent()) {

 System.out.println("Any male: " +

 anyMale.get());

 } else {

 System.out.println("No male found.");

 }

 // Find the first male

 Optional<Person> firstMale = persons.stream()

 .filter(Person::isMale)

 .findFirst();

 if (firstMale.isPresent()) {

 System.out.println("First male: " +

 anyMale.get());

 } else {

 System.out.println("No male found.");

 }

 }

}

Chapter 6 StreamS

514

All males: false

Anyone born in 1970: true

Anyone born in 1955: false

Any male: (1, Ken, MALE, 1970-05-04, 6000.00)

First male: (1, Ken, MALE, 1970-05-04, 6000.00)

 Parallel Streams
Streams can be sequential or parallel. Operations on a sequential stream are processed

in serial using one thread. Operations on a parallel stream are processed in parallel using

multiple threads. You do not need to take additional steps to process streams because

they are sequential or parallel. All you need to do is call the appropriate method that

produces a sequential or parallel stream. Everything else is taken care of by the Streams

API. This is why I stated in the beginning of this chapter that you get parallelism in

stream processing “almost” for free.

Most of the methods in the Streams API produce sequential streams by default. To

produce a parallel stream from a collection, such as a List or a Set, you need to call the

parallelStream() method of the Collection interface. Use the parallel() method

on a stream to convert a sequential stream into a parallel stream. Conversely, use the

sequential() method on a stream to convert a parallel stream into a sequential stream.

The following snippet of code shows serial processing of the stream pipeline because the

stream is sequential:

String names = Person

 .persons() // The data source

 .stream() // Produces a sequential stream

 .filter(Person::isMale) // Processed in serial

 .map(Person::getName) // Processed in serial

 .collect(Collectors.

 joining(", ")); // Processed in serial

The following snippet of code shows parallel processing of the stream pipeline

because the stream is parallel:

Chapter 6 StreamS

515

String names = Person

 .persons() // The data source

 .parallelStream() // Produces a parallel stream

 .filter(Person::isMale) // Processed in parallel

 .map(Person::getName) // Processed in parallel

 .collect(Collectors.

 joining(", ")); // Processed in parallel

The following snippet of code shows processing of the stream pipeline in mixed

mode because the operations in the pipeline produce serial and parallel streams:

String names = Person

 .persons() // The data source

 .stream() // Produces a sequential stream

 .filter(Person::isMale) // Processed in serial

 .parallel() // Produces a parallel stream

 .map(Person::getName) // Processed in parallel

 .collect(Collectors.

 joining(", ")); // Processed in parallel

The operations following a serial stream are performed serially, and the operations

following a parallel stream are performed in parallel. You get parallelism when

processing streams for free. So when do you use parallelism in stream processing? Do

you get the benefits of parallelism whenever you use it? The answer is no. There are

some conditions that must be met before you should use parallel streams. Sometimes,

using parallel streams may result in worse performance.

The Streams API uses the fork/join framework to process parallel streams. The fork/

join framework uses multiple threads. It divides the stream elements into chunks; each

thread processes a chunk of elements to produce a partial result, and the partial results

are combined to give you the result. Starting up multiple threads, dividing the data into

chunks, and combining partial results take up CPU time. This overhead is justified by

the overall time to finish the task. For example, a stream of six people is going to take

longer to process in parallel than in serial. The overhead of setting up the threads and

coordinating them for such a small amount of work is not worth it.

You have seen the use of an Iterator for traversing elements of collections. The

Streams API uses a Spliterator (a splittable iterator) to traverse elements of streams.

Spliterator is a generalization of Iterator. An iterator provides sequential access to

Chapter 6 StreamS

516

data elements. A Spliterator provides sequential access and decomposition of data

elements. When you create a Spliterator, it knows the chunk of data it will process.

You can split a Spliterator into two: each will get its own chunk of data to process. The

Spliterator is an interface in the java.util package. It is used heavily for splitting

stream elements into chunks to be processed by multiple threads. As the user of the

Streams API, you will never have to work directly with a Spliterator. The data source

of the streams provides a Spliterator. Parallel processing of a stream is faster if the

Spliterator can know the size of the streams. Streams can be based on a data source

that may have a fixed size or an unknown size. Splitting the stream elements into chunks

is not possible if the size of the stream cannot be determined. In such cases, even though

you can use a parallel stream, you may not get the benefits of parallelism.

Another consideration in parallel processing is the ordering of elements. If elements

are ordered, threads need to keep the ordering at the end of the processing. If ordering

is not important for you, you can convert an ordered stream into an unordered stream

using the unordered() method.

Spliterators divide the data elements into chunks. It is important that the data

source for the stream does not change during stream processing; otherwise, the result is

not defined. For example, if your stream uses a list/set as the data source, do not add or

remove elements from the list/set when the stream is being processed.

Stream processing is based on functional programming that does not modify data

elements during processing. It creates new data elements rather than modifying them.

The same rule holds for stream processing, particularly when it is processed in parallel.

The operations in a stream pipeline are specified as lambda expressions that should not

modify the mutable states of the elements being processed.

Let’s take an example of counting the prime numbers in a big range of natural

numbers, say from 2 to 214748364. The number 214748364 is one tenth of Integer.MAX_

VALUE. The following snippet of code performs the counting in serial:

// Process the stream in serial

long count = IntStream.rangeClosed(2, Integer.MAX_VALUE/10)

 .filter(PrimeUtil::isPrime)

 .count();

The code took 758 seconds to finish. Let’s try converting the stream to a parallel

stream as follows:

Chapter 6 StreamS

517

// Process the stream in parallel

long count = IntStream.rangeClosed(2, Integer.MAX_VALUE/10)

 .parallel()

 .filter(PrimeUtil::isPrime)

 .count();

This time, the code took only 181 seconds, which is roughly 24% of the time it took

when it was processed in serial. This is a significant gain. Both pieces of code were

run on a machine with a processor that had eight cores. The code may take a different

amount of time to complete on your machine.

 Summary
A stream is a sequence of data elements supporting sequential and parallel aggregate

operations. Collections in Java focus on data storage and access to the data, whereas

streams focus on computations on data. Streams do not have storage. They get the data

from a data source, which is most often a collection. However, a stream can get its data

from other sources, such as file I/O channel, a function, etc. A stream can also be based

on a data source that is capable of generating infinite data elements.

Streams are connected through operations forming a pipeline. Streams support two

types of operations: intermediate and terminal operations. An intermediate operation

on a stream produces another stream that can serve as an input stream for another

intermediate operation. A terminal operation produces a result in the form of a single

value. A stream cannot be reused after a terminal operation is invoked on it.

Some operations on streams are called short-circuiting operations. A short-circuiting

operation does not necessarily have to process all data in the stream. For example,

findAny is a short-circuiting operation that finds any element in the stream for which

the specified predicate is true. Once an element is found, the operation discards the

remaining elements in the stream.

Streams are inherently lazy. They process data on demand. Data is not processed

when intermediate operations are invoked on a stream. Invocation of a terminal

operation processes the stream data.

A stream pipeline can be executed in serial or in parallel. By default, streams are

serial. You can convert a serial stream into a parallel stream by calling the stream’s

parallel() method. You can convert a parallel stream into a serial stream by calling the

stream’s sequential() method.

Chapter 6 StreamS

518

The Streams API supports most of the operations supported in the functional

programming such as filter, map, forEach, reduce, allMatch, anyMatch, findAny,

findFirst, etc. Streams contain a peek() method for debugging purposes that lets you

take an action on every element passing through the stream. The Streams API provides

collectors that are used to collect data in collections, such as a map, a list, a set, etc. The

Collectors class is a utility class that provides several implementations of collectors.

Mapping, grouping, and partitioning of a stream’s data can be easily performed using the

collect() method of streams and using the collector provided.

Parallel streams take advantage of multicore processors. They use the fork/join

framework to process the stream’s element in parallel.

 Exercises
Exercise 1

What are streams and aggregate operations on streams?

Exercise 2

How do streams differ from collections?

Exercise 3

Fill in the blanks:

 a. Collections have storage, whereas streams have ______ storage.

 b. Collections support external iteration, whereas streams support

_________ iteration.

 c. Collections support imperative programming, whereas streams

support _________ programming.

 d. Collections support a finite number of elements, whereas streams

support _________ number of elements.

 e. Streams support sequential and _________ processing of its

elements.

 f. A stream does not start pulling elements from its data source until

a _________ operation is called on the stream.

 g. Once a terminal operation is called on a stream, the stream

_________ be reused.

Chapter 6 StreamS

519

Exercise 4

Describe the difference between intermediate and terminal operations on streams.

Exercise 5

Create a Stream<Integer> of all integers from 10 to 30 and compute the sum of all

integers in the list.

Exercise 6

Complete the following snippet of code, which computes the sum of characters in a

list of names using a stream:

List<String> names = List.of(

 "Mo", "Jeff", "Li", "Dola");

int sum = names.stream()

 ./* your code goes here */;

System.out.println("Total characters: " + sum);

The expected output is as follows:

Total characters: 12

Exercise 7

Complete the following snippet of code, which creates two empty Stream<String>s.

You are supposed to use different methods of the Stream interface to complete the

code:

Stream<String> noNames1 = Stream.

 /* Your code goes here */;

Stream<String> noNames2 = Stream.

 /* Your code goes here */;

Exercise 8

What method of the Stream interface is used to limit the number of elements in a

stream to a specified size?

Exercise 9

What method of the Stream interface is used to skip a specified number of elements

in a stream?

Chapter 6 StreamS

520

Exercise 10

Describe the characteristics of the stream produced by the following snippet of code:

Stream<Integer> stream = Stream.

 generate(() -> 1969);

Exercise 11

What is the use of the instances of the Optional<T> class?

Exercise 12

Complete the following snippet of code, which is supposed to print the names of

people along with the number of characters in the names in the non-empty Optionals in

the list:

List<Optional<String>> names = List.of(

 Optional.of("Ken"),

 Optional.empty(),

 Optional.of("Li"),

 Optional.empty(),

 Optional.of("Toto"));

names.stream()

 .flatMap(/* Your code goes here */)

 .forEach(/* Your code goes here */);

The expected output is as follows:

Ken: 3

Li: 2

Toto: 4

Exercise 13

What is the use of the peek() method in the Stream interface?

Exercise 14

What is the use of the map() and flatMap() methods in the Stream interface?

Exercise 15

Compare the filter and map operations on a stream with respect to the type of

elements and number of elements in the input and output streams of these operations.

Exercise 16

What is a reduction operation on a stream? Name three commonly used reduction

operations on streams.

Chapter 6 StreamS

521

Exercise 17

Write the logic to compute the sum of all integers in the following array using a

parallel stream and the reduce() method of the Stream interface:

int[] nums = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

Exercise 18

Complete the following snippet of code to print the unique non-null values in a map:

Map<Integer, String> map = new HashMap<>();

map.put(1, "One");

map.put(2, "One");

map.put(3, null);

map.put(4, "Two");

map.entrySet()

 .stream()

 .flatMap(/* Your code goes here */)

 ./* Your code goes here */

 .forEach(System.out::println);

The expected output is as follows:

One

Two

Exercise 19

Complete the missing piece of code in the following snippet of code, which is

supposed to count the number of even and odd integers in a list of integers:

List<Integer> list = List.of(

 10, 19, 20, 40, 45, 50);

Map<String,Long> oddEvenCounts = list.stream()

 .map(/* Your code goes here */)

 .collect(/* Your code goes here */);

System.out.println(oddEvenCounts);

The expected output is as follows:

{Even=4, Odd=2}

Chapter 6 StreamS

522

Exercise 20

The following snippet of code is supposed to print a sorted list of odd integers in the

list, which are separated by colons. Complete the missing pieces of the code:

List<Integer> list = List.of(5, 1, 2, 7, 3, 4, 8);

String str = list.stream()

 ./* Multiple method calls go here */;

System.out.println(str);

The expected output is as follows:

1:3:5:7

Chapter 6 StreamS

523
© Kishori Sharan, Peter Späth 2021
K. Sharan and P. Späth, More Java 17, https://doi.org/10.1007/978-1-4842-7135-3_7

CHAPTER 7

Implementing Services
In this chapter, you will learn:

• What services, service interfaces, and service providers are

• How to implement a service in Java

• How to use a Java interface as a service implementation

• How to load service providers using the ServiceLoader class

• How to use the uses statement in a module declaration to specify the

service interface that the current module discovers and loads using

the ServiceLoader class

• How to use the provides statement to specify a service provider

provided by the current module

• How to discover, filter, and select service providers based on their

type without instantiating them

 What Is a Service?
A specific functionality provided by an application (or a library) is known as a service.

For example, you can have different libraries providing a prime number service, which

can check if a number is a prime and generate the next prime after a given number.

Applications and libraries providing implementations for a service are known as service

providers. Applications using the service are called service consumers or clients. How

does a client use the service? Does a client know all service providers? Does a client get a

service without knowing any service providers? I answer these questions in this chapter.

Earlier versions of Java (SE 6 onward) already provided a mechanism to allow for

loose coupling between service providers and service consumers. That is, a service

https://doi.org/10.1007/978-1-4842-7135-3_7#DOI

524

consumer can use a service provided by a service provider without knowing the service

provider. With the module system, this architectural pattern became more standardized

and more straightforwardly to apply to Java projects.

In Java, a service is defined by a set of interfaces and classes. The service contains

an interface or an abstract class that defines the functionality provided by the service,

and it is known as the service provider interface or simply service interface. Note that the

term “interface” in “service provider interface” and “service interface” does not refer to

an interface construct in Java. A service interface can be a Java interface or an abstract

class. It is possible, but not recommended, to use a concrete class as a service interface.

Sometimes, a service interface is also called a service type—the type that is used to

identify the service.

A specific implementation of a service is known as a service provider. There can be

multiple service providers for a service interface. Typically, a service provider consists of

several interfaces and classes to provide an implementation for the service interface.

The JDK contains a java.util.ServiceLoader<S> class whose sole purpose is to

discover and load service providers at runtime for a service interface of type S. The

ServiceLoader class allows decoupling of service providers from service consumers.

A service consumer knows only the service interface; the ServiceLoader class makes the

instances of the service providers that are implementing the service interface available

to consumers. Figure 7-1 shows a pictorial view of the arrangement of a service, service

providers, and a service consumer.

Figure 7-1. The arrangement of a service, service providers, and a service consumer

Chapter 7 ImplementIng ServICeS

525

Typically, the service will use the ServiceLoader class to load all service providers

and make them available to service consumers (or clients). This architecture allows

for a plugin mechanism in which a service provider can be added or removed without

affecting the service and service consumers. Service consumers know only about

the service interface. They do not know about any specific implementations (service

providers) of the service interface.

Note I suggest reading the documentation for the java.util.ServiceLoader
class for a complete understanding of the service-loading facility.

In this chapter, I use a service and three service providers. Their modules, class/

interface names, and brief descriptions are listed in Table 7-1.

Figure 7-2 shows the classes/interfaces arranged as services, service providers, and

service consumers, which can be compared with Figure 7-1.

Table 7-1. Modules, Classes, and Interfaces Used in the Chapter Examples

Module Classes/Interfaces Description

jdojo.prime PrimeChecker It acts as a service, a service interface,

and a service provider. It provides a

default implementation for the service

interface.

jdojo.prime.faster FasterPrimeChecker a service provider.

jdojo.prime.probable ProbablePrimeChecker a service provider.

jdojo.prime.client Main a service consumer.

Chapter 7 ImplementIng ServICeS

526

 Discovering Services
In order for a service to be used, its providers need to be discovered and loaded. The

ServiceLoader class does the work of discovering and loading the service providers. The

module that discovers and loads service providers must contain a uses statement in its

declaration, which has the following syntax:

uses <service-interface>;

Here, <service-interface> is the name of the service interface, which is a Java

interface name, a class name, or an annotation type name. If a module uses the

ServiceLoader<S> class to load the instances of service providers for a service interface

named S, the module declaration must contain the following statement:

uses S;

In my opinion, the statement name, uses, seems to be a misnomer. At first glance,

it seems that the current module will use the specified service. However, that is not the

case. A service is used by the clients, not by the module defining the service. A more

intuitive statement name would have been discovers or loads. You can understand its

meaning correctly if you read its definition as: the module having the uses statement

uses the ServiceLoader class to load the service providers for this service interface.

Figure 7-2. The arrangement of a service, three service providers, and a service
consumer

Chapter 7 ImplementIng ServICeS

527

You do not need to use the uses statement in client modules unless your client modules

load the service providers for services. It is unusual for client modules to load services.

A module may discover and load more than one service. The following module

declaration uses two uses statements indicating that it will discover and load services

identified by the com.jdojo.PrimeChecker and com.jdojo.CsvParser interfaces:

module jdojo.loader {

 uses com.jdojo.PrimeChecker;

 uses com.jdojo.CsvParser:

 // Other module statements go here

}

A module declaration allows import statements. For better readability, you can

rewrite this module declaration as follows:

// Import types from other packages

import com.jdojo.PrimeChecker;

import com.jdojo.CsvParser:

module jdojo.loader {

 uses PrimeChecker;

 uses CsvParser:

 // Other module statements go here

}

The service interface specified in a uses statement may be declared in the current

module or in another module. If it is declared in another module, the service interface

must be accessible to the code in the current module; otherwise, a compile-time error

occurs. For example, the com.jdojo.CsvParser service interface used in the uses

statement in the previous declaration may be declared in the jdojo.loader module

or another module, say jdojo.csvUtil. In the latter case, the com.jdojo.CsvParser

interface must be accessible to the jdojo.loader module.

Service provider discovery occurs at runtime. Modules that discover service

providers typically do not (and need not) declare compile-time dependency on the

service provider modules because it is not possible to know all provider modules in

advance. Another reason for service discoverer modules not declaring dependency

on service provider modules is to keep the service provider and service consumer

decoupled.

Chapter 7 ImplementIng ServICeS

528

 Providing Service Implementations
A module that provides implementations for a service interface must contain a provides

statement. If a module contains a service provider, but does not contain a provides

statement in its declaration, this service provider will not be loaded through the

ServiceLoader class. That is, a provides statement in a module declaration is a way to

tell the ServiceLoader class, “Hey! I provide an implementation for a service. You can

use me as a service provider whenever you need that service.” The syntax for a provides

statement is as follows:

provides <service-interface> with

 <service-implementation-name>;

(You can of course write this in a single line.)

Here, the provides clause specifies the name of the service interface, and the with

clause specifies the name of the class that implements the service provider interface. A

service provider may specify an interface as an implementation for a service interface.

This may sound incorrect, but it is true. I provide an example in this chapter where

an interface serves as a service provider implementation type. The following module

declaration contains two provides statements:

module com.jdojo.provider {

 provides com.jdojo.PrimeChecker with

 com.jdojo.impl.PrimeCheckerFactory;

 provides com.jdojo.CsvParser with

 com.jdojo.impl.CsvFastParser;

 // Other module statements go here

}

The first provides statement declares that com.jdojo.impl.PrimeCheckerFactory is

one possible implementation for the service interface named com.jdojo.PrimeChecker.

The second provides statement declares that com.jdojo.impl.CsvFastParser is one

possible implementation for the service interface named com.jdojo.CsvParser. The

implementations PrimeCheckerFactory and CsvParser usually are classes, but it is also

possible to use interfaces.

A module can contain any combination of uses and provides statements—the same

module can provide implementation for a service and discover the same service; it can

only provide implementation for one or more services, or it can provide implementation

Chapter 7 ImplementIng ServICeS

529

for one service and discover another type of service. The following module declaration

discovers and provides the implementation for the same service:

module com.jdojo.parser {

 uses com.jdojo.XmlParser;

 provides com.jdojo.XmlParser with

 com.jdojo.xml.impl.XmlParserFactory;

 // Other module statements go here

}

Note the service implementation class/interface specified in the with clause
of the provides statement must be declared in the current module. Otherwise, a
compile-time error occurs.

The ServiceLoader class creates instances of the service implementation. When the

service implementation is an interface, it calls the interface’s provider() static method

to get an instance of the provider. The service implementation (a class or an interface)

must follow these rules:

• If the service implementation implicitly or explicitly declares a public

constructor with no formal parameters, that constructor is called the

provider constructor.

• If the service implementation contains a public static method named

provider with no formal parameters, this method is called the

provider method.

• The return type of the provider method must be the service interface

type or its subtype.

• If the service implementation does not contain the provider method,

the type of the service implementation must be a class with a

provider constructor, and the class must be of the service interface

type or its subtype.

When the ServiceLoader class is requested to discover and load a service provider,

it checks whether the service implementation contains the provider method. If the

provider method is found, the returned value of the method is the service returned by

Chapter 7 ImplementIng ServICeS

530

the ServiceLoader class. If the provider method is not found, it instantiates the service

implementation using the provider constructor. If the service implementation contains

neither the provider method nor the provider constructor, a compile-time error occurs.

With these rules, it is possible to use a Java interface as a service implementation.

The interface should have a public static method named provider that returns an

instance of the service interface type.

The following sections walk you through the steps to implement a service using

modules. The last section explains how to make the same service work in a non-modular

environment.

 Defining the Service Interface
In this section, you develop a service called prime checker. I keep the service simple,

so you can focus on working with the service provider mechanism in Java, rather than

writing complex code to implement the service functionality. Requirements for this

service are as follows:

• The service should provide an API to check if a number is a prime.

• Clients should be able to know the names of the available service

providers. The name of a service provider will be the fully qualified

name of the service provider class or interface.

• The service should provide a default implementation of the service

interface.

• Clients should be able to retrieve a service instance without

specifying the name of the service provider. In this case, the default

service provider is returned.

• Clients should be able to retrieve a service instance by specifying a

service provider fully qualified name. If a service provider with the

specified name does not exist, null is returned.

Let’s design the service. The functionality provided by the service will be represented

by an interface named PrimeChecker. It contains one method:

public interface PrimeChecker {

 boolean isPrime(long n);

}

Chapter 7 ImplementIng ServICeS

531

The isPrime() method returns true if the specified argument is a prime, and

it returns false otherwise. All service providers will implement the PrimeChecker

interface. The PrimeChecker interface is our service interface (or service type).

 Obtaining Service Provider Instances
The service needs to provide APIs to the clients to retrieve instances of the service

providers. The service needs to discover and load all service providers before it can give

them to clients. Service providers are loaded using the ServiceLoader class. The class

has no public constructor. You can use one of its load() methods to get its instances.

You need to specify the class reference of the service interface to the load() method.

The ServiceLoader class contains an iterator() method that returns an Iterator

for all service providers of a specific service interface loaded by this ServiceLoader.

The ServiceLoader class also implements the Iterable interface, so you can also

iterate over all the service providers using a for-each statement. The following snippet

of code shows you how to load and iterate through all service provider instances for

PrimeChecker:

// Load the service providers for PrimeChecker

ServiceLoader<PrimeChecker> loader =

 ServiceLoader.load(PrimeChecker.class);

// Iterate through all service provider instances

Iterator<PrimeChecker> iterator = loader.iterator();

if (iterator.hasNext()) {

 PrimeChecker checker = iterator.next();

 // Use the prime checker here...

}

The following snippet of code shows you how to use a ServiceLoader instance in a

for-each statement to iterate over all service provider instances:

ServiceLoader<PrimeChecker> loader =

 ServiceLoader.load(PrimeChecker.class);

for (PrimeChecker checker : loader) {

 // checker is your service provider instance

}

Chapter 7 ImplementIng ServICeS

532

At times, you’ll want to select providers based on their class names. For example, you

may want to select only those prime service providers whose fully qualified class name

starts with com.jdojo. Typical logic to achieve this would be to use the iterator returned

by the iterator() method of the ServiceLoader class. However, this is costly. The

iterator instantiates a provider before returning. JDK9 added a new stream() method to

the ServiceLoader class:

public Stream<ServiceLoader.Provider<S>> stream()

The method returns a stream of instances of the ServiceProvider.Provider<S>

interface, which is declared as a nested interface in the ServiceLoader class as follows:

public static interface Provider<S> extends Supplier<S> {

 // Returns a Class reference of the class of the

 // service provider

 Class<? extends S> type();

 @Override

 S get();

}

An instance of the ServiceLoader.Provider interface represents a service provider.

Its type() method returns the Class object of the service implementation. The get()

method returns an instance of the service provider.

How does the ServiceLoader.Provider interface help? When you use the stream()

method, each element in the stream is of the ServiceLoader.Provider type. You

can filter the stream based on the class name or type of the provider, which will not

instantiate the provider. You can use the type() method in your filters. When you

find the desired provider, call the get() method to instantiate the provider. This way,

you instantiate a provider when you know you need it, not when you are iterating

through all providers. The following is an example of using the stream() method of the

ServiceLoader class. It gives you a list of all prime service providers whose class name

starts with com.jdojo:

static List<PrimeChecker> startsWith(String prefix) {

 return ServiceLoader.load(PrimeChecker.class)

 .stream()

 .filter((Provider p) ->

 p.type().getName().startsWith(prefix))

Chapter 7 ImplementIng ServICeS

533

 .map(Provider::get)

 .collect(Collectors.toList());

}

Your prime checker service is supposed to let clients find a service provider using

the service provider class or interface name. You can provide a newInstance(String

providerName) method using the stream() method of the ServiceLoader class as

follows:

static PrimeChecker newInstance(String providerName) {

 // Try to find the first service provider with the

 // specified providerName

 Optional<Provider<PrimeChecker>> optional =

 ServiceLoader.load(PrimeChecker.class)

 .stream()

 .filter((Provider p) ->

 p.type().getName().equals(providerName))

 .findFirst();

 PrimeChecker checker = null;

 // Instantiate the provider if we found one

 if (optional.isPresent()) {

 Provider<PrimeChecker> provider = optional.get();

 checker = provider.get();

 }

 return checker;

}

There is a big difference between using the Iterator and the stream() method

of the ServiceLoader class to find a service provider. The Iterator supplies you with

the instance of the service provider, which you can use to determine the details of the

actual service provider implementation class. A service provider may use the provider

constructor or the provider method to supply its instances. The stream() method does

not create service provider instances. Rather, it looks at the provider constructors and

provider methods to give you the type of the service provider implementation. If you

use the provider constructor, the stream() method knows the actual class name of the

service implementation. If you use the provider method, the stream() method does not

(and cannot) peek inside the provider method to see the actual implementation class

Chapter 7 ImplementIng ServICeS

534

type. In this case, it simply looks at the return type of the provider method, and its type()

method returns the Class reference of that return type. Consider the following provider

method implementation of the PrimeChecker service type:

// FasterPrimeChecker.java

package com.jdojo.prime.faster;

import com.jdojo.prime.PrimeChecker;

public class FasterPrimeChecker implements PrimeChecker {

 // No provider constructor

 private FasterPrimeChecker() {

 // No code

 }

 // Define a provider method

 public static PrimeChecker provider() {

 return new FasterPrimeChecker();

 }

 @Override

 public boolean isPrime(long n) {

 // More code goes here

 }

}

Suppose the FasterPrimeChecker class is available as a service provider. When you

use the stream() method of the ServiceLoader class, you will get a ServiceLoader.

Provider element for this service provider whose type() method will return the Class

reference of the com.jdojo.prime.PrimeChecker interface, which is the return type

of the provider() method. When you call the get() method of the ServiceLoader.

Provider instance, it will call the provider() method and return the reference of an

object of the FasterPrimeChecker class as it is returned from the provider() method.

If you try to write the following code to find the FasterPrimeChecker provider, it will fail:

String providerName =

 "com.jdojo.prime.faster.FasterPrimeChecker";

Optional<Provider<PrimeChecker>> optional =

 ServiceLoader.load(PrimeChecker.class)

 .stream()

Chapter 7 ImplementIng ServICeS

535

 .filter((Provider p) ->

 p.type().getName().equals(providerName))

 .findFirst();

If you want to find this service provider by its class name using the stream() method

of the ServiceLoader class, you can change the return type of the provider() method as

shown:

// FasterPrimeChecker.java

package com.jdojo.prime.faster;

import com.jdojo.prime.PrimeChecker;

public class FasterPrimeChecker implements PrimeChecker {

 // No provider constructor

 private FasterPrimeChecker() {

 // No code

 }

 // Define a provider method

 public static FasterPrimeChecker provider() {

 return new FasterPrimeChecker();

 }

 @Override

 public boolean isPrime(long n) {

 // More code goes here

 }

}

 Defining the Service
You can create a class to provide the discovering, loading, and retrieving features for

your service. But since it is possible to add static methods to interfaces, you can also use

interfaces for the same purpose. Let’s add two static methods to the service interface:

public interface PrimeChecker {

 // Part of the service interface

 boolean isPrime(long n);

 // Part of the service

 static PrimeChecker newInstance() { /*...*/ };

Chapter 7 ImplementIng ServICeS

536

 static PrimeChecker newInstance(String providerName) {

 /*...*/ };

 static List<PrimeChecker> providers() { /*...*/ };

 static List<String> providerNames(/*...*/);

 }

The newInstance() method will return an instance of the PrimeChecker that is the

default service provider. The newInstance(String providerName) method will return

the instance of a service provider with the specified provider name. The providers()

method will return all provider instances, whereas the providerNames() method will

return a list of all provider names.

Notice that your PrimeChecker interface is going to serve two purposes:

• It serves as a service interface with the isPrime() method as the only

method in that service interface. Clients will use the PrimeChecker

interface as the service type.

• It serves as a service with the two versions of the newInstance()

method, the providers() method, and the providerNames()

method.

At this point, you had a choice to have a separate service class, say a PrimeService

class, with newInstance(), providers(), and providerNames() methods in it—leaving

only the isPrime() method in the PrimeChecker interface. If you decided to do so,

clients would have used the PrimeService class to obtain a service provider.

Note adding methods to interfaces somewhat thwarts the original notion of an
interface. Strictly spoken, there should be a clear distinction between interfaces
describing methods and classes which implement such methods and contain
actually executable code. It is up to you if you want to use such interface methods
with code given inside the interface declaration itself, or if you want to provide
special infrastructure classes that allow for instantiating services.

Listing 7-1 contains the complete code for the PrimeChecker interface.

Chapter 7 ImplementIng ServICeS

537

Listing 7-1. A Service Provider Interface Named PrimeChecker

// PrimeChecker.java

package com.jdojo.prime;

import java.util.ArrayList;

import java.util.List;

import java.util.Optional;

import java.util.ServiceLoader;

import java.util.ServiceLoader.Provider;

import java.util.stream.Collectors;

public interface PrimeChecker {

 boolean isPrime(long n);

 static PrimeChecker newInstance() {

 // Return the default service provider

 String defaultSP =

 "com.jdojo.prime.impl.GenericPrimeChecker";

 return newInstance(defaultSP);

 }

 static PrimeChecker newInstance(String providerName) {

 Optional<Provider<PrimeChecker>> optional =

 ServiceLoader.load(PrimeChecker.class)

 .stream()

 .filter((Provider p) ->

 p.type().getName().

 equals(providerName))

 .findFirst();

 PrimeChecker checker = null;

 if (optional.isPresent()) {

 Provider<PrimeChecker> provider =

 optional.get();

 checker = provider.get();

 }

 return checker;

 }

Chapter 7 ImplementIng ServICeS

538

 static List<PrimeChecker> providers() {

 List<PrimeChecker> providers = new ArrayList<>();

 ServiceLoader<PrimeChecker> loader =

 ServiceLoader.load(PrimeChecker.class);

 for (PrimeChecker checker : loader) {

 providers.add(checker);

 }

 return providers;

 }

 static List<String> providerNames() {

 List<String> providers =

 ServiceLoader.load(PrimeChecker.class)

 .stream()

 .map((Provider p) -> p.type().getName())

 .collect(Collectors.toList());

 return providers;

 }

}

The declaration of the jdojo.prime module is shown in Listing 7-2. It exports the

com.jdojo.prime package because other service provider modules need to use the

PrimeChecker interface.

Listing 7-2. The Declaration of the jdojo.prime Module

// module-info.java

module jdojo.prime {

 exports com.jdojo.prime;

 uses com.jdojo.prime.PrimeChecker;

}

You need to use a uses statement with the fully qualified name of the PrimeChecker

interface because the code in this module will use the ServiceLoader class to load the

service providers for this interface. You are not done with the declaration of the jdojo.

prime module yet. You will add a default service provider to this module in the next

section.

Chapter 7 ImplementIng ServICeS

539

 Defining Service Providers
In the next sections, you will create three service providers for the PrimeChecker service

interface. The first service provider will be your default prime checker service provider.

You will package it with the jdojo.prime module. You will call the second service

provider as a faster prime checker provider. You will call the third service provider as the

probable prime checker provider. Later, you will create a client to test the service. You will

have a choice to use one of these service providers or all of them.

These service providers will implement algorithms to check whether a given number

is a prime. It will be helpful for you to understand the definition of a prime number.

A positive integer that is not divisible without a remainder unless you divide it by 1 or

itself, is called a prime. 1 is not a prime. A few examples of primes are 2, 3, 5, 7, and 11.

 Defining a Default Prime Service Provider
In this section, you will define a default service provider for the PrimeChecker service.

Defining a service provider for a service is achieved simply by creating a class that

implements the service interface. For our example, you will be creating a class named

GenericPrimeChecker that implements the PrimeChecker interface and will contain a

provider constructor.

This service provider will be defined in the same module, jdojo.prime, which

also contains your service interface. Listing 7-3 contains the complete code for a class

named GenericPrimeChecker. It implements the PrimeChecker interface, and hence

its instances can be used as a service provider. Notice that I have placed this class

in the com.jdojo.prime.impl package, just to keep the public interface and private

implementation separate. The isPrime() method of the class checks whether the

specified parameter is a prime. The implementation of this method is not optimal. The

next service provides a better implementation.

Listing 7-3. A Service Implementation Class for the PrimeChecker Service

Interface

// GenericPrimeChecker.java

package com.jdojo.prime.impl;

import com.jdojo.prime.PrimeChecker;

Chapter 7 ImplementIng ServICeS

540

public class GenericPrimeChecker implements PrimeChecker {

 @Override

 public boolean isPrime(long n) {

 if (n <= 1) {

 return false;

 }

 if (n == 2) {

 return true;

 }

 if (n % 2 == 0) {

 return false;

 }

 for (long i = 3; i < n; i += 2) {

 if (n % i == 0) {

 return false;

 }

 }

 return true;

 }

}

To make the GenericPrimeChecker class available to the ServiceLoader class as a

service provider for the PrimeChecker service interface, you need to include a provides

statement in the jdojo.prime module’s declaration. Listing 7-4 contains the modified

version of the jdojo.prime module’s declaration.

Listing 7-4. The Modified Declaration of the jdojo.prime Module

// module-info.java

module jdojo.prime {

 exports com.jdojo.prime;

 uses com.jdojo.prime.PrimeChecker;

 provides com.jdojo.prime.PrimeChecker

 with com.jdojo.prime.impl.GenericPrimeChecker;

}

Chapter 7 ImplementIng ServICeS

541

The provides statement specifies that this module provides an implementation

for the PrimeChecker interface, and its with clause specifies the name of the

implementation class. The implementation class must fulfill the following conditions:

• It must be a public concrete class or a public interface. It can be

a top-level or nested static class. It cannot be an inner class or an

abstract class.

• It must provide either the provider constructor or the provider

method. You have a pubic no-args constructor, which serves as the

provider constructor. This constructor is used by the ServiceLoader

class to instantiate the service provider using reflection.

• An instance of the implementation class must be assignment

compatible with the service provider interface.

If any of these conditions are not met, a compile-time error occurs. Note that you do not

need to export the com.jdojo.prime.impl package that contains the service implementation

class because no client is supposed to directly depend on a service implementation. Clients

need to reference only the service interface, not any specific service implementation classes.

The ServiceLoader class can access and instantiate the implementation class without the

package containing the service implementation being exported by the module.

Note If a module uses a provides statement, the specified service interface
may be in the current module or another accessible module. the service
implementation class/interface specified in the with clause must be defined in the
current module.

That’s all you have for this module. Compile and package this module as a modular

JAR. At this point, there is nothing to test.

 Defining a Faster Prime Service Provider
In this section, you will define another service provider for the PrimeChecker service

interface. Let’s call this a faster service provider because you will implement a faster

algorithm to check for a prime. This service provider will be defined in a separate

module named jdojo.prime.faster, and the service implementation class is called

FasterPrimeChecker.

Chapter 7 ImplementIng ServICeS

542

Listing 7-5 contains the module declaration, which is similar to the one we had for

the jdojo.prime module. This time, only the class name in the with clause has changed.

Listing 7-5. The Module Declaration for the com.jdojo.prime.faster Module

// module-info.java

module jdojo.prime {

 exports com.jdojo.prime;

 uses com.jdojo.prime.PrimeChecker;

 provides com.jdojo.prime.PrimeChecker

 with com.jdojo.prime.impl.GenericPrimeChecker;

}

The FasterPrimeChecker class will need to implement the PrimeChecker interface,

which is in the jdojo.prime module. The requires statement is needed to read the

jdojo.prime module.

Listing 7-6 contains the code for the FasterPrimeChecker class whose isPrime()

method executes faster than the isPrime() method of the GenericPrimeChecker class.

This time, the method loops through all the odd numbers starting at 3 and ending at the

square root of the number being tested for a prime.

Listing 7-6. An Implementation for the PrimeChecker Service Interface

// FasterPrimeChecker.java

package com.jdojo.prime.faster;

import com.jdojo.prime.PrimeChecker;

public class FasterPrimeChecker implements PrimeChecker {

 // No provider constructor

 private FasterPrimeChecker() {

 // No code

 }

 // Define a provider method

 public static FasterPrimeChecker provider() {

 return new FasterPrimeChecker();

 }

Chapter 7 ImplementIng ServICeS

543

 @Override

 public boolean isPrime(long n) {

 if (n <= 1) {

 return false;

 }

 if (n == 2) {

 return true;

 }

 if (n % 2 == 0) {

 return false;

 }

 long limit = (long) Math.sqrt(n);

 for (long i = 3; i <= limit; i += 2) {

 if (n % i == 0) {

 return false;

 }

 }

 return true;

 }

}

Note the difference between the GenericPrimeChecker and FasterPrimeChecker

classes, as shown in Listings 7-3 and 7-6. The GenericPrimeChecker class contains

a default constructor that serves as the provider constructor. It does not contain the

provider method. The FasterPrimeChecker class makes the no-args constructor

private, which does not qualify the constructor to be the provider constructor. The

FasterPrimeChecker class provides the provider method instead, which is declared as

follows:

public static FasterPrimeChecker provider() { /*...*/ }

When the ServiceLoader class needs to instantiate the faster prime service, it will

call this method. The method is very simple—it creates and returns an object of the

FasterPrimeChecker class.

That’s all you need for this module at this time. To compile this module, the jdojo.

prime module needs to be in the module path. Compile and package this module as a

modular JAR. At this point, there is nothing to test.

Chapter 7 ImplementIng ServICeS

544

 Defining a Probable Prime Service Provider
In this section, I show you how to use a Java interface as a service implementation. You

will define another service provider for the PrimeChecker service interface. Let’s call

this a probable prime service provider because it tells you that a number is probably a

prime. This service provider will be defined in a separate module named jdojo.prime.

probable, and the service implementation interface is called ProbablePrimeChecker.

The service is about checking for a prime number. The java.math.BigInteger

class contains a method named isProbablePrime(int certainty). If the method

returns true, the number may be a prime. If the method returns false, the number is

certainly not a prime. The certainty parameter determines the degree to which the

method makes sure the number is prime before returning true. The higher the value

of the certainty parameter, the higher the cost this method incurs and the higher the

probability that the number is a prime when the method returns true.

Listing 7-7 contains the module declaration, which is similar to the ones

we had before for the jdojo.prime.faster module. This time, only the class/

interface name in the with clause has changed. Listing 7-8 contains the code for the

ProbablePrimeChecker class.

Listing 7-7. The Module Declaration for the com.jdojo.prime.probable Module

// module-info.java

module jdojo.prime.probable {

 requires jdojo.prime;

 provides com.jdojo.prime.PrimeChecker

 with com.jdojo.prime.probable.ProbablePrimeChecker;

}

Listing 7-8. An Implementation Interface for the PrimeChecker Service Interface

// ProbablePrimeChecker.java

package com.jdojo.prime.probable;

import com.jdojo.prime.PrimeChecker;

import java.math.BigInteger;

public interface ProbablePrimeChecker

 extends PrimeChecker {

 // A provider method

Chapter 7 ImplementIng ServICeS

545

 public static ProbablePrimeChecker provider() {

 int certainty = 1000;

 ProbablePrimeChecker checker = n ->

 BigInteger.valueOf(n).

 isProbablePrime(certainty);

 return checker;

 }

}

The ProbablePrimeChecker interface extends the PrimeChecker interface and

consists of only one method, which is the provider method:

public static ProbablePrimeChecker provider() {/*...*/}

When the ServiceLoader class needs to instantiate the probable prime service, it

will call this method. The method is very simple—it creates and returns an instance of

the ProbablePrimeChecker interface. It uses a lambda expression to create the provider.

The isPrime() method uses the BigInteger class to check whether the number is a

probable prime.

Listing 7-9 contains an alternative declaration of the ProbablePrimeChecker

interface as a service provider.

Listing 7-9. An Alternative Declaration of the ProbablePrimeChecker Interface

// ProbablePrimeChecker.java

package com.jdojo.prime.probable;

import com.jdojo.prime.PrimeChecker;

import java.math.BigInteger;

public interface ProbablePrimeChecker {

 // A provider method

 public static PrimeChecker provider() {

 int certainty = 1000;

 PrimeChecker checker = n ->

 BigInteger.valueOf(n).

 isProbablePrime(certainty);

 return checker;

 }

}

Chapter 7 ImplementIng ServICeS

546

This time, the interface does not extend the PrimeChecker interface. To be a

service implementation, its provider method must return an instance of the service

interface (the PrimeChecker interface) or its subtype. By declaring the return type of

the provider method as PrimeChecker, you have fulfilled this requirement. Declaring

the ProbablePrimeChecker interface, as shown in Listing 7-9, has one drawback

that you cannot find this service provider by its class name, com.jdojo.probable.

ProbablePrimeChecker, using the stream() method of the ServiceLoader class without

instantiating the service provider. The type() method of ServiceLoader.Provider will

return the Class reference of the com.jdojo.prime.PrimeChecker interface, which is the

return type of the provider() method. I use the declaration of this interface as shown in

Listing 7-8.

That’s all you have for this module. To compile this module, you need to add the

jdojo.prime module to the module path. Compile and package this module as a

modular JAR. At this point, there is nothing to test.

 Testing the Prime Service
In this section, you test the service by creating a client application, which will be defined

in a separate module named jdojo.prime.client. Listing 7-10 contains the module

declaration.

Listing 7-10. The Declaration of the jdojo.prime.client Module

// module-info.java

module jdojo.prime.client {

 requires jdojo.prime;

}

The client module needs to know only about the service interface. In this case, the

jdojo.prime module defines the service interface. Therefore, the client module reads

the service interface module and nothing else. In the real world, the client module will

be much more complex than this, and it may read other modules as well. Figure 7-3

shows the module graph for the jdojo.prime.client module.

Chapter 7 ImplementIng ServICeS

547

Note a client module is not aware of the service provider modules, and it need
not directly read them as such. It is the responsibility of the service to discover all
service providers and make their instances available to the client. In this case, the
jdojo.prime module defines the com.jdojo.prime.PrimeChecker interface,
which is a service interface and also acts as a service.

Listing 7-11 contains the code for the client that uses the PrimeChecker service.

Listing 7-11. A Main Class to Test the PrimeChecker Service

// Main.java

package com.jdojo.prime.client;

import com.jdojo.prime.PrimeChecker;

public class Main {

 public static void main(String[] args) {

 // Numbers to be checked for prime

 long[] numbers = {3, 4, 121, 977};

 // Use the default service provider

 PrimeChecker checker = PrimeChecker.newInstance();

 System.out.println(

 "Using default service provider:");

Figure 7-3. The module graph for the com.jdojo.prime.client module

Chapter 7 ImplementIng ServICeS

548

 checkPrimes(checker, numbers);

 // Try faster prime service provider

 String fasterProviderName =

 "com.jdojo.prime.faster.FasterPrimeChecker";

 PrimeChecker fasterChecker =

 PrimeChecker.newInstance(fasterProviderName);

 if (fasterChecker == null) {

 System.out.println(

 "\nFaster service provider is not" +

 " available.");

 } else {

 System.out.println(

 "\h nUsing faster service provider:");

 checkPrimes(fasterChecker, numbers);

 }

 // Try probable prime service provider

 String probableProviderName =

 "com.jdojo.prime.probable.ProbablePrimeChecker";

 PrimeChecker probableChecker =

 PrimeChecker.newInstance(probableProviderName);

 if (probableChecker == null) {

 System.out.println(

 "\nProbable service provider is not" +

 " available.");

 } else {

 System.out.println(

 "\nUsing probable service provider:");

 checkPrimes(probableChecker, numbers);

 }

 }

 public static void checkPrimes(PrimeChecker checker,

 long... numbers) {

 for (long n : numbers) {

 if (checker.isPrime(n)) {

 System.out.printf(

 "%d is a prime.%n", n);

Chapter 7 ImplementIng ServICeS

549

 } else {

 System.out.printf(

 "%d is not a prime.%n", n);

 }

 }

 }

}

The checkPrimes() method takes a PrimeChecker instance and varargs long

numbers. It uses the PrimeChecker to check whether numbers are prime and prints

corresponding messages. The main() method retrieves the default PrimeChecker service

provider instance and the instances of the faster and probable service providers. It uses

all three service providers’ instances to check the same set of numbers to be prime.

Compile and package the module’s code. Run the Main class with only two modules,

jdojo.prime and jdojo.prime.client, in the module path, as follows (remove line

break and spaces after “;”):

C:\Java9LanguageFeatures>java ^

--module-path dist\jdojo.prime.jar;

 dist\jdojo.prime.client.jar ^

--module jdojo.prime.client/com.jdojo.prime.client.Main

Using default service provider:

3 is a prime.

4 is not a prime.

121 is not a prime.

977 is a prime.

Faster service provider is not available.

Probable service provider is not available.

There was only one service provider in the module path, which was the default

service provider packaged with the jdojo.prime module. Therefore, attempts to retrieve

the faster and probable service providers failed. This is evident from the output.

Chapter 7 ImplementIng ServICeS

550

Note When the module system encounters a uses statement in a module
declaration in a resolved module, it scans the module path to find all modules that
contain provides statements specifying implementations for the service interface
specified in the uses statement. In this sense, a uses statement in a module
indicates an indirect optional dependency on other modules, which is resolved
automatically for you. therefore, to use a service provider, just drop the service
provider module on the module path; it will be discovered and loaded by the
ServiceLoader class.

Let’s run the same command by also including the jdojo.prime.faster module to

the module path as follows (remove line break and spaces after “;”):

C:\Java9LanguageFeatures>java ^

--module-path dist\jdojo.prime.jar;

 dist\jdojo.prime.client.jar;

 dist\jdojo.prime.faster.jar ^

--module jdojo.prime.client/com.jdojo.prime.client.Main

Using default service provider:

3 is a prime.

4 is not a prime.

121 is not a prime.

977 is a prime.

Using faster service provider:

3 is a prime.

4 is not a prime.

121 is not a prime.

977 is a prime.

Probable service provider is not available.

This time, you had two service providers on the module path, and both were found

by the runtime, which is evident from the output.

The following command includes the jdojo.prime, jdojo.prime.faster, and

jdojo.prime.probable modules on the module path. All three service providers will be

found, which is evident from the output (remove line break and spaces after “;”):

Chapter 7 ImplementIng ServICeS

551

C:\Java9LanguageFeatures>java ^

--module-path dist\jdojo.prime.jar;

 dist\jdojo.prime.client.jar;

 dist\jdojo.prime.faster.jar;

 dist\jdojo.prime.probable.jar ^

--module jdojo.prime.client/com.jdojo.prime.client.Main

Using default service provider:

3 is a prime.

4 is not a prime.

121 is not a prime.

977 is a prime.

Using faster service provider:

3 is a prime.

4 is not a prime.

121 is not a prime.

977 is a prime.

Using probable service provider:

3 is a prime.

4 is not a prime.

121 is not a prime.

977 is a prime.

This is how modules are resolved in this case:

• The main class is in the jdojo.prime.client module, so this module

is the root module, and it is resolved first.

• The jdojo.prime.client module reads the jdojo.prime module, so

the jdojo.prime module is resolved.

• The jdojo.prime module contains a uses statement that specifies

com.jdojo.prime.PrimeChecker as the service interface type. The

runtime scans all modules in the module path to check if any of them

contains a provides statement specifying the same service interface.

It finds the jdojo.prime, jdojo.prime.faster, and jdojo.prime.

probable modules containing such provides statements. The jdojo.

prime module was already resolved in the previous step. The jdojo.

prime.faster and jdojo.probable modules are resolved at this time.

Chapter 7 ImplementIng ServICeS

552

You can see the module resolution process using the –show-module-resolution

command-line option as follows. A partial output is shown (remove line break and

spaces after “;”):

C:\Java9LanguageFeatures>java ^

--module-path dist\jdojo.prime.jar;

 dist\jdojo.prime.client.jar;

 dist\jdojo.prime.faster.jar;

 dist\jdojo.prime.probable.jar ^

--show-module-resolution ^

--module jdojo.prime.client/com.jdojo.prime.client.Main

root jdojo.prime.client ...

jdojo.prime.client requires jdojo.prime ...

jdojo.prime binds jdojo.prime.probable ...

jdojo.prime binds jdojo.prime.faster...

...

 Testing Prime Service in Legacy Mode
Not all applications will be migrated to use modules. Your modular JARs for the prime

service may be used along with other JARs on the class path. Suppose you placed all

modular JARs for the prime service in the C:\Java9LanguageFeatures\lib directory.

Run the com.jdojo.prime.client.Main class by placing the four modular JARs on the

class path using the following command (remove line break and spaces after “;”):

C:\Java9Revealed>java ^

--class-path lib\com.jdojo.prime.jar;

 lib\com.jdojo.prime.client.jar;

 lib\com.jdojo.prime.faster.jar;

 lib\com.jdojo.prime.generic.jar;

 lib\com.jdojo.prime.probable.jar ^

com.jdojo.prime.client.Main

Chapter 7 ImplementIng ServICeS

553

Using default service provider:

Exception in thread "main" java.lang.NullPointerException

 at com.jdojo.prime.client.Main.checkPrimes

 (Main.java:39)

 at com.jdojo.prime.client.Main.main

 (Main.java:14)

The output indicates that using the legacy mode—the pre-JDK9 mode by placing

all modular JARs on the class path—did not find any of the service providers. In legacy

mode, the service provider discovery mechanism is different. The ServiceLoader class

scans all JARs on the class path looking for files in the META-INF/services directory. The

file name is the fully qualified service interface name. The file path looks like this:

META-INF/services/<service-interface>

The content of this file is the list of the fully qualified names of the service provider

implementation classes/interfaces. Each class name needs to be on a separate line. You

can use a single-line comment in the file. Text on a line starting from a # character is

considered a comment.

The service interface name is com.jdojo.prime.PrimeChecker, so the modular JARs

for the three service providers will have a file named com.jdojo.prime.PrimeChecker

with the following path:

META-INF/services/com.jdojo.prime.PrimeChecker

You need to add the META-INF/services directory to the root of the source code

directory. If you are using an IDE such as NetBeans, the IDE will take care of packaging

the file for you. Listings 7-12 to 7-14 contain the contents of this file for the modular JARs

for the three prime service provider modules.

Listing 7-12. Contents of the META-INF/services/com.jdojo.prime.

PrimeChecker File in the Modular JAR for the com.jdojo.prime Module

The generic service provider implementation class name

com.jdojo.prime.impl.GenericPrimeChecker

Chapter 7 ImplementIng ServICeS

554

Listing 7-13. Contents of the META-INF/services/com.jdojo.prime.

PrimeChecker File in the Modular JAR for the com.jdojo.prime.faster Module

The faster service provider implementation class name

com.jdojo.prime.faster.FasterPrimeChecker

Listing 7-14. Contents of the META-INF/services/com.jdojo.prime.

PrimeChecker File in the Modular JAR for the com.jdojo.prime.probable Module

The probable service provider implementation interface

name

com.jdojo.prime.probable.ProbablePrimeChecker

Recompile and repackage the modular JARs for the generic and faster prime checker

service providers. Run the following command (remove line break and spaces after “;”):

C:\Java9LanguageFeatures>java ^

--class-path lib\jdojo.prime.jar;

 lib\jdojo.prime.client.jar;

 lib\jdojo.prime.faster.jar;

 lib\jdojo.prime.probable.jar ^

com.jdojo.prime.client.Main

Using default service provider:

3 is a prime.

4 is not a prime.

121 is not a prime.

977 is a prime.

Exception in thread "main"

 java.util.ServiceConfigurationError:

 com.jdojo.prime.

PrimeChecker:

com.jdojo.prime.faster.FasterPrimeChecker

Unable to get public no-arg constructor

...

Chapter 7 ImplementIng ServICeS

555

 Caused by: java.lang.NoSuchMethodException:

 com.jdojo.prime.faster.

FasterPrimeChecker.<init>()

...

A partial output is shown. The output indicates a runtime exception when the

ServiceLoader class tries to instantiate the faster prime service provider. You will get

the same error when an attempt is made to instantiate the probable prime service

provider. Adding information about a service in the META-INF/services directory

is the legacy way of implementing services. For backward compatibility, the service

implementation must be a class with a public no-args constructor. Recall that you

provided a provider constructor only for the GenericPrimeChecker class. Therefore, the

default prime checker service provider works and the other two do not work in legacy

mode. You can add a provider constructor to the FasterPrimeChecker class to make it

work. However, it is not possible to add a provider constructor to an interface, and the

ProbablePrimeChecker will not work in the class path mode. You must load it from an

explicit module to make it work.

 Summary
A specific functionality provided by an application (or a library) is known as a service.

Applications and libraries providing implementations of a service are known as service

providers. Applications using the service provided by those service providers are called

service consumers or clients.

In Java, a service is defined by a set of interfaces and classes. The service contains an

interface or an abstract class that defines the functionality provided by the service, and

it is known as the service provider interface, service interface, or service type. A specific

implementation of a service interface is known as a service provider. There can be

multiple service providers for a single service interface. A service provider may be a class

or an interface.

The JDK contains a java.util.ServiceLoader<S> class whose sole purpose is to

discover and load service providers of type S at runtime for a specified service interface.

If a JAR (modular or non-modular) containing a service provider is placed on the class

path, the ServiceLoader class uses the META-INF/services directory to find the service

providers. The name of the file in this directory should be the same as the fully qualified

Chapter 7 ImplementIng ServICeS

556

name of the service interface. The file contains the fully qualified name of the service

provider implementation classes—one class name per line. The file can use a # character

as the start of single-line comments. The ServiceLoader class scans all META-INF/

services directories on the class path to discover service providers.

In a modularized environment, the META-INF/services directory is not needed.

A module that uses the ServiceLoader class to discover and load the service

providers needs to specify the service interface using a uses statement. The service

interface specified in a uses statement may be declared in the current module or any

module accessible to the current module. You can use the iterator() method of the

ServiceLoader class to iterate over all service providers. The stream() method provides

a stream of elements that are instances of the ServiceLoader.Provider interface. You

can use the stream to filter and select a specific type of providers based on the provider’s

class names without having to instantiate all providers.

A module that contains a service provider needs to specify the service interface and

its implementation class using a provides statement. The implementation class must be

declared in the current module.

 Exercises
Exercise 1

What are services, service interfaces, and service providers in Java?

Exercise 2

Write the declaration for a module named M, which loads service providers of a

service interface whose fully qualified name is p.S.

Exercise 3

Write the declaration for a module named N, which provides the implementation of a

service interface p.S. The fully qualified name of the service implementation class is q.C.

Exercise 4

How many types of services can a module load using the ServiceLoader class?

Exercise 5

How many service implementations of a service type can a module provide?

Exercise 6

When do you use the java.util.ServiceLoader<S> class?

Exercise 7

When do you use the nested java.util.ServiceLoader.Provider<S> interface?

Chapter 7 ImplementIng ServICeS

557

Exercise 8

You can discover and load service providers of a specific type using the iterator()

method or the stream() method of the ServiceLoader class. Which method has better

performance when you have to select a service provider based on the name of the

service provider implementation class or interface?

Exercise 9

What are the provider constructor and provider method? If both are available, which

one is used when services are loaded from modular JARs?

Exercise 10

What steps would you take while defining a service packaged in a modular JAR that

should also work when placed in the class path?

Chapter 7 ImplementIng ServICeS

559
© Kishori Sharan, Peter Späth 2021
K. Sharan and P. Späth, More Java 17, https://doi.org/10.1007/978-1-4842-7135-3_8

CHAPTER 8

Network Programming
In this chapter, you will learn:

• What network programming is

• What the network protocol suite is

• What an IP address is and what the different IP addressing schemes

are

• Special IP addresses and their uses

• What port numbers are and how they are used

• Using TCP and UDP client and server sockets for communication

between remote computers

• The definitions of URI, URL, and URN and how to represent them in

Java programs

• How to use non-blocking sockets

• How to use asynchronous socket channels

• Datagram-oriented socket channels and multicast datagram

channels

All example programs in this chapter are members of a jdojo.net module, as

declared in Listing 8-1.

Listing 8-1. The Declaration of a jdojo.net Module

// module-info.java

module jdojo.net {

 exports com.jdojo.net;

}

https://doi.org/10.1007/978-1-4842-7135-3_8#DOI

560

The first few sections in this chapter are intended to give a quick overview of basics

related to network technologies for those readers who do not have a computer science

background. If you understand terms like IP address, port number, and network protocol

suites, you may skip these sections and start reading from the “Socket API and Client-

Server Paradigm” section.

 What Is Network Programming?
A network is a group of two or more computers or other types of electronic devices such

as printers that are linked together with a goal to share information. Each device linked

to a network is called a node. A computer that is linked to a network is called a host.

Network programming in Java involves writing Java programs that facilitate the exchange

of information between processes running on different computers on the network.

Java makes it easy to write network programs. Sending a message to a process

running on another computer is as simple as writing data to a local file system. Similarly,

receiving a message that was sent from a process running in another computer is as

simple as reading data from a local file system. Most of the programs in this chapter

involve reading and writing data over the network, and they are similar to file I/O. You

learn about a few new classes in this chapter that facilitate the communication between

two computers on a network.

You do not need to have advanced level knowledge of networking technologies to

understand or write Java programs in this chapter. This chapter covers high-level details

of a few things that are involved in network communication.

A network can be categorized based on different criteria. Based on the geographical

area that a network is spread over, it is categorized as follows:

• Local Area Network (LAN): It covers a small area such as a building

or a block of buildings.

• Campus Area Network (CAN): It covers a campus such as a university

campus, interconnecting multiple LANs within that campus.

• Metropolitan Area Network (MAN): It covers more geographical area

than a LAN. Usually, it covers a city.

• Wide Area Network (WAN): It covers a larger geographical area such

as a region of a country or multiple regions in different countries in

the world.

Chapter 8 Network programmiNg

561

When two or more networks are connected using routers (also known as

gateways), it is called internetworking, and the resulting combined network is called

an internetwork, in short, internet (note the lowercase i in internet). The global

internetwork, which encompasses all networks in the world connected together, is

referred to as the Internet (note the uppercase I in Internet).

Based on the topology (the arrangement of nodes in a network), a network may be

categorized as star, tree, ring, bus, hybrid, etc.

Based on the technology a network uses to transmit the data, it can be categorized as

Ethernet, LocalTalk, Fiber Distributed Data Interface (FDDI), Token Ring, Asynchronous

Transfer Mode (ATM), etc.

I do not cover any details about the different kinds of networks. Refer to any standard

textbook on networks to learn more about networks and network technologies in detail.

Communication between two processes on a computer is simple, and it is achieved

using interprocess communication as defined by the operating system. It is a very

tedious task when two processes running on two different computers on an internet

need to communicate. You need to consider many aspects of the communication before

such two processes may start communicating. Some of the points that you need to

consider are as follows:

• The two computers may be using different technologies such as

different operating systems, different hardware, etc.

• They may be on two different networks that use different network

technologies.

• They may be separated by many other networks, which may be

using different technologies. That is, two computers are not on two

networks that are interconnected directly. You need to consider not

just two networks, but all networks that the data from one computer

must pass to reach another computer.

• They may be a few miles apart or on other sides of the globe. How do

you transmit the information efficiently without worrying about the

distance between the two computers?

• One computer may not understand the information sent by the other

computer.

Chapter 8 Network programmiNg

562

• The information sent over a network may be duplicated, delayed, or

lost. How should the receiver and the sender handle these abnormal

situations?

Simply put, two computers on a network communicate using messages (sequences

of 0s and 1s).

There must be well-defined rules to handle the previously mentioned issues (and

many more). The set of rules to handle a specific task is known as a protocol. Many types

of tasks are involved in handling network communication. There is a protocol defined to

handle each specific task. There is a stack of protocols (also called protocol suite) that are

used together to handle a network communication.

 Network Protocol Suite
Modern networks are called packet switching networks because they transmit data in

chunks called packets. Each packet is transmitted independent of other packets. This

makes it easy to transmit the packets from the same computer to the same destination

using different routes. However, it may become a problem if a computer sends two

packets to a remote computer and the second packet arrives before the first one. For this

reason, each packet also has a packet number along with its destination address. There

are rules to rearrange the out-of-order arrival of the packets at the destination computer.

The following discussion attempts to explain some of the mechanisms that are used to

handle packets in a network communication.

Figure 8-1 shows a layered protocol suite called the Internet Reference Model or TCP/

IP Layering Model. This is the most widely used protocol suite. Each layer in the model

performs a well-defined task. The main advantage of having a layered protocol model is

that any layer can be changed without affecting others. A new protocol can be added to

any layer without changing other layers.

Chapter 8 Network programmiNg

563

Each layer knows about only the layer immediately above and below it. Each layer

has two interfaces—one for the layer above it and one for the layer below it. For example,

the transport layer has interfaces to the application layer and internet layer. That is,

the transport layer knows how to communicate only with the application layer and the

internet layer. It knows nothing about the network interface layer or the physical layer.

A user application such as a Java program uses the application layer to communicate

to a remote application. The user application has to specify the protocol that it wants

to use to communicate with the remote application. A protocol in an application

layer defines the rules for formatting messages and associating the meaning to the

information contained in the messages such as the message type, describing whether it

is a request or a response, etc. After the application layer formats the message, it hands

over the message to the transport layer. The examples of protocols in an application

layer are the Hypertext Transfer Protocol (HTTP), File Transfer Protocol (FTP), Gopher,

Telecommunication Network (Telnet), Simple Mail Transfer Protocol (SMTP), and

Network News Transfer Protocol (NNTP).

The transport layer protocol handles the ways messages are transported from one

application on one computer to another application on the remote computer. It controls

the data flow, error handling during data transmission, and connections between two

applications. For example, a user application may hand over a very large chunk of data

to the transport layer to transmit to a remote application. The remote computer may

not be able to handle that large amount of data at once. It is the responsibility of the

transport layer to pass a suitable amount of data at a time to the remote computer, so

the remote application can handle the data according to its capacity. The data passed

Figure 8-1. The Internet protocol suite showing its five protocol layers

Chapter 8 Network programmiNg

564

to the remote computer over a network may be lost on its way due to various reasons.

It is the responsibility of the transport layer to retransmit the lost data. Note that the

application layer passes data to be transmitted to the transport layer only once. It is the

transport layer (not the application layer) that keeps track of the delivered and the lost

data during a transmission. There may be multiple applications running, all of which use

 different protocols and exchange information with different remote applications. It is the

responsibility of the transport layer to hand over messages sent to a remote application

correctly. For example, you may be browsing the Internet using the HTTP protocol from

one remote web server and downloading a file using the FTP protocol from another FTP

server. Your computer is receiving messages from two remote computers, and they are

meant for two different applications running on your computer—one web browser to

receive HTTP data and one FTP application to receive FTP data. It is the responsibility

of the transport layer to pass the incoming data to the appropriate application. You can

see how different layers of the protocol suite play different roles in data transmission

over the network. Depending on the transport layer protocol being used, the transport

layer adds relevant information to the message and passes it to the next layer, which

is the internet layer. The examples of protocols used in the transport layer are the

Transmission Control Protocol (TCP), User Datagram Protocol (UDP), and Stream

Control Transmission Protocol (SCTP).

The internet layer accepts the messages from the transport layer and prepares a

packet suitable for sending over the internet. It includes the Internet Protocol (IP).

The packet prepared by the IP is also known as an IP datagram. It consists of a header

and a data area, apart from other pieces of information. The header contains the

sender’s IP address, destination IP address, time to live (TTL, which is an integer), a

header checksum, and many other pieces of information specified in the protocol. The

IP prepares the message into datagrams, which are ready to be transmitted over the

internet. The TTL in the IP datagram header specifies how long, in terms of the number

of routers, an IP datagram can keep traveling before it needs to be discarded. Its size

is one byte and its value could be between 1 and 255. When an IP datagram reaches a

router in its route to the destination, the router decrements the TTL value by one. If the

decremented value is zero, the router discards the datagram and sends an error message

back to the sender using the Internet Control Message Protocol (ICMP). If the TTL value

is still a positive number, the router forwards the datagram to the next router. The IP

uses an address scheme, which assigns a unique address to each computer. The address

is called an IP address. I discuss the IP addressing scheme in detail in the next section.

Chapter 8 Network programmiNg

565

The internet layer hands over the IP datagram to the next layer, which is the network

interface layer. The examples of protocols in an internet layer are the Internet Protocol

(IP), Internet Control Message Protocol (ICMP), Internet Group Management Protocol

(IGMP), and Internet Protocol Security (IPsec).

The network interface layer prepares a packet to be transmitted on the network.

The packet is called a frame. The network interface layer sits just on top of the physical

layer, which involves the hardware. Note that the IP layer uses the IP address to identify

the destination on a network. An IP address is a virtual address, which is completely

maintained in software. The hardware is unaware of the IP address, and it does not know

how to transmit a frame using an IP address. The hardware must be given the hardware

address, also called the Media Access Control (MAC) address, of the destination that it

needs to transmit the frame to. This layer resolves the destination hardware address from

the IP address and places it in the frame header. It hands over the frame to the physical

layer. The examples of protocols in a network interface layer are the Open Shortest Path

First (OSPF), Point-to-Point Protocol (PPP), Point-to-Point Tunneling Protocol (PPTP),

and Layer 2 Tunneling Protocol (L2TP).

The physical layer consists of the hardware. It is responsible for converting the bits of

information into signals and transmitting the signal over the wire.

Note packet is a generic term that is used to mean an independent chunk of
data in network programming. each layer of the protocol also uses a specific term
to mean the packet it deals with. For example, a packet is called a segment in the
tCp layer; it is called a datagram in the ip layer; it is called a frame in the network
interface and physical layers. each layer adds a header (sometimes also a trailer)
to the packet it receives from the layer before it while preparing the packet to
be transmitted over the network. each layer performs the reverse action when it
receives a packet from the layer below it. it removes the header from the packet;
performs some actions, if needed; and hands over the packet to the layer above it.

When a packet sent by an application reaches the remote computer, it has to pass

through the same layer of protocols in the reverse order. Each layer will remove its

header, perform some actions, and pass the packet to the layer immediately above it.

Finally, the packet reaches the remote application in the same format it started from

the application on the sender’s computer. Figure 8-2 shows the transmission of packets

Chapter 8 Network programmiNg

566

from the sender and the receiver computer. P1, P2, P3, and P4 are the packets in different

formats of the same data. A protocol layer at a destination receives the same packet from

the layer immediately below it, which the same protocol layer had passed to the layer

immediately below it on the sender’s computer.

 IP Addressing Scheme
IP uses a unique address, called an IP address, to route an IP datagram to the

destination. An IP address uniquely identifies a connection between a computer and

a router. Normally, it is understood that an IP address identifies a computer. However,

it should be emphasized that it identifies a connection between a computer and a

router, not just a computer. A router is also assigned an IP address. A computer can be

connected to multiple networks using multiple routers, and each connection between

the computer and the router will have a unique IP address. In such cases, the computer

will be assigned multiple IP addresses, and the computer is known as multihomed.

Multihoming increases the availability of the network connection to a computer. If one

network connection fails, the computer can use other available network connections.

Figure 8-2. Transmission of packets through the protocol layers on the sender and
receiver computers

Chapter 8 Network programmiNg

567

An IP address contains two parts—a network identifier (I call it a prefix) and a host

identifier (I call it a suffix). The prefix identifies a network on the Internet uniquely; the

suffix identifies a host uniquely within that network. It is possible for two hosts to have IP

addresses with the same suffix as long as they have a different prefix.

There are two versions of an Internet Protocol—IPv4 (or simply IP) and IPv6, where

v4 and v6 stand for version 4 and version 6. IPv6 is also known as the Internet Protocol

next generation (IPng). Note that there is no IPv5. When IP was in its full swing of

 popularity, it was at version 4. Before IPng was assigned a version number 6, version 5

was already assigned to another protocol called the Internet Stream Protocol (ST).

Both IPv4 and IPv6 use an IP address to identify a host on a network. However, the

addressing schemes in the two versions differ significantly. The next two sections explain

the addressing schemes used by IPv4 and IPv6.

Since an IP address must be unique, its assignment is controlled by an organization

called the Internet Assigned Numbers Authority (IANA). IANA assigns a unique address

to each network that belongs to an organization. The organization uses the network

address and a unique number to form a unique IP address for each host on the

network. IANA divides the IP address allocations to five Regional Internet Registry (RIR)

organizations, which allocate IP addresses in specific regions as listed in Table 8-1. You

can find more information on how to get a network address in your area from IANA at

www.iana.com.

Table 8-1. Regional Internet Registries for Allocating Network IP Addresses

Regional Internet Registry Organization Name Regions Covered

african Network information Centre (afriNiC) africa region

asia/pacific Network information Centre (apNiC) asia-pacific region

american registry for internet Numbers (ariN) North america region

Latin american and Caribbean internet address

registry (LaCNiC)

Latin america and some Caribbean islands

réseaux ip européens Network Coordination Centre

(ripe NCC)

europe, the middle east, and Central asia

Chapter 8 Network programmiNg

http://www.iana.com/

568

 IPv4 Addressing Scheme
IPv4 (or simply IP) uses a 32-bit number to represent an IP address. An IP address

contains two parts—a prefix and a suffix. The prefix identifies a network, and the suffix

identifies a host on the network, as shown in Figure 8-3.

It is not easy for humans to remember a 32-bit number in binary format. IPv4 allows

you to work with an alternate form using four decimal numbers. Each decimal number

is in the range from 0 to 255. Programs take care of converting decimal numbers into a

32-bit binary number that will be used by the computer. The decimal number format

of IPv4 is called a dotted decimal format because a dot is used to separate two decimal

numbers. Each decimal number represents the value contained in 8 bits of the 32-bit

number. For example, an IPv4 address of 1100 0000 1010 1000 0000 0001 1110 0111

in the binary format can be represented as 192.168.1.231 in the dotted decimal format.

The process of converting binary IPv4 to its decimal equivalent is shown in Figure 8-4. In

192.168.1.231, the part 192.168.1 identifies the network address (the prefix), and the

part 231 (the suffix) identifies the host on that network.

How do you know that 192.168.1 represents a prefix in an IPv4 address

192.168.1.231? A rule governs the value of a prefix and a suffix in an IPv4.

More precisely, the IPv4 address space is divided in five categories called network

classes, named A, B, C, D, and E. A class type defines how many bits of the 32 bits will be

used to represent the network address part of an IP address. The leading bit (or bits) in the

prefix defines the class of the IP address. This is also known as a self-identifying or classful

IP address because you can tell which class it belongs to by looking at the IP address.

Figure 8-3. IPv4 addressing scheme

Figure 8-4. Parts of an IPv4 address in binary and decimal formats

Chapter 8 Network programmiNg

569

Table 8-2 lists the five network classes and their characteristics in IPv4. The leading

bits in an IP address identify the class of the network. For example, if an IP address looks

like 0XXX, where XXX is the last 31 bits of the 32 bits, it belongs to the class A network;

if an IP address looks like 110XXX, where XXX is the last 29 bits of 32 bits, it belongs to

the class C network. There can be only 128 networks of class A type, and each network

can have 16777214 hosts. The number of hosts that a class A network can have is very

big, and it is very unlikely that a network will have that many hosts. In a class C type of

network, the maximum number of hosts that a network can have is limited to 254.

What happens if an organization is assigned a network address from class C and it

has only ten hosts to attach to the network? The remaining slots in the IP addresses in

that network remain unused. Recall that the host (or suffix) part in an IP address must be

unique within the network (the prefix part). On the other hand, if an organization needs

to connect 300 computers to a network, it needs to get two class C network addresses

because getting a class B network address, which can accommodate 65534 hosts, will

again waste a great many IP addresses.

Note that if the number of bits allocated for a suffix is N, the number of hosts that

can be used is 2N - 2. Two bit patterns—all 0s and all 1s—cannot be used for a host

address. They are used for special purposes. This is the reason a class C network can have

a maximum of 254 hosts and not 256. Class D addresses are used as multicast addresses.

Class E addresses are reserved.

Table 8-2. Five Classes of IPv4 in the Classful Addressing Scheme

Network
Class

Prefix Suffix Leading Bits in
Prefix

Number of
Networks

Number of Hosts per
Network

A 8 bits 24 bits 0 128 16777214

B 16 bits 16 bits 10 16384 65534

C 24 bits 8 bits 110 2097152 254

D Not

defined

Not

defined

1110 Not defined Not defined

E Not

defined

Not

defined

1111 Not defined Not defined

Chapter 8 Network programmiNg

570

The fast growth of the Internet and the large number of IP addresses not being used

prompted for a new addressing scheme. This scheme is simply based on one criterion—

one should be able to use an arbitrary boundary between the prefix and suffix parts

of an IP address, instead of predefined boundaries at 8, 16, and 24 bits. This will keep

the unused addresses at a minimum. For example, if an organization needs a network

number for a network with only 20 hosts, that organization can use only a 27-bit prefix

and a 5-bit suffix.

Two terminologies called subnetting and supernetting are used to describe the

situations when some bits from the suffix are used for the prefix and some bits from the

prefix are used as the suffix. When bits from the suffix are used as the prefix, essentially,

it creates more network addresses at the cost of host addresses. The extra network

 addresses are called subnets. Subnetting is achieved by using a number called a subnet

mask or an address mask. A subnet mask is a 32-bit number that is used to compute

the network address from an IP address. Using a subnet mask eliminates the restriction

that the class of a network must predefine the network number part of the IP address.

A logical AND is performed on the IP address and the subnet mask to compute the

network number. In this scheme of addressing, an IP address is always specified with

its subnet mask. A forward slash and subnet mask follows an IP address. For example,

140.10.11.9/255.255.0.0 denotes an IP address of 140.10.11.9 with a subnet mask

255.255.0.0. It is possible to use any subnet mask whose four decimal parts range

from 0 to 255. In this example, 140.10.11.9 is a class B address. A class B address uses

16 bits for the prefix and 16 bits for the suffix. Let’s take 6 bits off the suffix and add it

to the prefix. Now, the prefix is 22 bits, and the suffix is only 10 bits. By doing this, you

have created additional network numbers at the cost of host numbers. To describe an IP

address in this scheme of subnetting, you need to use a subnet mask of 255.255.252.0.

If you write an IP address using this subnet mask as 140.10.11.9/255.255.252.0, the

network address is computed as 140.10.8.0, like so:

IP Address: 10001100 00001010 00001011 00001001

Subnet Mask: 11111111 11111111 11111100 00000000

--

Logical AND: 10001100 00001010 00001000 00000000

 (140) (10) (8) (0)

Classless Inter-Domain Routing (CIDR) is another IPv4 addressing scheme in which

an IPv4 address is specified as four dotted decimal numbers along with another decimal

number separated by a forward slash such as 192.168.1.231/24, where the last number

Chapter 8 Network programmiNg

571

24 denotes the prefix length (or number of bits used for a network number) in the 32-bit

IPv4 address. Note that the CIDR addressing scheme lets you define the prefix/suffix

boundary at any bits in 32-bit IPv4. By moving the bits from the prefix to the suffix, you

can combine multiple networks and increase the number of hosts per network. This is

called supernetting. You can create supernets as well as subnets using CIDR notation.

Some IP addresses in an IPv4 addressing scheme are reserved for broadcast and

multicast IP addresses. I discuss broadcasting and multicasting later in this chapter.

 IPv6 Addressing Scheme
IPv6 is a new version of IP, and it is the successor for IPv4. The address space in IPv4 was

running out of addresses in the fast-growing Internet world. IPv6 is aimed at providing

enough address space, so that every computer in the world may get a unique IP address

in the decades to come. Here are some of the main features of IPv6:

• IPv6 uses a 128-bit number for an IP address instead of a 32-bit

number used in IPv4.

• It has different header formats for IP packets than IPv4. IPv4 has

only one header per datagram, whereas IPv6 has one base header

followed by multiple variable-length extension headers per

datagram.

• IPv6 supports datagrams of a bigger size than IPv4.

• In IPv4, the routers performed an IP packet fragmentation. In IPv6,

the sender host is supposed to perform a packet fragmentation rather

than the routers. This means that the host that uses IPv6 must know

in advance the path of the maximum transmission unit (MTU) that is

the minimum of the maximum packet size allowed by all networks to

the destination host. The IP datagram’s fragmentation occurs when

it has to enter a network that has a lower size transmission capacity

than the network the datagram is leaving. In IPv4, the fragmentation

is performed by the router, which detects a lower transmission

capacity network in the route. Since IPv6 allows only the host to

perform the fragmentation, the host must discover the minimum

size datagram that can be routed through all possible routes from the

source to the destination host.

Chapter 8 Network programmiNg

572

• IPv6 supports specifying routing information for the datagrams in

the headers so that routers can use it to route the datagrams through

a specific route. This feature is helpful in delivering time-critical

information.

• IPv6 is extensible. Any number of extension headers can be added to

an IPv6 datagram, which can be interpreted in a new way.

IPv6 uses a 128-bit IP address. It uses an easy-to-understand notation to represent

an IP address in a textual form. The 128 bits are divided into 8 fields of 16 bits each. Each

field is written in hexadecimal form and separated by a colon. The following are some

examples of IPv6 addresses:

• F6DC:0:0:4015:0:BA98:C0A8:1E7

• F6DC:0:0:7678:0:0:0:A21D

• F6DC:0:0:0:0:0:0:A21D

• 0:0:0:0:0:0:0:1

It is common to have many fields in an IPv6 address with zero values, especially for

all IPv4 addresses. The IPv6 address notation lets you compress contiguous fields of zero

values by using two consecutive colons. You can use two colons to suppress contiguous

zero value fields only once in an address. The previous IPv6 address may be rewritten

using the zero compression technique:

• F6DC::4015:0:BA98:C0A8:1E7

• F6DC:0:0:7678::A21D

• F6DC::A21D

• ::1

Note that we could suppress only one of the two sets of contiguous zero fields in the

second address, F6DC:0:0:7678::A21D. Rewriting it as F6DC::7678::A21D would be

invalid because it uses two colons more than once. You can use two colons to suppress

contiguous zero fields, which may occur in the beginning, middle, or end of the address

string. If an address contains all zeroes in it, you can represent it simply as ::.

You can also mix hexadecimal and decimal formats in an IPv6 address. The notation

is useful when you have an IPv4 address and want to write it in IPv6 format. You can

write the first six 16-bit fields using a hexadecimal notation as described previously and

Chapter 8 Network programmiNg

573

use dotted decimal notation for IPv4 for the last two 16-bit fields. The mixed notation

takes the form X:X:X:X:X:X:D.D.D.D, where an X is a hexadecimal number and a D is

a decimal number. You can rewrite the previous IPv6 addresses using this notation as

follows:

• F6DC::4015:0:BA98:192.168.1.231

• F6DC:0:0:7678::0.0.162.29

• F6DC::0.0.162.29

• ::0.0.0.1

Unlike IPv4, IPv6 does not assign IP addresses based on network classes. Like IPv4, it

uses CIDR addresses, so that the boundary between the prefix and suffix in an IP address

can be specified at any arbitrary bit. For example, ::1 can be represented in CIDR

notation as ::1/128, where 128 is the prefix length.

Note an ipv6 address should be enclosed in brackets ([]) when it is used inside
a literal string as part of a UrL. this rule does not apply to ipv4. For example, if you
are accessing a web server on a loopback address using an ipv4 address, you can
use a UrL like http://127.0.0.1/index.html. in an ipv6 address notation,
you need to use a UrL like http://[::1]/index.html. make sure your
browser supports ipv6 address notation in its UrLs before using it.

 Special IP Addresses
Some IP addresses are used for special purposes. Some of such IP addresses are as

follows:

• Loopback IP address

• Unicast IP address

• Multicast IP address

• Anycast IP address

Chapter 8 Network programmiNg

http://127.0.0.1/index.html

574

• Broadcast IP address

• Unspecified IP address

The following sections describe the use of these special IP addresses in detail.

 Loopback IP Address
You need at least two computers connected via a network to test or run a network

program. Sometimes, it may not be feasible or desirable to set up a network when you

want to test your network program during the development phase of your project. The

designers of IP realized this need.

There is a provision in the IP addressing scheme to treat an IP address as a loopback

address to facilitate testing of network programs using only one computer. When the

Internet layer in the protocol suite detects a loopback IP address as the destination for an

IP datagram, it does not pass over the packet to the protocol layer below it (i.e., network

interface layer). Rather, it turns around (or loops back, hence the name loopback

address) and routes the packet back to the transport layer on the same computer. The

transport layer will deliver the packet to the destination process on the same host as it

would have done had the packet come from a remote host. A loopback IP address makes

testing of a network program using one computer possible. Figure 8-5 depicts the way an

Internet packet, which is addressed to a loopback IP address, is processed by the IP. The

packet never leaves the source computer. It is intercepted by the internet layer and

routed back to the same computer it started from.

Chapter 8 Network programmiNg

575

Loopback IP addresses are reserved addresses, and the IP is required not to forward

a packet with a loopback IP address as its destination address to the network interface

layer.

In an IPv4 addressing scheme, 127.X.X.X block is reserved for loopback addresses,

where X is a decimal number between 0 and 255. Typically, 127.0.0.1 is used as a

loopback address in IPv4. However, you are not limited to using only 127.0.0.1 as the

only loopback address. If you wish, you can also use 127.0.0.2 or 127.3.5.11 as a valid

loopback address. Typically, the name localhost is mapped to a loopback address of

127.0.0.1 on a computer.

In an IPv6 addressing scheme, there is only one loopback address, which is sufficient

to perform any local testing for a network program. It is 0:0:0:0:0:0:0:1 or simply ::1.

Figure 8-5. An Internet packet that has a loopback IP address as its destination is
routed back to the same

Chapter 8 Network programmiNg

576

 Unicast IP Address
Unicast is a one-to-one communication between two computers on a network in which

an IP packet is delivered to a single remote host. A unicast IP address identifies a unique

host on a network. IPv4 and IPv6 support unicast IP addresses.

 Multicast IP Address
Multicast is a one-to-many communication where one computer sends an IP packet

that is delivered to multiple remote computers. Multicasting lets you implement the

concept of group interaction such as audio or video conferencing, where one computer

sends information to all computers in the group. The benefit of using multicasting in

place of multiple unicasts is that the sender sends only one copy of the packet. One copy

of the packet travels along the network as long as it can. If receivers of the packet are

on multiple networks, a copy of the packet is made when needed, and each copy of the

packet is routed independently. Finally, each receiver is delivered an individual copy of

the packet. Multicasting is an efficient way of communication between group members

as it reduces network traffic.

An IP packet has only one destination IP address. How is an IP packet delivered to

multiple hosts using multicasting? IP contains some addresses in its address space as

multicast addresses. If a packet is addressed to a multicast address, the packet will be

delivered to multiple hosts. The concept of multicast packet delivery is the same as a

group membership for an activity. When a group is formed, the group is given a group

ID. Any information addressed to that group ID is delivered to all group members.

In a multicast communication, a multicast IP address (similar to a group ID) is used.

Multicast packets are addressed to that multicast address. Each interested host registers

its IP address with the local router that it is interested in communication made on

that multicast address. The registration process between a host and the local router is

accomplished using an Internet Group Management Protocol (IGMP). When the router

receives a packet with a multicast address, it delivers a copy of the packet to each host

registered with it for that multicast address. A receiver may choose to leave the multicast

group any time by informing the router.

A multicast packet may travel through many routers before it finds its way to the

receiver hosts. All receivers of a multicast packet may not be on the same network. There

are many protocols, such as the Distance Vector Multicast Routing Protocol (DVMRP),

that deal with routing of multicast packets.

Chapter 8 Network programmiNg

577

Both IPv4 and IPv6 support multicast addressing. In IPv4, class D network addresses

are used for multicasting. That is, the four highest order bits are 1110 in a multicast

address in IPv4. In IPv6, a multicast address has the first 8 bits set to 1. That is, a

multicast address in IPv6 always starts with FF. For example, FF0X:0:0:0:0:0:2:0000 is

a multicast address in IPv6.

 Anycast IP Address
Anycast is a one-to-one-from-a-group communication where one computer sends a

packet to a group of computers, but the packet is delivered to exactly one computer in

the group. IPv4 does not support anycasting. IPv6 supports anycasting. In anycasting,

the same address is assigned to multiple computers. When a router receives a packet,

which is addressed to an anycast address, it delivers the packet to the nearest computer.

Anycasting is useful when a service has been replicated at many hosts, and you want to

provide the service at the nearest host to the client. Sometimes, anycast addressing is

also called cluster addressing. An anycast address is used from the unicast address space.

You cannot distinguish a unicast address from an anycast address by looking at their bit

arrangements. When the same unicast address is assigned to multiple hosts, it is treated

as an anycast address. Note that the router must know about the hosts that are assigned

an anycast address, so that it can deliver the packets addressed to that anycast address to

one of the nearest hosts.

 Broadcast IP Address
Broadcast is a one-to-all communication where one computer sends a packet and that

packet is delivered to all computers on the network. IPv4 assigns some addresses as

broadcast addresses. When all 32 bits are set to 1, it forms a broadcast address, and the

packet is delivered to all hosts on the local subnet. When all bits in the host address are

set to 1 and a network address is specified, it forms a broadcast address for the specified

network number. For example, 255.255.255.255 is a broadcast address for a local

subnet, and 192.168.1.255 is a broadcast address for a network 192.168.1.0. IPv6

does not have a broadcast address. You need to use a multicast address as the broadcast

address in IPv6.

Chapter 8 Network programmiNg

578

 Unspecified IP Address
0.0.0.0 in IPv4 and :: in IPv6 (note that :: denotes a 128-bit IPv6 address with all bits

set to zero) are known as unspecified addresses. A host uses this address as a source

address to indicate that it does not have an IP address yet, such as during the boot up

process when it is not assigned an IP address yet.

 Port Numbers
A port number is a 16-bit unsigned integer ranging from 0 to 65535. Sometimes, a

port number is also referred to simply as a port. A computer runs many processes,

which communicate with other processes running on remote computers. When the

transport layer receives an incoming packet from the Internet layer, it needs to know

which process (running in the application layer) on that computer should this packet

be delivered to. A port number is a logical number that is used by the transport layer to

recognize a destination process for a packet on a computer.

Each incoming packet to the transport layer has a protocol; for example, the TCP

protocol handler in the transport layer handles a TCP packet, and the UDP protocol

handler in the transport layer handles a UDP packet.

In the application layer, a process uses a separate protocol of each communication

channel it wants to communicate on with a remote process. A process uses a unique port

number for each communication channel it opens for a specific protocol and registers

that port number with the specific protocol module in the transport layer. Therefore, a

port number must be unique for a specific protocol. For example, process P1 can use a

port number 1988 for a TCP protocol, and another called process P2 can use the same

port number 1988 on the same computer for a UDP protocol. A process on a host uses the

protocol and the port number of the remote process to send data to the remote process.

How does a process on a computer start communicating with a remote process? For

example, when you visit Yahoo’s website, you simply enter http://www.yahoo.com

as the web page address. In this web page address, http indicates the application

layer protocol, which uses TCP as a transport layer protocol, and www.yahoo.com is the

machine name, which is resolved to an IP address using a Domain Name System (DNS).

The machine identified by www.yahoo.com may be running many processes, which

may use the http protocol. Which process on www.yahoo.com does your web browser

connect to? Since many people use Yahoo’s website, it needs to run its http service at a

Chapter 8 Network programmiNg

http://www.yahoo.com/
http://www.yahoo.com/
http://www.yahoo.com/
http://www.yahoo.com/

579

well-known port, so that everyone can use that port to connect to it. Typically, the http

web server runs at port 80. You can use http://www.yahoo.com:80, which is the same

as using http://www.yahoo.com. It is not always necessary to run the http web server at

port 80. If you do not run your http web server at port 80, people who want to use your

http service must know the port you are using. IANA is responsible for recommending

which port numbers to use for well-known services. IANA divides the port numbers into

three ranges:

• Well-known ports: 0–1023

• Registered ports: 1024–49151

• Dynamic and/or private ports: 49152–65535

Well-known port numbers are used by most commonly used services provided

globally such as HTTP, FTP, etc. Table 8-3 lists some of the well-known ports that are

used for well-known application layer protocols. Generally, you need administrative

privileges to use a well-known port on a computer.

An organization (or a user) can register a port number with IANA in the registered

port range to be used by an application. For example, the 1099 (TCP/UDP) port has been

registered for the RMI Registry (RMI stands for Remote Method Invocation).

Any application can use a port number from a dynamic/private port number range.

Table 8-3. Partial List of Well-Known Ports

Used for Some Application Layer Protocols

Application Layer Protocol Port Number

echo 7

Ftp 21

telnet 23

Smtp 25

http 80

httpS 443

pop3 110

NNtp 119

Chapter 8 Network programmiNg

http://www.yahoo.com:80
http://www.yahoo.com

580

 Socket API and Client-Server Paradigm
I have not yet started discussing Java classes that make network communication possible

in a Java program. In this section, I cover sockets and the client-server paradigm that is

used in a network communication between two remote hosts.

I covered briefly the different lower layers of protocols and their responsibilities

in the previous sections. It is time to move up in the protocol stack and discuss the

interaction between the application layer and the transport layer. How does an

application use these protocols to communicate with a remote application? Operating

systems provide an application program interface (API) called a socket, which lets two

remote applications communicate, taking advantage of lower-level protocols in the

protocol stack. A socket is not another layer of protocol. It is an interface between the

transport layer and the application layer. It provides a standard way of communication

between the two layers, which in turn provides a standard way of communication

between two remote applications. There are two kinds of sockets:

• A connection-oriented socket

• A connectionless socket

A connection-oriented socket is also called a stream socket. A connectionless socket

is also called a datagram socket. Note that the data is always sent one datagram at a time

from one host to another on the Internet using IP datagrams.

The Transmission Control Protocol (TCP), which is used in a transport layer, is

one of the most widely used protocols to provide connection-oriented sockets. The

application hands over data to a TCP socket, and the TCP takes care of streaming the

data to the destination host. The TCP takes care of all issues like ordering, fragmentation,

assembly, lost data detection, duplicate data transmission, etc., on both sides of the

communication, which gives the impression to the applications that data is flowing

like a continuous stream of bytes from the source application to the destination

application. No physical connection at the hardware level exists between two hosts that

use TCP sockets. It is all implemented in software. Sometimes, it is also called a virtual

connection. The combination of two sockets uniquely defines a connection.

In a connection-oriented socket communication, the client and the server create a

socket at their ends, establish a connection, and exchange information. TCP takes care

of the errors that may occur during data transmission. TCP is also known as a reliable

transport level protocol because it guarantees the delivery of the data. If it could not

Chapter 8 Network programmiNg

581

deliver the data for some reasons, it will inform the sender application about the error

conditions. After it sends the data, it waits for an acknowledgment from the receiver to

make sure that the data reached the destination. However, the reliability that TCP offers

comes at a price. The overhead as compared to a connectionless protocol is much more

significant, and it is slower. TCP makes sure that a sender sends the amount of data to

the receiver, which can be handled by the receiver’s buffer size. It also handles traffic

congestion over the network. It slows down the data transmission when it detects traffic

congestion. Java supports TCP sockets.

The User Datagram Protocol (UDP), which is used in a transport layer, is the most

widely used protocol that provides a connectionless socket. It is unreliable, but much

faster. It lets you send limited sized data—one packet at a time—which is different from

TCP, which lets you send data as a stream of any size, handling the details of segmenting

them in appropriate size of packets. Data delivery is not guaranteed when you send

data using UDP. However, it is still used in many applications, and it works very well.

The sender sends a UDP packet to a destination and forgets about it. If the receiver gets

it, it gets it. Otherwise, there is no way to know—for the receiver—that there was a UDP

packet sent to it. You can compare the communication used in TCP and UDP to the

communication used in a telephone and mailing a letter. A telephone conversation is

 reliable, and it offers acknowledgment between two parties that are communicating.

When you mail a letter, you do not know when the addressee receives it, or if they

received it at all. There is another important difference between UDP and TCP. UDP does

not guarantee the ordering of data. That is, if you send five packets to a destination using

UDP, those five packets may arrive in any order. However, TCP guarantees that packets

will be delivered in the order they were sent. Java supports UDP sockets.

Which protocol should you use: TCP or UDP? It depends on how the application

will be used. If data integrity is of utmost significance, you should use TCP. If speed is

prioritized over lower data integrity, you should use UDP. For example, a file transfer

application should use TCP, whereas a video conferencing application should use UDP.

If you lose video data of a few pixels, it does not matter much to the video conference.

It can continue. However, if you lose a few bytes of data when a file is being transferred,

that file may not be usable at all.

How do two remote applications start communicating? Which application initiates

the communication? How does an application know that a remote application is

interested in communicating with it? Have you ever dialed a customer service number

of a company to talk to a customer service representative? If you have talked to a

Chapter 8 Network programmiNg

582

company’s customer service representative, you already have experienced two remote

applications communicate. I refer to the mechanism of using a company’s customer

service to explain remote communication in this section. You and a company’s

representative are at two remote locations. You need a service and the company provides

that service. In other words, you are the client, and the company is a service provider

(or a server). You do not know when you will need a service from the company. The

company provides a customer service phone number, so you can contact the company.

There is one more thing the company does. What is it that the company must do to

provide you a service? Can you guess? It waits for your calls at the phone number that

it gave you. The communication has to happen between you and the company, and the

company has already taken one step forward in that communication by passively waiting

for your call. As soon as you dial the company’s number, a connection is established,

and you exchange information with the company’s representative. Both of you hang

up, at the end, to discontinue the communication. The network communication using

sockets is similar to the communication that happens between you and the company’s

representative. If you understand this example of communication, understanding

sockets is easy.

Two remote applications use a pair of sockets to communicate. You need two

endpoints for any communication to occur. A socket is a communication endpoint on

each side of the communication channel. Communication over a pair of sockets follows

a typical client-server communication paradigm. One application creates a socket and

passively waits to be contacted by another remote application. The application that

waits for a remote application to contact it is called a server application or simply a

server. Another application creates a socket and initiates the communication with the

waiting server application. This is called a client application or simply a client. Many

other steps must be performed before a client and a server can exchange information.

For example, a server must advertise the location and other details about itself so a

client may contact it.

A socket passes through different states. Each state marks an event. It is the state of

the socket that tells you what a socket can do and what it cannot do. Generally, a socket’s

lifecycle is described by eight primitives listed in Table 8-4.

Chapter 8 Network programmiNg

583

The following sections elaborate each socket primitive.

 The Socket Primitive
A server creates a socket by specifying what kind of socket it is: a stream socket or a

datagram socket.

Table 8-4. Typical Socket Primitives and Their Descriptions

Primitives Description

Socket Creates a socket, which is used by an application to serve as a

communication endpoint.

Bind associates a local address to the socket. the local address includes

an ip address and a port number. the port number must be a number

between 0 and 65535. it should be unique for the protocol being used

for the socket on the computer. For example, if a tCp socket uses port

12456, a UDp socket can also use the same port number 12456.

Listen Defines the size of its wait queue for a client request. it is performed

only by a connection-oriented server socket.

Accept waits for a client request to arrive. it is performed only by a

connection-oriented server socket.

Connect attempts to establish a connection to a server socket, which is

waiting on an accept primitive. it is performed by a connection-

oriented client socket.

Send/Sendto Sends data. Usually, send indicates a send operation on a

connection-oriented socket, and Sendto indicates a send operation

on a connectionless socket.

Receive/ReceiveFrom receives data. they are counterparts of Send and Sendto.

Close Closes a connection.

Chapter 8 Network programmiNg

584

 The Bind Primitive
The bind primitive associates the socket to a local IP address and a port number. Note

that a host can have multiple IP addresses. A socket can be bound to one of the IP

addresses of the host or all of them. Binding a socket to all available IP addresses for the

host is also known as binding to a wildcard address. Binding reserves the port number

for this socket. No other socket can use that port number for communication. The

bound port will be used by the transport protocol (TCP as well as UDP) to route the data

intended for this socket. I explain more about transferring data between the transport

layer and a socket a little later in this section. For now, it is sufficient to understand

that, in binding, the socket tells the transport layer that here is my IP address and port

number, and if you get any data addressed to this address, please pass that data to me.

The IP address and the port number to which a socket is bound are called the local

address and the local port for the socket, respectively.

 The Listen Primitive
A server informs the operating system to place the socket in a passive mode so it waits

for the incoming client requests. At this point, the server is not yet ready to accept any

client request. A server also specifies a wait queue size for the socket. When a client

contacts the server at this socket, the client request is placed in that queue. Initially, the

queue is empty. If a client contacts the server at this socket and the wait queue is full, the

client’s request is rejected.

 The Accept Primitive
A server informs the operating system that this socket is ready to accept client requests.

This step is not performed if the server is using a socket using a connectionless transport

protocol such as UDP. This step is performed for TCP server sockets. When a socket

sends an accept message to the operating system, it blocks until it receives a client

request for a new connection.

 The Connect Primitive
Only a connection-oriented client socket performs this step. This is the most important

phase in a socket communication. The client socket sends a request to the server socket

Chapter 8 Network programmiNg

585

to establish a connection. The server socket has issued accept and has been waiting for

a client request to arrive. The client socket sends the IP address and the port number

of the server socket. Recall that a server socket binds an IP address and a port number

before it starts listening and accepting connections from outside. Along with its request,

a client socket also sends its own IP address and the port number to which it is already

bound.

An important question arises at this point. How does the transport layer such as

TCP know that the packet (in the form of a request for a connection) that came from a

client has to be handed over to the server socket? During the binding phase, a socket

specifies its local IP address and a local port number as well as a remote IP address and

a remote port number. If the server socket wants to accept a connection only from a

specific remote host IP address and port number, it can do so. Usually, the server socket

will accept a connection from any client, and it will specify an unspecified IP address

and a zero port number as its remote address. A server socket passes five pieces of

information—a local IP address, a local port number, a remote IP address, a remote port

number, and a buffer—to the transport layer. The transport layer stores them for future

use in a special structure called a Transmission Control Block (TCB). When a packet

from outside arrives at the transport layer, it looks up its TCB based on the four pieces of

information contained in the incoming packet, <source IP address, source port number,

destination IP address, destination port number>. Recall that the client sends the source

and destination addresses in each TCP packet to the server. The transport layer attempts

to find a buffer that is associated with the source and destination addresses. If it finds

a buffer, it transfers the incoming data to the buffer and notifies the socket that there is

some information for it in the buffer. If the server socket is accepting requests from any

client (all zeroes in the remote address), the data from any client will be routed to its

buffer.

Once a server socket detects a request from a client, it creates a new socket with the

remote client’s address information. The new socket is bound using a <local IP address,

local port number (the same as the server socket’s port number), remote IP address,

and remote port number>, and a new buffer is created and bound to this combined

addresses. In fact, two buffers are created for a socket: one for the incoming data and

one for the outgoing data. At this point, a server socket lets the new socket communicate

with the client socket that requested a connection. The server socket itself can close

itself (accepting no more client requests for a connection), or it can start waiting again to

accept another client request for a connection.

Chapter 8 Network programmiNg

586

After a connection is established between two sockets (a client and a server), they

can exchange information. A TCP connection supports a full duplex connection. That is,

data can be sent or received in both directions simultaneously.

A client socket knows its local IP address, local port number, remote IP address,

and remote port number before it attempts to connect to a server. At the client end, the

creation of a TCB follows similar rules.

Once the client and server sockets are in place, two sockets (the client socket and the

server socket dedicated to the client) define a connection.

A server socket acts like a receptionist sitting at the front desk in an office (server).

A client comes in and talks to the receptionist first. A connection request comes from a

client to the server and contacts the server socket first. The receptionist hands over the

client to another staff. At this point, the job of the receptionist is over with that client.

They continue their work of waiting to welcome another client coming to the office.

Meanwhile, the first client can continue talking to another staff as long as they need.

Similarly, the server socket creates a new socket and assigns that new socket to the

client for further communication. As soon as the server socket assigns a new socket to

the client, its job is over with that client. It will wait for another incoming request for

connection from another client. Note that apart from many other details, a socket has

five important pieces of information associated with it: a protocol, a local IP address, a

local port number, a remote IP address, and a remote port number.

 The Send/Sendto Primitive
It is the stage when a socket sends data.

 The Receive/ReceiveFrom Primitive
It is the stage when a socket receives data.

 The Close Primitive
It is time to say goodbye. Finally, the server and client sockets close the connection.

Subsequent sections discuss Java classes that support different kinds of sockets to

facilitate network programming. Java classes that are related to network programming

are in the java.net, javax.net, and javax.net.ssl packages.

Chapter 8 Network programmiNg

587

 Representing a Machine Address
An Internet Protocol uses the IP addresses of machines to deliver packets. Using IP

addresses in a program is not always easy because of its numeric format. You may be

able to memorize and use IPv4 addresses because they are only four decimal numbers

in length. Memorizing and using IPv6 addresses is a little more difficult because they are

eight numbers in a hexadecimal format. Every computer also has a name such as www.

yahoo.com. Using a computer name in your program makes your life much easier. Java

provides classes that let you use a computer name or an IP address in a Java program.

If you use a computer name, Java takes care of resolving the computer name to its IP

address using a Domain Name System (DNS).

An object of the InetAddress class represents an IP address. It has two subclasses,

Inet4Address and Inet6Address, which represent IPv4 and IPv6 addresses, respectively.

The InetAddress class does not have a public constructor. It provides the following

factory methods to create its object. They are as follows—all of them throw a checked

UnknownHostException:

• static InetAddress[] getAllByName(String host)

• static InetAddress getByAddress(byte[] addr)

• static InetAddress getByAddress(String host, byte[] addr)

• static InetAddress getByName(String host)

• static InetAddress getLocalHost()

• static InetAddress getLoopbackAddress()

The host argument refers to a computer name or an IP address in the standard

format. The addr argument refers to the parts of an IP address as a byte array. If you

specify an IPv4 address, addr must be a 4-element byte array. For IPv6 addresses, it

should be a 16-element byte array. The InetAddress class takes care of resolving the

host name to an IP address using DNS.

Sometimes, a host may have multiple IP addresses. The getAllByName() method

returns all addresses as an array of InetAddress objects.

Typically, you create an object of the InetAddress class using one of these factory

methods and pass that object to other methods during a socket creation and connection.

The following snippet of code demonstrates some of its uses. You will need to handle

exceptions when you use the InetAddress class or its subclasses.

Chapter 8 Network programmiNg

http://www.yahoo.com
http://www.yahoo.com

588

// Get the IP address of the yahoo web server

InetAddress yahooAddress = InetAddress.

 getByName("www.yahoo.com");

// Get the loopback IP address

InetAddress loopbackAddress = InetAddress.

 getByName(null);

/* Get the address of the local host. Typically, a name

 "localhost" is mapped to a loopback address. Here, we

 are trying to get the IP address of the local computer

 where this code executes and not the loopback address.

*/

InetAddress myComputerIPAddress =

 InetAddress.getLocalHost();

The following snippet of code shows how to print the computer name and IP address

of the computer on which the code is executed:

try {

 InetAddress addr = InetAddress.getLocalHost();

 System.out.println("My computer name: " +

 addr.getHostName());

 System.out.println("My computer IP address: " +

 addr.getHostAddress());

} catch (UnknownHostException e) {

 e.printStackTrace();

}

Listing 8-2 demonstrates the use of the InetAddress class and some of its methods.

You may get a different output when you run the program.

Listing 8-2. Demonstrating the Use of the InetAddress Class

// InetAddressTest.java

package com.jdojo.net;

import java.io.IOException;

import java.net.InetAddress;

Chapter 8 Network programmiNg

589

public class InetAddressTest {

 public static void main(String[] args) {

 // Print www.yahoo.com address details

 printAddressDetails("www.yahoo.com");

 // Print the loopback address details

 printAddressDetails(null);

 // Print the loopback address details using IPv6

 // format

 printAddressDetails("::1");

 }

 public static void printAddressDetails(String host) {

 System.out.println("Host name: " + host);

 try {

 InetAddress addr = InetAddress.getByName(host);

 System.out.println("Host IP Address: " +

 addr.getHostAddress());

 System.out.println("Canonical Host Name: " +

 addr.getCanonicalHostName());

 int timeOutinMillis = 10000;

 System.out.println("isReachable(): " +

 addr.isReachable(timeOutinMillis));

 System.out.println("isLoopbackAddress(): " +

 addr.isLoopbackAddress());

 } catch (IOException e) {

 e.printStackTrace();

 } finally {

 System.out.println(

 "-------------------------------\n");

 }

 }

}

Host name: www.yahoo.com

Host IP Address: 98.138.252.39

Canonical Host Name:

 media-router-fp2.prod.media.vip.ne1.yahoo.com

Chapter 8 Network programmiNg

590

isReachable(): true

isLoopbackAddress(): false

Host name: null

Host IP Address: 127.0.0.1

Canonical Host Name: 127.0.0.1

isReachable(): true

isLoopbackAddress(): true

Host name: ::1

Host IP Address: 0:0:0:0:0:0:0:1

Canonical Host Name: 0:0:0:0:0:0:0:1

isReachable(): true

isLoopbackAddress(): true

 Representing a Socket Address
A socket address contains two parts, an IP address and a port number. An object of

the InetSocketAddress class represents a socket address. You can use the following

constructors to create an object of the InetSocketAddress class:

• InetSocketAddress(InetAddress addr, int port)

• InetSocketAddress(int port)

• InetSocketAddress(String hostname, int port)

All constructors will attempt to resolve a host name to an IP address. If a host name

could not be resolved, the socket address will be flagged as unresolved, which you

can test using the isUnresolved() method. If you do not want this class to resolve the

address when creating its object, you can use the following factory method to create the

socket address:

static InetSocketAddress createUnresolved(

 String host, int port)

Chapter 8 Network programmiNg

591

The getAddress() method of the InetSocketAddress class returns an InetAddress.

If a host name is not resolved, the getAddress() method returns null. If you use an

unresolved InetSocketAddress object with a socket, an attempt is made to resolve the

host name during the bind process.

Listing 8-3 shows how to create resolved and unresolved InetSocketAddress

objects. You may get a different output when you run the program.

Listing 8-3. Creating an InetSocketAddress Object

// InetSocketAddressTest.java

package com.jdojo.net;

import java.net.InetSocketAddress;

public class InetSocketAddressTest {

 public static void main(String[] args) {

 InetSocketAddress addr1 = new InetSocketAddress(

 "::1", 12889);

 printSocketAddress(addr1);

 InetSocketAddress addr2 = InetSocketAddress.

 createUnresolved("::1", 12881);

 printSocketAddress(addr2);

 }

 public static void

 printSocketAddress(InetSocketAddress sAddr) {

 System.out.println("Socket Address: " +

 sAddr.getAddress());

 System.out.println("Socket Host Name: " +

 sAddr.getHostName());

 System.out.println("Socket Port: " +

 sAddr.getPort());

 System.out.println("isUnresolved(): " +

 sAddr.isUnresolved());

 System.out.println();

 }

}

Chapter 8 Network programmiNg

592

Socket Address: /0:0:0:0:0:0:0:1

Socket Host Name: 0:0:0:0:0:0:0:1

Socket Port: 12889

isUnresolved(): false

Socket Address: null

Socket Host Name: ::1

Socket Port: 12881

isUnresolved(): true

 Creating a TCP Server Socket
An object of the ServerSocket class represents a TCP server socket. A ServerSocket

object is used to accept a connection request from a remote client. The ServerSocket

class provides many constructors. You can use the no-args constructor to create an

unbound server socket and use its bind() method to bind it to a local port and a local IP

address. The following snippet of code shows you how to create a server socket:

// Create an unbound server socket

ServerSocket serverSocket = new ServerSocket();

// Create a socket address object

InetSocketAddress endPoint = new InetSocketAddress(

 "localhost", 12900);

// Set the wait queue size to 100

int waitQueueSize = 100;

// Bind the server socket to localhost at port 12900

// with a wait queue size of 100

serverSocket.bind(endPoint, waitQueueSize);

There is no separate listen() method in the ServerSocket class that corresponds

to the listen socket primitive. Its bind() method takes care of specifying the waiting

queue size for the socket.

You can combine the create, bind, and listen operations in one step by using any

of the following constructors of the ServerSocket class. The default value for the wait

queue size is 50. The default value for a local IP address is the wildcard address, which

means all IP addresses of the server machine.

• ServerSocket(int port)

Chapter 8 Network programmiNg

593

• ServerSocket(int port, int waitQueueSize)

• ServerSocket(int port, int waitQueueSize, InetAddress

bindAddr)

You can combine the socket creation and bind steps into one statement as shown:

// Create a server socket at port 12900, with 100 as the

// wait queue size at the localhost loopback address

ServerSocket serverSocket =

 new ServerSocket(12900, 100, InetAddress.

getByName("localhost"));

Once a server socket is created and bound, it is ready to accept incoming connection

requests from remote clients. To accept a remote connection request, you need to call

the accept() method on the server socket. The accept() method call blocks until a

request from a remote client arrives in its wait queue. When the server socket receives

a request for a connection, it reads the remote IP address and the remote port number

from the request and creates a new active socket. The reference of the newly created

active socket is returned from the accept() method. An object of the Socket class

represents the new active socket. The accept() method returns a new active socket

because it is not a passive socket like a server socket, which waits for a remote request.

It is an active socket because it is created for an active communication with the remote

client. Sometimes, this active socket is also called a connection socket because it handles

the data transmission on a connection:

// Wait for a new remote connection request

Socket activeSocket = serverSocket.accept();

Once the server socket returns from the accept() method call, the number of

sockets in the server application increases by one. You have one passive server socket

and one more active socket. The new active socket is the endpoint at the server for the

new client connection. At this point, you need to handle the communication with the

client using the new active socket.

Now you are ready to read and write data on the connection represented by the

new socket. A Java TCP socket provides a full duplex connection. It lets you read data

from the connection as well as write data to the connection. The Socket class contains

two methods called getInputStream() and getOutputStream() for this purpose. The

getInputStream() method returns an InputStream object that you can use to read data

Chapter 8 Network programmiNg

594

from the connection. The getOutputStream() method returns an OutputStream object

that you can use to write data to the connection. You use InputStream and OutputStream

objects as if you are reading from and writing to a file on a local file system. I assume

that you are familiar with Java I/O. When you are done with reading/writing data on the

connection, you close the InputStream/OutputStream, and finally close the socket. The

following snippet of code reads a message from a client and echoes the message to the

client. Note that the server and the client must agree on the format of the message before

they start communicating. The following snippet of code assumes that the client sends

one line of text at a time:

// Create a buffered reader and a buffered writer from

// the socket's input and output streams, so that we can

// read/write one line at a time

BufferedReader br = new BufferedReader(

 new InputStreamReader(activeSocket.

 getInputStream()));

BufferedWriter bw = new BufferedWriter(

 new OutputStreamWriter(activeSocket.

 getOutputStream()));

You can use br and bw the same way you will use them to read from a file or write to a

file. An attempt to read from an input stream blocks until data becomes available on the

connection.

// Read one line of text from the connection

String inMsg = br.readLine();

// Write some text to the output buffer

bw.write("Hello from server");

bw.flush();

At the end, close the connection using the socket’s close() method. Closing

the socket also closes its input and output streams. In fact, you can close one of the

three (the input stream, the output stream, or the socket), and the other two will be

closed automatically. An attempt to read/write on a closed socket throws a java.net.

SocketException. You can check if a socket is closed by using its isClosed() method,

which returns true if the socket is closed.

// Close the socket

activeSocket.close();

Chapter 8 Network programmiNg

595

Note once you close a socket, you cannot reuse it. You must create a new socket
and bind it before using the new socket.

A server handles two kinds of work: accepting new connection requests and

responding to already connected clients. If responding to a client takes a very small

amount of time, you can use the strategy as shown:

ServerSocket serverSocket = ...;

// <- create a server socket here;

while(true) {

 Socket activeSocket = serverSocket.accept();

 // Handle the client request on activeSocket here

}

This strategy handles one client at a time. It is suitable only if the number of

concurrent incoming connections is very low and a client’s request takes a very small

amount of time to respond. If a client request takes a significant amount of time to

respond, all other clients will have to wait before they can be served.

Another strategy to work with multiple client requests is to handle each client’s

request in a separate thread so the server can serve multiple clients at the same time.

The following pseudocode outlines this strategy:

ServerSocket serverSocket = ...;

// <- create a server socket here;

while(true) {

 Socket activeSocket = serverSocket.accept();

 Runnable runnable = () -> {

 // Handle the client request on the activeSocket

 // here

 };

 new Thread(runnable).start(); // start a new thread

}

This strategy seems to work fine until you have too many threads that are created for

concurrent client connections. Another strategy that works well in most of the situations

is to have a thread pool to serve all client connections. If all threads in the pool are busy

serving clients, the request should wait until a thread becomes free to serve it.

Chapter 8 Network programmiNg

596

Listing 8-4 contains the complete code for an echo server. It creates a new thread to

handle each client request. You can run the echo server program now. However, it is not

going to do much as you do not have a client program to connect to it. You will see it in

action after you learn how to create the TCP client socket in the next section.

Listing 8-4. An Echo Server Based on TCP Sockets

// TCPEchoServer.java

package com.jdojo.net;

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.IOException;

import java.io.InputStreamReader;

import java.io.OutputStreamWriter;

import java.net.InetAddress;

import java.net.ServerSocket;

import java.net.Socket;

public class TCPEchoServer {

 public static void main(String[] args) {

 try {

 // Create a Server socket

 ServerSocket serverSocket =

 new ServerSocket(12900, 100,

 InetAddress.getByName("localhost"));

 System.out.println("Server started at: " +

 serverSocket);

 // Keep accepting client connections in an

 // infinite loop

 while (true) {

 System.out.println(

 "Waiting for a connection...");

 // Accept a connection

 final Socket activeSocket =

 serverSocket.accept();

 System.out.println(

 "Received a connection from " +

 activeSocket);

Chapter 8 Network programmiNg

597

 // Create a new thread to handle the new

 // connection

 Runnable runnable = () ->

 handleClientRequest(activeSocket);

 new Thread(runnable).start();

 // <- start a new thread

 }

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 public static void handleClientRequest(Socket socket) {

 BufferedReader socketReader = null;

 BufferedWriter socketWriter = null;

 try {

 // Create a buffered reader and writer for

 // the socket

 socketReader = new BufferedReader(

 new InputStreamReader(

 socket.getInputStream()));

 socketWriter = new BufferedWriter(

 new OutputStreamWriter(

 socket.getOutputStream()));

 String inMsg = null;

 while ((inMsg = socketReader.readLine())

 != null) {

 System.out.println(

 "Received from client: " + inMsg);

 // Echo the received message to the client

 String outMsg = inMsg;

 socketWriter.write(outMsg);

 socketWriter.write("\n");

 socketWriter.flush();

 }

Chapter 8 Network programmiNg

598

 } catch (IOException e) {

 e.printStackTrace();

 } finally {

 try {

 socket.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 }

}

 Creating a TCP Client Socket
An object of the Socket class represents a TCP client socket. You have already seen how

an object of the Socket class works with a TCP server socket. For a server socket, you

got an object of the Socket class as the return value from the server socket’s accept()

method. For a client socket, you will have to perform three steps: create, bind, and

connect. The Socket class provides many constructors that let you specify the remote

IP address and port number. These constructors bind the socket to a local host and an

available port number. The following snippet of code shows how to create a TCP client

socket:

// Create a client socket, which is bound to the

// localhost at any available port

// connected to remote IP 192.168.1.2 at port 3456

Socket socket = new Socket("192.168.1.2", 3456);

// Create an unbound client socket. bind it, and

// connect it.

Socket socket = new Socket();

socket.bind(new InetSocketAddress("localhost", 14101));

socket.connect(new InetSocketAddress("localhost", 12900));

Chapter 8 Network programmiNg

599

Once you get a connected Socket, you can use its input and output streams using the

getInputStream() and getOutputStream() methods, respectively. You can read/write

on the connection the same way you would read/write from/to a file using the input and

output streams.

Listing 8-5 contains the complete code for an echo client application. It receives

input from the user, sends the input to the echo server as listed in Listing 8-4, and prints

the server’s response on the standard output. Both applications, the echo server and

the echo client, must agree on the format of the messages that they will be exchanging.

They exchange one line of text at a time. It is important to note that you must append a

new line with every message that is sent across the connection because you are using the

readLine() method of the BufferedReader class, which returns only when it encounters

a new line. The client application must use the same IP address and port number where

the server socket is accepting the connection.

Listing 8-5. An Echo Client Based on TCP Sockets

// TCPEchoClient.java

package com.jdojo.net;

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.IOException;

import java.io.InputStreamReader;

import java.io.OutputStreamWriter;

import java.net.Socket;

public class TCPEchoClient {

 public static void main(String[] args) {

 Socket socket = null;

 BufferedReader socketReader = null;

 BufferedWriter socketWriter = null;

 try {

 // Create a socket that will connect to

 // localhost at port 12900.

 // Note that the server must also be running

 // at localhost and 12900.

 socket = new Socket("localhost", 12900);

Chapter 8 Network programmiNg

600

 System.out.println("Started client socket at "

 + socket.getLocalSocketAddress());

 // Create a buffered reader and writer using

 // the socket's input and output streams

 socketReader = new BufferedReader(

 new InputStreamReader(

 socket.getInputStream()));

 socketWriter = new BufferedWriter(

 new OutputStreamWriter(

 socket.getOutputStream()));

 // Create a buffered reader for user's input

 BufferedReader consoleReader =

 new BufferedReader(

 new InputStreamReader(System.in));

 String promptMsg =

 "Please enter a message (Bye to quit):";

 String outMsg = null;

 System.out.print(promptMsg);

 while ((outMsg = consoleReader.readLine())

 != null) {

 if (outMsg.equalsIgnoreCase("bye")) {

 break;

 }

 // Add a new line to the message to the

 // server, because the server reads one

 // line at a time.

 socketWriter.write(outMsg);

 socketWriter.write("\n");

 socketWriter.flush();

 // Read and display the message from the

 // server

 String inMsg = socketReader.readLine();

 System.out.println("Server: " + inMsg);

 System.out.println(); // Print a blank line

 System.out.print(promptMsg);

 }

Chapter 8 Network programmiNg

601

 } catch (IOException e) {

 e.printStackTrace();

 } finally {

 // Finally close the socket

 if (socket != null) {

 try {

 socket.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 }

 }

}

 Putting a TCP Server and Clients Together
Figure 8-6 shows the setup in which three clients are connected to a server. Two Socket

objects, one at each end, represent a connection. The ServerSocket object in the server

keeps waiting for incoming connection requests from a client.

Figure 8-6. A client-server setup using ServerSocket and socket objects

Chapter 8 Network programmiNg

602

Listings 8-4 and 8-5 list the complete program for a TCP echo server and client

application. You need to run the TCPEchoServer class first and then the TCPEchoClient

class. The server application waits for the client application to connect. The client

application prompts the user to enter a text message on the console. Once the user

enters a text message and presses the Enter key, the client application sends that text to

the server. The server responds back with the same message. Both applications print the

details about the conversation to the standard output. The following are the outputs for

an echo server and an echo client. You can run multiple instances of the TCPEchoClient

application. The server application handles each client connection in a separate thread.

The following is a sample output for the server application:

Server started at: ServerSocket[addr=localhost/

 127.0.0.1,port=0,localport=12900]

Waiting for a connection ...

Received a connection from Socket[addr=/127.0.0.1,

 port=1698,localport=12900]

Waiting for a connection ...

Received from client: Hello

The following is a sample output for the client application:

Started client socket at /127.0.0.1:53498

Please enter a message (Bye to quit):Hello

Server: Hello

Please enter a message (Bye to quit):Bye

 Working with UDP Sockets
A socket based on UDP is connectionless and is based on datagrams, as opposed to a

TCP socket, which is connection oriented and is based on streams. The effect of being

a connectionless socket is that the two sockets (client and server) do not establish a

connection before they communicate. Recall that TCP has a server socket whose sole

function was to listen for a connection request from remote clients. Because UDP

is a connectionless protocol, there will not be a server socket when you work with

UDP. In TCP sockets, the impression of having a stream-oriented data transmission

between the client and server was produced by TCP in the transport layer because of its

Chapter 8 Network programmiNg

603

connection- oriented features. TCP maintained the state of the data being transmitted

on each side of the connection. The implication of UDP being a connectionless

protocol is that each side (client and server) sends or receives a chunk of data without

any prior knowledge of communication between them. In a communication using

UDP, each chunk of data that is sent to the same destination is independent of the

previously sent data. The chunk of data that is sent using UDP is called a datagram or

a UDP packet. Each UDP packet contains data, destination IP address, and destination

port number. UDP is an unreliable protocol because it does not guarantee the delivery

and the order of delivery of packets to the intended recipient.

Note although UDp is a connectionless protocol, you can build a connection-
oriented communication using UDp in your application. You will need to write the
logic that will handle the lost packets, out-of-order packet delivery, and many more
things. tCp provides all these features at the transport layer, and your application
does not have to worry about them.

Writing an application using UDP sockets is easier than writing an application using

TCP sockets. You have to deal with only two classes:

• DatagramPacket

• DatagramSocket

An object of the DatagramPacket class represents a UDP datagram that is the unit of

data transmission over a UDP socket. An object of the DatagramSocket class represents

a UDP socket that is used to send or receive a datagram packet. Here are the steps you

need to perform to work with UDP sockets:

• Create an object of the DatagramSocket class and bind it to a local IP

address and a local port number.

• Create an object of the DatagramPacket class to hold the destination

address and the data to be transmitted.

• Use the send(DatagramPacket packet) method of the

DatagramSocket class to send the datagram packet to its destination.

On the receiving end, use the receive(DatagramPacket packet)

method to read the datagram packet.

Chapter 8 Network programmiNg

604

You can use one of the constructors to create an object of the DatagramSocket

class. All of them will create the socket and bind it to a local IP address and a local port

number. Note that a UDP socket does not have a remote IP address and a remote port

number because it is never connected to a remote socket. It can receive/send a datagram

packet from/to any UDP socket.

// Create a UDP Socket bound to a port number 15900

// at localhost

DatagramSocket udpSocket =

 new DatagramSocket(15900, "localhost");

The DatagramSocket class provides a bind() method, which lets you bind the

socket to a local IP address and a local port number. Typically, you do not need to use

this method because you specify the socket address to which it needs to be bound in its

constructor, as you just did.

A DatagramPacket contains three things: a destination IP address, a destination

port number, and the data. The constructors for the DatagramPacket class fall into two

categories. Constructors in one of the categories let you create a DatagramPacket object

to receive a packet. They require only the buffer size, offset, and length of data in that

buffer. Constructors in the other category let you create a DatagramPacket object to send

a packet. They require you to specify the destination address along with the data. If you

have created a DatagramPacket without specifying the destination address, you can set

the destination address afterward using the setAddress() and setPort() methods.

Constructors of the DatagramPacket class to create a packet to receive data are as

follows:

• DatagramPacket(byte[] buffer, int length)

• DatagramPacket(byte[] buffer, int offset, int length)

Constructors of the DatagramPacket class to create a packet to send data are as

follows:

• DatagramPacket(byte[] buffer, int length, InetAddress

address, int port)

• DatagramPacket(byte[] buffer, int offset, int length,

InetAddress address, int port)

Chapter 8 Network programmiNg

605

• DatagramPacket(byte[] buffer, int length, SocketAddress

address)

• DatagramPacket(byte[] buffer, int offset, int length,

SocketAddress address)

The following snippet of code demonstrates some of the ways to create a datagram

packet:

// Create a packet to receive 1024 bytes of data

byte[] data = new byte[1024];

DatagramPacket packet =

 new DatagramPacket(data, data.length);

// Create a packet that a has buffer size of 1024, but it

// will receive data starting at offset 8 (offset zero

// means the first element in the array) and it will

// receive only 32 bytes of data.

byte[] data2 = new byte[1024];

DatagramPacket packet2 = new DatagramPacket(data2, 8, 32);

// Create a packet to send 1024 bytes of data that has a

// destination address of "localhost" and port 15900.

// Will need to populate data3 array before sending the

// packet.

byte[] data3 = new byte[1024];

DatagramPacket packet3 = new DatagramPacket(data3, 1024,

 InetAddress.getByName("localhost"), 15900);

// Create a packet to send 1024 bytes of data that has a

// destination address of "localhost" and port 15900.

// Will need to populate data4 array before sending the

// packet. The code sets the destination address by

// calling methods on the packet instead of specifying

// it in its constructor.

byte[] data4 = new byte[1024];

DatagramPacket packet4 = new DatagramPacket(data4, 1024);

packet4.setAddress(InetAddress.getByName("localhost"));

packet4.setPort(15900);

Chapter 8 Network programmiNg

606

It is very important to understand that data in the packet always has offset and length

specified. You need to use those two pieces of information while reading the data from

a packet. Suppose that a receivedPacket object reference represents a DatagramPacket

that you have received from a remote UDP socket. The getData() method of the

DatagramPacket class returns the buffer (a byte array) of the packet. A packet can have

a bigger buffer than the size of the received data from a remote client. In such cases,

you must use the offset and the length to read the data from the buffer that was received

without touching the garbage data in the buffer. If a packet’s buffer size is smaller than

the size of the data received, the extra bytes are silently ignored. You should use the code

similar to the following to read data that a socket receives. The point is that you should

use data in the receiving buffer starting from its specified offset and as many bytes as

indicated by its length property:

// Get the packet's buffer, offset, and length

byte[] dataBuffer = receivedPacket.getData();

int offset = receivedPacket.getOffset();

int length = receivedPacket.getLength();

// Copy the received data using offset and length to

// receivedData array, which will hold all good data

byte[] receivedData = new byte[length];

System.arraycopy(dataBuffer, offset,

 receivedData, 0,

 length);

Creating a UDP socket (client as well as server) is as simple as creating an object of

the DatagramSocket class. You can use its send() method to send a packet. You can use

the receive() method to receive a packet from a remote socket. The receive() method

blocks until a packet arrives. You supply an empty datagram packet to the receive()

method. The socket populates it with information that it receives from the remote

socket. If the supplied datagram packet has a smaller data buffer size than that of the

received datagram packet, the received data is truncated silently to fit into the supplied

datagram packet. If the supplied datagram packet has a bigger data buffer size than that

of the received one, the socket will copy the received data to the supplied data buffer in

its segment indicated by its offset and length properties without touching the other

parts of the buffer. Note that the available data buffer size is not the size of the byte array.

Rather, it is defined by the length property. For example, suppose you have a datagram

Chapter 8 Network programmiNg

607

packet with a byte array of 32 elements with an offset of 2 and a data buffer length of 8.

If you pass this datagram packet to the receive() method, the maximum of 8 bytes of

received data will be copied. The data will be copied from the third element in the buffer

to the eleventh element as indicated by the offset 2 and the length 8, respectively.

// Create a UDP socket bound to a port number 15900 at

// localhost

DatagramSocket socket =

 new DatagramSocket(15900,

 InetAddress.getByName("localhost"));

// Send a packet assuming that you have a datagram packet

// in p

socket.send(p);

// Receive a packet

DatagramPacket p2 =

 new DatagramPacket(new byte[1024], 1024);

socket.receive(p2);

 Creating a UDP Echo Server
Creating an echo server using UDP is very easy. It takes only four lines of real code. Use

the following steps to create a UDP echo server:

• Create a DatagramSocket object to represent a UDP socket.

• Create a DatagramPacket object to receive the packet from a remote

client.

• Call the receive() method of the socket to wait for a packet to arrive.

• Call the send() method of the socket passing the same packet that

you received.

When a UDP packet is received by a server, it contains the sender’s address. You

do not need to change anything in the packet to echo back the same message to the

sender of the packet. When you prepare a datagram packet for sending, you need to

set a destination address. When the packet arrives at its destination, it contains its

sender’s address. This is useful in case the receiver wants to respond to the sender of the

datagram packet.

Chapter 8 Network programmiNg

608

The following snippet of code shows you how to write a UDP echo server:

DatagramSocket socket =

 new DatagramSocket(15900);

DatagramPacket packet =

 new DatagramPacket(new byte[1024], 1024);

while(true) {

 // Receive the packet

 socket.receive(packet);

 // Send back the same packet to the sender

 socket.send(packet);

}

Listing 8-6 contains the expanded version of the same code for a UDP echo server. It

contains the same basic logic as shown previously. Additionally, it contains the code to

handle errors and print the packet’s details on the standard output.

Listing 8-6. An Echo Server Based on UDP Sockets

// UDPEchoServer.java

package com.jdojo.net;

import java.io.IOException;

import java.net.DatagramPacket;

import java.net.DatagramSocket;

import java.net.InetAddress;

public class UDPEchoServer {

 public static void main(String[] args) {

 final int LOCAL_PORT = 15900;

 final String SERVER_NAME = "localhost";

 try {

 DatagramSocket udpSocket = new DatagramSocket(

 LOCAL_PORT,

 InetAddress.getByName(SERVER_NAME));

 System.out.println(

 "Created UDP server socket at " +

 udpSocket.getLocalSocketAddress() +

 "...");

Chapter 8 Network programmiNg

609

 // Wait for a message in a loop and echo the

 // same message to the sender

 while (true) {

 System.out.println(

 "Waiting for a UDP packet" +

 " to arrive...");

 // Prepare a packet to hold the received

 // data

 DatagramPacket packet =

 new DatagramPacket(

 new byte[1024], 1024);

 // Receive a packet

 udpSocket.receive(packet);

 // Print the packet details

 displayPacketDetails(packet);

 // Echo the same packet to the sender

 udpSocket.send(packet);

 }

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 public static void

 displayPacketDetails(DatagramPacket packet) {

 // Get the message

 byte[] msgBuffer = packet.getData();

 int length = packet.getLength();

 int offset = packet.getOffset();

 int remotePort = packet.getPort();

 InetAddress remoteAddr = packet.getAddress();

 String msg = new String(

 msgBuffer, offset, length);

Chapter 8 Network programmiNg

610

 System.out.println(

 "Received a packet:[IP Address="

 + remoteAddr + ", port=" + remotePort

 + ", message=" + msg + "]");

 }

}

Listing 8-7 contains the program for the client application that uses a UDP socket

to send/receive messages to/from the UDP echo server. Note that the client and server

exchange one line of text at a time.

Listing 8-7. An Echo Client Based on UDP Sockets

// UDPEchoClient.java

package com.jdojo.net;

import java.io.BufferedReader;

import java.io.InputStreamReader;

import java.net.DatagramPacket;

import java.net.DatagramSocket;

import java.net.InetAddress;

import java.net.UnknownHostException;

public class UDPEchoClient {

 public static void main(String[] args) {

 DatagramSocket udpSocket = null;

 BufferedReader br = null;

 try {

 // Create a UDP socket at localhost using an

 // available port

 udpSocket = new DatagramSocket();

 String msg = null;

 // Create a buffered reader to get an input

 // from a user

 br = new BufferedReader(

 new InputStreamReader(System.in));

 String promptMsg =

 "Please enter a message (Bye to quit):";

 System.out.print(promptMsg);

Chapter 8 Network programmiNg

611

 while ((msg = br.readLine()) != null) {

 if (msg.equalsIgnoreCase("bye")) {

 break;

 }

 // Prepare a packet to send to the server

 DatagramPacket packet =

 UDPEchoClient.getPacket(msg);

 // Send the packet to the server

 udpSocket.send(packet);

 // Wait for a packet from the server

 udpSocket.receive(packet);

 // Display the packet details received

 // from the server

 displayPacketDetails(packet);

 System.out.print(promptMsg);

 }

 } catch (Exception e) {

 e.printStackTrace();

 } finally {

 // Close the socket

 if (udpSocket != null) {

 udpSocket.close();

 }

 }

 }

 public static void

 displayPacketDetails(DatagramPacket packet) {

 byte[] msgBuffer = packet.getData();

 int length = packet.getLength();

 int offset = packet.getOffset();

 int remotePort = packet.getPort();

 InetAddress remoteAddr = packet.getAddress();

 String msg = new String(msgBuffer, offset, length);

 System.out.println(

 "[Server at IP Address=" + remoteAddr

 + ", port=" + remotePort + "]: " + msg);

Chapter 8 Network programmiNg

612

 // Add a line break

 System.out.println();

 }

 public static DatagramPacket

 getPacket(String msg) throws UnknownHostException {

 // We will send and accept a message of 1024

 // bytes in length.

 // Longer messages will be truncated

 final int PACKET_MAX_LENGTH = 1024;

 byte[] msgBuffer = msg.getBytes();

 int length = msgBuffer.length;

 if (length > PACKET_MAX_LENGTH) {

 length = PACKET_MAX_LENGTH;

 }

 DatagramPacket packet =

 new DatagramPacket(msgBuffer, length);

 // Set the destination address and the port number

 int serverPort = 15900;

 final String SERVER_NAME = "localhost";

 InetAddress serverIPAddress =

 InetAddress.getByName(SERVER_NAME);

 packet.setAddress(serverIPAddress);

 packet.setPort(serverPort);

 return packet;

 }

}

To test the UDP echo application, you need to run the UDPEchoServer and

UDPEchoClient classes. You need to run the server first. The client application will

prompt you to enter a message. Enter a text message and press the Enter key to send

that message to the server. The server will echo the same message. Both applications

display the messages being exchanged on the standard output. They also display the

packet details, such as the sender’s IP address and port number. The server application

uses port number 15900, and the client application uses any available UDP port on the

computer. If you get an error, it means that port number 15900 is in use, so you need

to change the port number in the server program and use the new port number in the

Chapter 8 Network programmiNg

613

client program to address the packet. The server is designed to handle multiple clients at

a time. You can run multiple instances of the UDPEchoClient class. Note that the server

runs in an infinite loop, and you must stop the server application manually.

The following is a sample log on the server console:

Created UDP server socket at /127.0.0.1:15900...

Waiting for a UDP packet to arrive...

Received a packet:[IP Address=/127.0.0.1,

 port=61119, message=Hello]

Waiting for a UDP packet to arrive...

Received a packet:[IP Address=/127.0.0.1,

 port=61119, message=Nice talking to you]

Waiting for a UDP packet to arrive...

The following is a sample log on the client console:

Please enter a message (Bye to quit):

 Hello

[Server at IP Address=localhost/127.0.0.1,

 port=15900]: Hello

Please enter a message (Bye to quit):

 Nice talking to you

[Server at IP Address=localhost/127.0.0.1, port=15900]:

 Nice talking to you

Please enter a message (Bye to quit):

 Bye

 A Connected UDP Socket
UDP sockets do not support an end-to-end connection like the TCP sockets. The

DatagramSocket class contains a connect() method. This method allows an application

to restrict sending and receiving of UDP packets to a specific IP address at a specific port

number. Consider the following snippet of code:

InetAddress localIPAddress =

 InetAddress.getByName("192.168.11.101");

int localPort = 15900;

Chapter 8 Network programmiNg

614

DatagramSocket socket =

 new DatagramSocket(localPort, localIPAddress);

// Connect the socket to a remote address

InetAddress remoteIPAddress =

 InetAddress.getByName("192.168.12.115");

int remotePort = 17901;

socket.connect(remoteIPAddress, remotePort);

The socket is bound to the local IP address 192.168.11.101 and local UDP port

number 15900. It is connected to a remote IP address of 192.188.12.15 and a remote

UDP port number 17901. It means that the socket object can be used to send/receive

a datagram packet only to/from another UDP socket running at an IP address of

192.168.12.115 at the port number 17901. After you have called the connect() method

on a UDP socket, you do not need to set the destination IP address and the port number

for the outgoing datagram packets. The socket will add the destination IP address and

port number that were used in the connect() method’s call to all outgoing packets. If

you do supply a destination address with a packet before you send it, the socket will

make sure the destination address supplied in the packet is the same as the remote

address used in the connect() method call. Otherwise, the send() method will throw an

IllegalArgumentException.

Using the connect() method of a UDP socket has two advantages:

• It sets the destination address for the outgoing packets every time you

send a packet.

• It restricts the socket to communicate only to the remote host whose

IP address was used in the connect() method’s call.

Now you understand that UDP sockets are connectionless, and you do not have a

real connection using a UDP socket. The connect() method in the DatagramSocket

class does not provide any kind of connection for UDP sockets. Rather, it is useful for

restricting the communication to a specific remote UDP socket.

 UDP Multicast Sockets
Java supports UDP multicast sockets that can receive datagram packets sent

to a multicast IP address. An object of the MulticastSocket class represents a

multicast socket. Working with a MulticastSocket socket is similar to working

Chapter 8 Network programmiNg

615

with a DatagramSocket with one difference—a multicast socket is based on a group

membership. After you have created and bound a multicast socket, you need to call

its joinGroup(InetAddress multiCastIPAddress) method to make this socket

a member of the multicast group defined by the specified multicast IP address,

multiCastIpAddress. Once it becomes a member of a multicast group, any datagram

packet sent to that group will be delivered to this socket. There can be multiple members

in a multicast group. A multicast socket can be a member of multiple multicast groups. If

a member decides not to receive a multicast packet from a group, it can leave the group

by calling the leaveGroup(InetAddress multiCastIPAddress) method.

In IPv4, any IP address in the range 224.0.0.0 to 239.255.255.255 can be used as

a multicast address to send a datagram packet. The IP address 224.0.0.0 is reserved,

and you should not use it in your application. A multicast IP address cannot be used as

a source address for a datagram packet, which implies that you cannot bind a socket to a

multicast address.

A socket itself does not have to be a member of a multicast group to send a datagram

packet to a multicast address.

In Java, the IP multicast capability is part of the DatagramChannel class. Refer to the

“Multicasting Using Datagram Channels” section later in this chapter on how to use a

datagram channel for IP multicasting.

Listing 8-8 contains a program that creates a multicast socket that receives datagram

packets addressed to the 230.1.1.1 multicast IP address.

Listing 8-8. A UDP Multicast Socket That Receives UDP Multicast Messages

// UDPMultiCastReceiver.java

package com.jdojo.net;

import java.io.IOException;

import java.net.DatagramPacket;

import java.net.InetAddress;

import java.net.MulticastSocket;

public class UDPMultiCastReceiver {

 public static void main(String[] args) {

 int mcPort = 18777;

 String mcIPStr = "230.1.1.1";

 MulticastSocket mcSocket = null;

 InetAddress mcIPAddress = null;

Chapter 8 Network programmiNg

616

 try {

 mcIPAddress = InetAddress.getByName(mcIPStr);

 mcSocket = new MulticastSocket(mcPort);

 System.out.println(

 "Multicast Receiver running at:"

 + mcSocket.getLocalSocketAddress());

 // Join the group

 mcSocket.joinGroup(mcIPAddress);

 DatagramPacket packet =

 new DatagramPacket(new byte[1024], 1024);

 while (true) {

 System.out.println(

 "Waiting for a multicast message...");

 mcSocket.receive(packet);

 String msg = new String(

 packet.getData(),

 packet.getOffset(),

 packet.getLength());

 System.out.println(

 "[Multicast Receiver] Received:" +

 msg);

 }

 } catch (Exception e) {

 e.printStackTrace();

 } finally {

 if (mcSocket != null) {

 try {

 mcSocket.leaveGroup(mcIPAddress);

 mcSocket.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 }

 }

}

Chapter 8 Network programmiNg

617

Listing 8-9 contains a program that sends a message to the same multicast address.

Note that you can run multiple instances of the UDPMulticastReceiver class, and

all of them will become a member of the same multicast group. When you run the

UDPMulticastSender class, it will send a message to the group, and all members in the

group will receive a copy of the same message. The UDPMulticastSender class uses a

DatagramSocket, not a MulticastSocket, to send a multicast message.

Listing 8-9. A UDP Datagram Socket, a Multicast Sender Application

// UDPMultiCastSender.java

package com.jdojo.net;

import java.net.DatagramPacket;

import java.net.DatagramSocket;

import java.net.InetAddress;

public class UDPMultiCastSender {

 public static void main(String[] args) {

 int mcPort = 18777;

 String mcIPStr = "230.1.1.1";

 DatagramSocket udpSocket = null;

 try {

 // Create a datagram socket

 udpSocket = new DatagramSocket();

 // Prepare a message

 InetAddress mcIPAddress =

 InetAddress.getByName(mcIPStr);

 byte[] msg = "Hello multicast socket".

 getBytes();

 DatagramPacket packet =

 new DatagramPacket(msg, msg.length);

 packet.setAddress(mcIPAddress);

 packet.setPort(mcPort);

 udpSocket.send(packet);

 System.out.println(

 "Sent a multicast message.");

 System.out.println(

 "Exiting application");

Chapter 8 Network programmiNg

618

 } catch (Exception e) {

 e.printStackTrace();

 } finally {

 if (udpSocket != null) {

 try {

 udpSocket.close();

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 }

 }

}

To see multicast in action, run one or more instances of the UDPMulticastReceiver

class followed by one instance of the UDPMulticastSender class. The following is a

sample output when the UDPMulticastReceiver class is run. Note that the program

receives a multicast message when the UDPMulticastSender is run:

Multicast Receiver running at:

 0.0.0.0/0.0.0.0:18777

Waiting for a multicast message...

[Multicast Receiver] Received:

 Hello multicast socket

Waiting for a multicast message...

The following is a sample output when the UDPMulticastSender class is run:

Sent a multicast message.

Exiting application

 URI, URL, and URN
A Uniform Resource Identifier (URI) is a sequence of characters that identifies a

resource. The Request for Comments (RFC) 3986 defines the generic syntax for a URI.

The full text of this RFC is available at www.ietf.org/rfc/rfc3986.txt. A resource

Chapter 8 Network programmiNg

http://www.ietf.o/rg/rfc/rfc3986.txt

619

identifier can identify a resource by a location, a name, or both. This section gives an

overview of the URI. If you are interested in details about the URI, you are advised to

read RFC3986.

A URI that uses a location to identify a resource is called a Uniform Resource

Locator (URL). For example, http://www.yahoo.com/index.html represents a URL that

identifies a document named index.html at the host www.yahoo.com. Another example

of a URL is mailto:ksharan@jdojo.com in which the mailto protocol instructs the

application that interprets it to open up an email application to send an email to the

email address specified in the URL. In this case, the URL is not locating any resources.

Rather, it is identifying the details of an email. You can also set the subject and the body

parts of an email using the mailto protocol. Therefore, a URL does not always imply

a location of a resource. Sometimes, the resource may be abstract, as in the case of

the mailto protocol. Once you locate a resource using a URL, you can perform some

operations, such as retrieve, update, or delete, on the resource. The details of how the

operations are performed depend on the scheme being used in the URL. A URL just

identifies the parts of a resource location and scheme to locate it, not the details of any

operations that can be performed on the resource.

A URI that uses a name to identify a resource is called a Uniform Resource Name

(URN). For example, URN:ISBN:978-1-4302-6661-7 represents a URN, which identifies a

book using an International Standard Book Number (ISBN) namespace.

A URL and a URN are subsets of a URI. Therefore, the discussion about a URI applies

to both the URL and the URN. The detailed syntax of a URI depends on the scheme it

uses. In this section, I cover a generic syntax of the URI, which is typically a URL. The

next section explores the Java classes that are used to represent URIs and URLs in Java

programs.

A URI can be absolute or relative. A relative URI is always interpreted in the context

of another absolute URI, which is called the base URI. In other words, you must have

an absolute URI to make a relative URI meaningful. An absolute URI has the following

generic format:

<scheme>:<scheme-specific-part>

The <scheme-specific-part> depends on the <scheme>. For example, an http

scheme uses one format, and a mailto scheme uses another format. Another generic

form of a URI is as follows. Typically, but not necessarily, it represents a URL:

<scheme>://<authority><path>?<query>#<fragment>

Chapter 8 Network programmiNg

http://www.yahoo.com/index.html
http://www.yahoo.com/
mailto:ksharan@jdojo.com

620

Here, <scheme> indicates a method to access a resource. It is the protocol name

such as http, ftp, etc. We all use the term “protocol” for what is termed a “scheme” in

the URI specification. If the term “scheme” throws you off, you can read it as “protocol”

whenever it appears in this section. The <scheme> and <path> parts are required in a

URI. All other parts are optional. The <path> part may be an empty string.

The <authority> part indicates the server name (or IP address) or a scheme-specific

registry. If the <authority> part represents a server name, it may be written in the form

of <userinfo>@host:port. If an <authority> is present in a URI, it begins with two

forward slashes; it is an optional part. For example, a URL that identifies a file in a local

file system on a machine uses the file scheme as file:///c:/documents/welcome.doc.

The URI syntax uses a hierarchical syntax in its <path> part, which locates the

resource on the server. Multiple parts of the <path> are separated by a forward slash (/).

The <query> part indicates that the resource is obtained by executing the specified

query. It consists of name-value pairs separated by an ampersand (&). The name and

value are separated by an equals sign (=). For example, id=123&rate=5.5 is a query,

which has two parts, id and rate.

The value for id is 123 and the value for rate is 5.5.

The <fragment> part identifies a secondary resource, typically a subset of the

primary resource identified by another part of the URI.

The following is an example of a URI, which is also broken into parts:

URI: http://www.jdojo.com/java/intro.html?

 id=123#conclusion

Scheme: http

Authority: www.jdojo.com

Path: /java/intro.html

Query: id=123

Fragment: conclusion

The URI represents a URL that refers to a document named intro.html on the

www.jdojo.com server. The scheme http indicates that the document can be retrieved

using the http protocol. The query id=123 indicates that the document is obtained by

executing this query. The fragment part conclusion can be interpreted differently by

different applications that use the document. In the case of an HTML document, the

fragment part is interpreted by the web browser as the part of the main document.

Chapter 8 Network programmiNg

http://www.jdojo.com/

621

Not all parts of a URI are mandatory. Which parts are mandatory and which parts are

optional depend on the scheme that is used. One of the goals of using a URI to identify

a resource was to make it universally readable. For this reason, there is a well-defined

set of characters that can be used to represent a URI. The URI syntax uses some reserved

characters that have special meaning, and they can only be used in specific parts of a

URI. In other parts, the reserved characters need to be escaped. A character is escaped

by using a percent character followed by its ASCII value in a hexadecimal format. For

example, the ASCII value of space is 32 in decimal format, and it is 20 in hexadecimal

format. If you want to use a space character in a URI, you must use %20, which is the

escaped form for a space. Since the percent sign is used as part of an escape character,

you must use %25 to represent a % character in a URI (25 is the hexadecimal value for

number 37 in decimal. The ASCII value for % is 37 in decimal). For example, if you want

to use a value of 5.2% in a query, the following is an invalid URI:

http://www.jdojo.com/details?rate=5.2%

To make it a valid URI, you need to escape the percent sign character as %25 as

shown:

http://www.jdojo.com/details?rate=5.2%25

It is important to understand the usage of a relative URI. A relative URI is always

interpreted in the context of an absolute URI, which is called the base URI. An absolute

URI starts with a scheme. A relative URI inherits some parts of its base URI. Let’s

consider a URI that refers to an HTML document as shown:

http://www.jdojo.com/java/intro.html

The document referred to in the URI is intro.html. Its path is /java/intro.html.

Suppose two documents named brief_intro.html and detailed_intro.html reside

(physically or logically) in the same path hierarchy as intro.html. The following are the

absolute URIs for all three documents:

• http://www.jdojo.com/java/intro.html

• http://www.jdojo.com/java/brief_intro.html

• http://www.jdojo.com/java/detailed_intro.html

Chapter 8 Network programmiNg

http://www.jdojo.com/details?rate=5.2%
http://www.jdojo.com/details?rate=5.2%
http://www.jdojo.com/java/intro.html
http://www.jdojo.com/java/intro.html
http://www.jdojo.com/java/brief_intro.html
http://www.jdojo.com/java/detailed_intro.html

622

If you are already in the intro.html context, it will be easier to refer to the other two

documents using their names instead of their absolute URI. What does it mean by being

in the intro.html context? When you use the http://www.jdojo.com/java/intro.html

URI to identify a resource, it has three parts: a scheme (http), a server name (www.jdojo.

com), and a document path (/java/intro.html). The path indicates that the document

is under the java path hierarchy, which in turn is at the root of the path hierarchy. All

details—scheme, server name, path details, excluding the document name itself (intro.

html)—make up the context for the intro.html document. If you look at the URI for the

other two documents listed previously, you will notice that all details about them are

the same as for intro.html. In other words, you can state that the context for the other

two documents is the same as for intro.html. In this case, with an absolute URI of the

intro.html document as the base URI, the relative URIs for the other two documents are

their names: brief_intro.html and detailed_intro.html. It can be listed as follows:

• Base URI: http://www.jdojo.com/java/intro.html

• Relative URI: brief_intro.html

• Relative URI: detailed_intro.html

In the list, the two relative URIs inherit the scheme, server name, and path hierarchy

from the base URI. It is to be emphasized that a relative URI never makes sense without

specifying its base URI.

When a relative URI has to be used, it must be resolved to its equivalent absolute

URI. The URI specification lays down rules to resolve a relative URI. I discuss some of

the most commonly used forms of relative URIs and their resolutions. There are two

special characters used to define the <path> part of a URI. They are a dot and two dots.

A dot means the current path hierarchy. Two dots mean one up in the path hierarchy.

You must have seen these two sets of characters being used in a file system to mean

the current directory and parent directory. You can think of their meanings in a URI

the same way, but a URI does not assume any directory hierarchy. In a URI, a path is

considered as hierarchical, and it is not tied to a file system hierarchical structure at all.

However, in practice, when you work with web-based applications, URLs are usually

mapped to a file system hierarchical structure. In the normalized form of a URI, dots

are replaced appropriately. For example, s://sn/a/./b is normalized to s://sn/a/b,

and s://sn/a/../b is normalized to s://sn/b. The non-normalized and normalized

Chapter 8 Network programmiNg

http://www.jdojo.com/java/intro.html
http://www.jdojo.com
http://www.jdojo.com
http://www.jdojo.com/java/intro.html

623

forms refer to the same URL. The normalized form has extra characters removed. By

just looking at the two URIs, you cannot say that they are referring to the same resource

or not. You must normalize them before you compare them for equality. During the

comparison process, the scheme, server name, and hexadecimal digits are considered

case-insensitive. Here are some rules to resolve a relative URI:

• If a URI starts with a scheme, it is considered an absolute URI.

• If a relative URI starts with an authority, it inherits a scheme from its

base URI.

• If a relative URI is an empty string, it is the same as the base URI.

• If a relative URI has a fragment part only, the resolved URI uses the

new fragment. If a base URI had a fragment, it is replaced with the

fragment of the relative URI. Otherwise, the fragment of the relative

URI is added to the base URI.

• A relative URI’s path does not start with a forward slash (/). If the

base URI has a path, remove the last component of the path in the

base URI and append the relative URI. Note that the last component

of the path may be an empty string, as in http://www.abc.com/.

• If a relative URL starts with a path, which in turn starts with a forward

slash (/), the base URI’s path is replaced with the relative URI’s path.

Table 8-5 contains examples of using these rules. The examples in the table conform

to the rules followed in Java URI and URL classes. Java rules deviate slightly in a few cases

from the rules set in the URI specification.

Chapter 8 Network programmiNg

http://www.abc.com/

624

Table 8-5. Examples of How a Relative URI Is Resolved to an Absolute URI Using

a Base URI

Base URI Relative URI Resolved URI Relative Description of the Relative
URI

h://sn/a/b/c http://sn2/

fooh://sn2/foo

it is an absolute Uri.

h://sn/a/b/c //sn2/h/k

h://sn2/h/k

it starts with an

authority.

h://sn/a/b/c h://sn/a/b/c it is an empty string.

h://sn/a/b/c #k h://sn/a/b/c#k it contains a fragment only.

h://sn/a/b/c#a #k h://sn/a/b/c#k it contains a fragment only.

h://sn/a/b/ Foo h://sn/a/b/foo the path does not start with a /.

h://sn/a/b/c Foo h://sn/a/b/foo the path does not start with a /.

h://sn/a/b/c?d=3 Foo h://sn/a/b/foo the path does not start with a /.

h://sn/ Foo h://sn/foo the path does not start with a /.

h://sn Foo h://sn/foo the path does not start with a /.

h://sn/a/b/ /foo h://sn/foo the path starts with a /.

h://sn/a/b/c /foo h://sn/foo the path starts with a /.

h://sn/a/b/c?d=3 /foo h://sn/foo the path starts with a /.

h://sn/ /foo h://sn/foo the path starts with a /.

h://sn/ /foo h://sn/foo the path starts with a /.

Note You can also use a host name or an ip address as an authority in a Uri. ipv4
can be used in its dotted decimal format such as http://192.168.10.178/
docs/toc.html. ipv6 must be enclosed in brackets such as http://
[1283::8:800:200C:A43A]/docs/toc.html.

Chapter 8 Network programmiNg

http://192.168.10.178/docs/toc.html
http://192.168.10.178/docs/toc.html

625

 URI and URL As Java Objects
Java represents URIs and URLs as objects. It provides the following four classes that you

can use to work with URIs and URLs as objects in a Java program:

• java.net.URI

• java.net.URL

• java.net.URLEncoder

• java.net.URLDecoder

An object of the URI class represents a URI. An object of the URL class represents

a URL. URLEncoder and URLDecoder are utility classes that help encode and decode

URI strings. I cover other Java classes in the next sections that are used to retrieve the

resource identified by a URL.

The URI class has many constructors, which let you create a URI object from

combinations of parts (scheme, authority, path, query, and fragment) of a URI. All

constructors throw a checked exception, URISyntaxException, if strings, which you use

to construct a URI object, may not be in conformity with the URI specification.

// Create a URI object

URI baseURI = new URI("http://www.yahoo.com");

// Create a URI with relative URI string and resolve it

// using baseURI

URI relativeURI = new URI("welcome.html");

URI resolvedRelativeURI = baseURI.resolve(relativeURI);

Listing 8-10 demonstrates how to use the URI class in a Java program.

Listing 8-10. A Sample Class That Demonstrates the Use of the java.net.URI

Class

// URITest.java

package com.jdojo.net;

import java.net.URI;

import java.net.URISyntaxException;

Chapter 8 Network programmiNg

626

public class URITest {

 public static void main(String[] args) {

 String baseURIStr =

 "http://www.jdojo.com/javaintro.html?"

 + "id=25&rate=5.5%25#foo";

 String relativeURIStr = "../sports/welcome.html";

 try {

 URI baseURI = new URI(baseURIStr);

 URI relativeURI = new URI(relativeURIStr);

 // Resolve the relative URI with respect to

 // the base URI

 URI resolvedURI = baseURI.resolve(relativeURI);

 printURIDetails(baseURI);

 printURIDetails(relativeURI);

 printURIDetails(resolvedURI);

 } catch (URISyntaxException e) {

 e.printStackTrace();

 }

 }

 public static void printURIDetails(URI uri) {

 System.out.println("URI:" + uri);

 System.out.println("Normalized:"

 + uri.normalize());

 String parts = "[Scheme=" + uri.getScheme()

 + ", Authority=" + uri.getAuthority()

 + ", Path=" + uri.getPath()

 + ", Query:" + uri.getQuery()

 + ", Fragment:" + uri.getFragment()

 + "]";

 System.out.println(parts);

 System.out.println();

 }

}

Chapter 8 Network programmiNg

627

URI:http://www.jdojo.com/javaintro.html?

 id=25&rate=5.5%25#foo

Normalized:http://www.jdojo.com/javaintro.html?

 id=25&rate=5.5%25#foo

[Scheme=http,

 Authority=www.jdojo.com,

 Path=/javaintro.html,

 Query:id=25&rate=5.5%,

Fragment:foo]

URI:../sports/welcome.html

Normalized:../sports/welcome.html

[

 Scheme=null,

 Authority=null,

 Path=../sports/welcome.html,

 Query:null,

 Fragment:null

]

URI:http://www.jdojo.com/../sports/welcome.html

Normalized:http://www.jdojo.com/../sports/welcome.html

[

 Scheme=http,

 Authority=www.jdojo.com,

 Path=/../sports/welcome.html,

 Query:null,

 Fragment:null

]

You can also get a URL object from a URI object using its toURL() method as shown:

URL baseURL = baseURI.toURL();

You can also create a URI object using the create(String str) static method of

the URI class. The create() method does not throw a checked exception. It throws a

runtime exception. Therefore, its use will not force you to handle the exception. You

should use this method only when you know that a URI string is well formed:

URI uri2 = URI.create("http://www.yahoo.com");

Chapter 8 Network programmiNg

628

An instance of the java.net.URL class represents a URL in a Java program. Although

every URL is also a URI, Java does not inherit the URL class from the URI class. Java uses

the term protocol to refer to the scheme part in the URI specification. You can create a

URL object by providing a string that has all URL’s parts concatenated or by providing

the parts separately. If strings that you supply to create a URL object are not valid, the

constructors of the URL class will throw a MalformedURLException checked exception.

Listing 8-11 demonstrates how to create a URL object. The URL class lets you create an

absolute URL from a relative URL and a base URL using one of its constructors.

Listing 8-11. A Sample Class That Demonstrates the Use of the java.net.URL Class

// URLTest.java

package com.jdojo.net;

import java.net.URL;

public class URLTest {

 public static void main(String[] args) {

 String baseURLStr =

 "http://www.ietf.org/rfc/rfc3986.txt";

 String relativeURLStr = "rfc2732.txt";

 try {

 URL baseURL = new URL(baseURLStr);

 URL resolvedRelativeURL =

 new URL(baseURL, relativeURLStr);

 System.out.println(

 "Base URL:" + baseURL);

 System.out.println(

 "Relative URL String:" +

 relativeURLStr);

 System.out.println(

 "Resolved Relative URL:" +

 resolvedRelativeURL);

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

Chapter 8 Network programmiNg

629

Base URL:http://www.ietf.org/rfc/rfc3986.txt

Relative URL String:rfc2732.txt

Resolved Relative URL:http://www.ietf.org/rfc/rfc2732.txt

Typically, you create a URL object to retrieve the resource identified by the URL. Note

that you can create an object of the URL class as long as the URL is well formed textually,

and the protocol to handle the URL is available. The successful creation of a URL object

in a Java program does not guarantee the existence of the resource at the server specified

in the URL. The URL class provides methods that you can use in conjunction with other

classes to retrieve the resource identified by the URL.

The URL class makes sure that it can handle the protocol specified in the URL string.

For example, it will not let you create a URL object with a string as ppp://www.sss.com/

unless you develop and supply it a protocol handler for a protocol named ppp. I cover

how to retrieve the resource identified by a URL in the next section.

Sometimes, you do not know the parts of the URL string in advance. You get the parts

of the URL at runtime as input from other parts of the program or from the user. In such

cases, you will need to encode the parts of the URL before you can use them to create a

URL object. Sometimes, you get a string in encoded form, and you want it to be decoded.

An encoded string will have all the restricted characters properly escaped.

The URLEncoder and URLDecoder classes are used to encode and decode strings,

respectively. The URLEncoder.encode(String source, String encoding) static

method is used to encode a source string using the specified encoding. The URLDecoder.

decode(String source, String encoding) static method is used to decode a source

string using a specified encoding. The following snippet of code shows how to encode/

decode strings. Typically, you encode/decode the value part of name-value pairs in the

query part of a URL. Note that you should never attempt to encode the entire URL string.

Otherwise, it will encode some of the reserved characters such as a forward slash, and

the resulting URL string will be invalid.

String source = "this is a test for 2.5% and &" ;

String encoded = URLEncoder.encode(source, "utf-8");

String decoded = URLDecoder.decode(encoded, "utf-8");

System.out.println("Source: " + source);

System.out.println("Encoded: " + encoded);

System.out.println("Decoded: " + decoded);

Chapter 8 Network programmiNg

http://www.sss.com/

630

Source: this is a test for 2.5% and &

Encoded: this+is+a+test+for+2.5%25+and+%26

Decoded: this is a test for 2.5% and &

 Accessing the Contents of a URL
A URL has a protocol that is used to communicate with the remote application that hosts

the URL’s contents. For example, the URL http://www.yahoo.com/index.html uses the

http protocol. In a URL, you specify a protocol that is used by the application layer in

the protocol suite. When you need to access the URL’s contents, the computer will use

some kind of protocols from lower layers in the protocol suite (transport, Internet layers,

etc.) to communicate with the remote host. The http application layer protocol uses

TCP/IP protocols in lower layers. In a distributed application, it is very frequent that you

need to retrieve (or read) the resource (could be text, html content, image files, audio/

video files, or any other kind of information) identified by a URL. Although it is possible

to open a socket every time you need to read the contents of a URL, it is time consuming

and cumbersome for programmers. After all, programmers need some way to be more

productive than writing repetitive code for what seems to be a routine job. Java designers

realized this need, and they have provided a very easy (yes, it is very easy) way to read/

write data from/to a URL. This section explores some of the ways, from very simple to

quite complex, to read/write data from/to a URL.

As the data passes from one layer to another in the protocol suite, each layer adds a

header to the data. Since a URL uses a protocol in the application layer, it also contains

its own header. The format of the header depends on the protocol being used. When the

http request is sent to a remote host, the application layer in the source host adds the

http header to the data. The remote host has an application layer that handles the http

protocol, and it uses the header information to interpret the contents. In summary, a

URL data will have two parts: a header part and a content part. The URL class along with

some other classes lets you read/write both header and content parts of a URL. I start

with the simplest case of reading the contents of a URL.

Before you read/write from/to a URL, you need to have a working URL that you

can access. You can read content of any URL that is publicly available on the Internet.

For this discussion, I use a website at www.httpbin.org/ that provides several URLs for

Chapter 8 Network programmiNg

http://www.yahoo.com/index.html
http://www.httpbin.org/

631

testing purposes. This website provides several endpoints for testing purposes. Visit this

website for the complete list of endpoints. Table 8-6 contains two of such endpoints that

you will use in the examples in this section.

The URL class lets you read the contents (not header) of a URL by just writing two

lines of code as shown:

URL url = new URL("your URL string goes here");

InputStream ins = url.openStream();

Listing 8-12 contains the complete program that reads the contents of the URL

http://httpbin.org/get?year=1969. The output shows that the server returned the

passed GET parameter (year=1969) in the args object. If you want to use the POST method

to send a request to a URL, you will need to use the URLConnection class, which I explain

next. I have formatted the output for better readability.

Listing 8-12. A Simple URL Content Reader Program

// SimpleURLContentReader.java

package com.jdojo.net;

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;

import java.net.URL;

Table 8-6. Useful Endpoints at www.httpbin.org Used in the Examples

URL Description

http://www.httpbin.org/get accepts an http GET request and returns the parameters

passed to this UrL in JSoN format. if you pass a year

parameter with a value of 1969 to this endpoint, your UrL

would look as follows: http://www.httpbin.org/

get?y ear=1069

http://www.httpbin.org/post accepts an http POST request and returns the same

POST data passed to this UrL in JSoN format.

Chapter 8 Network programmiNg

http://httpbin.org/get?year=1969
http://www.httpbin.org/
http://www.httpbin.org/get
http://www.httpbin.org/get?y ear=1069
http://www.httpbin.org/get?y ear=1069
http://www.httpbin.org/post

632

public class SimpleURLContentReader {

 public static void main(String[] args) {

 String urlStr = "http://httpbin.org/get?year=1969";

 String content = getURLContent(urlStr);

 System.out.println(content);

 }

 public static String getURLContent(String urlStr) {

 BufferedReader br = null;

 try {

 URL url = new URL(urlStr);

 // Get the input stream wrapped into a

 // BufferedReader

 br = new BufferedReader(

 new InputStreamReader(

 url.openStream()));

 StringBuilder sb = new StringBuilder();

 String msg = null;

 while ((msg = br.readLine()) != null) {

 sb.append(msg);

 sb.append("\n");

 // <- Append a new line

 }

 return sb.toString();

 } catch (IOException e) {

 e.printStackTrace();

 } finally {

 if (br != null) {

 try {

 br.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 }

Chapter 8 Network programmiNg

633

 // If we get here it means there was an error

 return null;

 }

}

{

 "args": {

 "year": "1969"

 },

 "headers": {

 "Accept": "text/html, image/gif,

 image/jpeg, *; q=.2, */*; q=.2",

 "Connection": "close",

 "Host": "httpbin.org",

 "User-Agent": "Java/9"

 },

 "origin": "50.58.251.82",

 "url": "http://httpbin.org/get?year=1969"

}

Once you get the input stream, you can use it for reading the content of the

URL. Another way of reading the content of a URL is by using the getContent() method

of the URL class. Since getContent() can return any kind of content, its return type is

the Object type. You will need to check what kind of object it returns before you use the

contents of the object. For example, it may return an InputStream object, and in that

case, you will need to read data from the input stream. The following are the two versions

of the getContent() method:

• final Object getContent() throws IOException

• final Object getContent(Class[] classes) throws IOException

The second version of the method lets you pass an array of class type. It will attempt

to convert the content object to one of the classes you pass to it in the specified order. If

the content object does not match any of the types, it will return null. You will still need

to write if statements to know what type of object was returned from the getContent()

method, as shown:

Chapter 8 Network programmiNg

634

URL baseURL = new URL ("your url string goes here");

Class[] c = new Class[] {

 String.class,

 BufferedReader.class,

 InputStream.class

};

Object content = baseURL.getContent(c);

if (content == null) {

 // Contents are not of any of the three kinds

} else if (content instanceof String) {

 // You got a string

} else if (content instanceof BufferedReader) {

 // You got a reader

} else if (content instanceof InputStream) {

 // You got an input stream

}

If you read the contents of a URL using the openStream() or getContent() method,

the URL class handles many of the complexities of using sockets internally. The downside

of this approach is that you do not have any control over the connection settings. You

cannot write data to the URL using this approach. Also, you do not have access to the

header information for the protocol used in a URL. Don’t despair; Java provides another

class named URLConnection that lets you do these in a simple and concise manner.

URLConnection is an abstract class, and you cannot create its object directly. You

need to use the openConnection() method of the URL object to get a URLConnection

object. The URL class will handle the creation of a URLConnection object, which will be

appropriate to handle the data for the protocol used in the URL. The following snippet of

code shows how to use a URLConnection object to read and write data to a URL:

URL url = new URL("your URL string goes here");

// Get a connection object

URLConnection connection = url.openConnection();

// Indicate that you will be writing to the connection

connection.setDoOutput(true);

Chapter 8 Network programmiNg

635

// Get output/input streams to write/read data

OutputStream ous = connection.getOutputStream();

InputStream ins = connection.getInputStream();

// <- Caution. Read below

The openConnection() method of the URL class returns a URLConnection object,

which is not connected to the URL source yet. You must set all connection-related

parameters to this object before it is connected. For example, if you want to write data to

the URL, you must call the setDoOutput(true) method on the connection object before

it is connected. A URLConnection object gets connected when you call its connect()

method. However, it is connected implicitly when you call its methods that require a

connection. For example, writing data to a URL and reading the URL’s data or header

fields will connect the URLConnection object automatically, if it is not already connected.

Here are a few things you must follow if you want to avoid problems when you work

with a URLConnection to read and write data to a URL:

• When you are only reading data from a URL, you can get the input

stream using its getInputStream() method. Use the input stream to

read data. It will use a GET method for the request to the remote host.

That is, if you are passing some parameters to the URL, you must do

so by adding the query part to the URL.

• If you are writing as well as reading data from a URL, you must call

the setDoOutput(true) before you connect. You must finish writing

the data to the URL before you start reading the data. Writing data to

a URL will change the request method to POST. You cannot even get

the input stream before you finish writing data to the URL. In fact, the

getInputStream() method sends a request to the remote host. Your

intention is to send the data to the remote host and read the response

from the remote host. This one gets as tricky as it can. Here is a little

more explanation, using a snippet of code, assuming that connection

is a URLConnection object:

// Incorrect – 1. Get input and output streams

// you must get the output stream first

InputStream ins = connection.getInputStream();

OutputStream ous = connection.getOutputStream();

// Incorrect – 2. Get output and input streams

Chapter 8 Network programmiNg

636

// you must get the output stream and finish writing

// before you should get the input stream

OutputStream ous = connection.getOutputStream();

InputStream ins = connection.getInputStream();

// Correct. Get output stream and get done with it.

// And, then get the input stream and read data.

OutputStream ous = connection.getOutputStream();

// Write logic to write data using ous object here.

// Make sure you are done writing data before you

// call the getInputStream() method as shown below

InputStream ins = connection.getInputStream();

// Write logic to read data

• Using the getInputStream() method and reading header fields,

using any method such as getHeaderField(String headerName),

have the same effect. The URL’s server supplies both header and

content. A URLConnection must send the request to get them.

Listing 8-13 contains the complete code that writes/reads data to/from the http://

www.httpbin/post URL.

Listing 8-13. A URL Reader/Writer Class That Writes/Reads Data to/from a URL

// URLConnectionReaderWriter.java

package com.jdojo.net;

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.IOException;

import java.io.InputStream;

import java.io.InputStreamReader;

import java.io.OutputStream;

import java.io.OutputStreamWriter;

import java.io.UnsupportedEncodingException;

import java.net.URL;

import java.net.URLConnection;

import java.net.URLEncoder;

import java.util.Map;

Chapter 8 Network programmiNg

http://www.httpbin/post
http://www.httpbin/post

637

public class URLConnectionReaderWriter {

 public static String

 getURLContent(String urlStr, String input) {

 BufferedReader br = null;

 BufferedWriter bw = null;

 try {

 URL url = new URL(urlStr);

 URLConnection connection =

 url.openConnection();

 // Must call setDoOutput(true) to indicate

 // that you will write to the connection. By

 // default, it is false.

 // By default, setDoInput() is set to true.

 connection.setDoOutput(true);

 // Now, connect to the remote object

 connection.connect();

 // Write data to the URL first before reading

 // the response

 OutputStream ous = connection.getOutputStream();

 bw = new BufferedWriter(

 new OutputStreamWriter(ous));

 bw.write(input);

 bw.flush();

 bw.close();

 // Must be placed after writing the data.

 // Otherwise, it will result in error, because

 // if write is performed, read must be performed

 // after the write.

 printRequestHeaders(connection);

 InputStream ins = connection.getInputStream();

 // Wrap the input stream into a reader

 br = new BufferedReader(

 new InputStreamReader(ins));

 StringBuilder sb = new StringBuilder();

 String msg = null;

Chapter 8 Network programmiNg

638

 while ((msg = br.readLine()) != null) {

 sb.append(msg);

 sb.append("\n");

 // <- Append a new line

 }

 return sb.toString();

 } catch (IOException e) {

 e.printStackTrace();

 } finally {

 if (br != null) {

 try {

 br.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 }

 // If we arrive here it means there was an error

 return null;

 }

 public static void

 printRequestHeaders(URLConnection connection) {

 Map headers = connection.getHeaderFields();

 System.out.println("Request Headers are:");

 System.out.println(headers);

 System.out.println();

 }

 public static void main(String[] args) {

 // Change the URL to point to the echo_params.jsp

 // page on your web server

 String urlStr = "http://www.httpbin.org/post";

 String query = null;

 try {

 // Encode the query. We need to encode only

 // the value of the name parameter. Other

 // names and values are fine

Chapter 8 Network programmiNg

639

 query = "id=789&name=" +

 URLEncoder.encode("John & Co.", "utf-8");

 // Get the content and display it on the console

 String content = getURLContent(urlStr, query);

 System.out.println(

 "Returned data from the server is:");

 System.out.println(content);

 } catch (UnsupportedEncodingException e) {

 e.printStackTrace();

 }

 }

}

Request Headers are:

{

 null=[HTTP/1.1 200 OK],

 X-Processed-Time=[0.000935077667236],

 Server=[meinheld/0.6.1],

 Access-Control-Allow-Origin=[*],

 Access-Control-Allow-Credentials=[true],

 Connection=[keep-alive],

 Content-Length=[462],

 Date=[Wed, 03 Jan 2018 19:37:10 GMT],

 Via=[1.1 vegur],

 X-Powered-By=[Flask],

 Content-Type=[application/json]

}

Returned data from the server is:

{

 "args": {},

 "data": "",

 "files": {},

 "form": {

 "id": "789",

 "name": "John & Co."

 },

Chapter 8 Network programmiNg

640

 "headers": {

 "Accept": "text/html, image/gif, image/jpeg, *;

 q=.2, */*; q=.2",

 "Connection": "close",

 "Content-Length": "24",

 "Content-Type": "application/x-www-form-urlencoded",

 "Host": "www.httpbin.org",

 "User-Agent": "Java/9"

 },

 "json": null,

 "origin": "50.58.251.82",

 "url": "http://www.httpbin.org/post"

}

This time, you are using the POST method to send data to the URL. Note that the

data that you send has been encoded using the URLEncoder class. You needed to encode

only the value of the name field, which is "John & Co." because the ampersand in the

value will conflict with the name-value pair separator in the query string. The program

has plenty of comments to warn you of any dangers if you change the sequence of any

 statements.

The program prints information about all headers that are returned in a java.util.

Map object. The URLConnection class provides several ways to get the header field’s

values. For commonly used headers, it provides a direct method. For example, the

methods called getContentLength(), getContentType(), and getContentEncoding()

return the value of the header fields that indicate length, type, and encoding of the

URL’s contents, respectively. If you know the header field name or its index, you can

use the getHeaderField(String headerName) or getHeaderField(int headerIndex)

method to get its value. The getHeaderFields() method returns a Map object whose keys

represent the header field names, and the values represent the header field values. Use

caution when reading a header field because it has the same effect on the URLConnection

object as reading the contents. If you wish to write data to a URL, you must first write the

data before you can read the header fields.

Java lets you read the contents of a JAR file using the jar protocol. Suppose you have

a JAR file called myclasses.jar, which has a class file whose path is myfolder/Abc.

class. You can get a JarURLConnection from a URL and use its methods to access the

JAR file data. Note that you can only read JAR file contents from a URL. You cannot write

Chapter 8 Network programmiNg

641

to a JAR file URL. The following snippet of code shows how to get a JarURLConnection

object. You will need to use its methods to get the JAR-specific data:

String str =

 "jar:http://www.abc.com/myclasses.jar!/myfolder/" +

 "Abc.class";

URL url = new URL(str);

JarURLConnection connection = (JarURLConnection)

 url.openConnection();

// Use the connection object to access any jar related

// data.

Note You have read many words of caution in this section about using a
UrLConnection object. here is one more: a UrLConnection object must be used
for only one request. it works on the concept of obtain-use-and-throw. if you
wish to write or read data from a UrL multiple times, you must call the UrL’s
openConnection() each time separately.

 Non-blocking Socket Programming
In previous sections, I explained TCP and UDP sockets. The connect(), accept(),

read(), and write() methods of the Socket and ServerSocket classes block until the

operation is complete. For example, a client socket’s thread is blocked if it calls the

read() method to read data from a server until the data is available. Would it not be

nice if you could call the read() method on a client socket and start doing something

else until the data from the server arrives? When data is available from the server, the

client socket will be notified, which will read the data at an appropriate time. Another big

issue that you face with socket programming is the scalability of a server application. In

previous sections, I suggested that you would need to create a new thread to handle each

client connection, or you would have a pool of threads to handle all client connections.

Both ways, you will be creating and maintaining a bunch of threads in your program.

Wouldn’t it be nice if you didn’t have to deal with threads in a server program to handle

multiple clients? Non-blocking socket channels offer all of these nice features. As always,

Chapter 8 Network programmiNg

642

a good feature has a price tag associated with it; so too with the non-blocking socket

channel. It has a bit of a learning curve. You are used to programming where things

happen sequentially. With non-blocking socket channels, you will need to change your

mindset about the way you think about performing things in a program. Changing

your mindset takes time. Your program will be performing multiple things that will not

be performed sequentially. If you are learning Java for the first time, you can skip this

section and revisit it later when you gain some more experience in writing complex Java

programs.

It is assumed that you have a good understanding of socket programming

using ServerSocket and Socket classes. It is further assumed that you have a basic

understanding of New Input/Output in Java using buffers and channels. This section

uses some classes that are contained in java.nio, java.nio.channels, and java.nio.

charset packages.

Let’s start by comparing classes that are involved in blocking and non-blocking

socket communications. Table 8-7 lists the main classes that are used in blocking and

non-blocking socket applications.

You will work with a ServerSocketChannel object primarily to accept a new

connection request in a server instead of using a ServerSocket. The ServerSocket has

not disappeared. It is still at play behind the scenes. If you need the reference of the

Table 8-7. Comparison of Classes Involved in Blocking and Non-blocking Socket

Programming

Classes Used in Blocking Socket-Based
Communication

Classes Used in Non-blocking Socket-Based
Communications

ServerSocket ServerSocketChannel

the ServerSocket class still exists behind the scenes.

Socket SocketChannel

the Socket class still exists behind the scenes.

InputStream

OutputStream

No corresponding classes exist. a SocketChannel is

used to read/write data.

No corresponding classes exist. Selector

No corresponding class exists. SelectionKey

Chapter 8 Network programmiNg

643

ServerSocket object being used internally, you can get it by using the socket() method

of the ServerSocketChannel object. You can think of a ServerSocketChannel object as a

wrapper for a ServerSocket object.

You will work with a SocketChannel to communicate between a client and a server

instead of a Socket. A Socket object is still at play behind the scenes. You can get the

reference of the Socket object using the socket() method of the SocketChannel class.

You can think of a SocketChannel object as a wrapper for a Socket object.

Before I start discussing the mechanism that is used by the non-blocking sockets

to give you a more efficient and scalable application interface, it would be helpful to

look at a real-world example. Let’s discuss the way orders are placed and served in a

fast food restaurant. Suppose the restaurant expects a maximum of ten customers and

a minimum of zero customers at any time. A customer comes to the restaurant, places

their order, and is served the food. How many servers should that restaurant employ?

In the best case, it may employ only one server that can handle receiving orders from all

customers and serving their food. In the worst case, it can have ten servers—one server

reserved for one customer. In the latter case, if there are only three customers in the

restaurant, seven servers will be idle.

Let’s take the middle path in the restaurant management. Let’s have a few servers in

the kitchen to cook and one server at the counter to receive orders. A customer comes

and places an order with the server at the counter, the customer gets an order ID, the

customer leaves the counter, the server at the counter passes on the order to one of the

servers in the kitchen, and the server starts taking an order from the next customer. At

this point, the customer is free to do something else while their order is being prepared.

The server at the counter is dealing with other customers. Servers in the kitchen are busy

preparing the food according to the orders placed. No one is waiting for anyone. As soon

as the food item in an order is ready, the server at the counter receives it from the server

in the kitchen and calls the order number so the customer who placed that order will

pick up their food. A customer may get their food in multiple installments. They can eat

the food that they have been served while the remaining items in their order are being

prepared in the kitchen. This architecture is the most efficient architecture you can have

in a restaurant. It keeps everyone busy most of the time and makes efficient use of the

resources. This is the approach that non-blocking socket channels follow.

Another approach would be that the customer comes in, places their order, and

waits until their order is complete and is served, and then the next customer places their

order, and so on. This is the approach that blocking sockets follow. If you understand

Chapter 8 Network programmiNg

644

the approach taken by the fast food restaurant for the efficient use of resources, you

can understand the non-blocking socket channels easily. I compare the people used

in the restaurant example with objects used in non-blocking sockets in the following

discussion.

Let’s first discuss the situation on the server side. The server side is your restaurant.

The person at the counter, who interfaces with all customers, is called a selector. A

selector is an object of the Selector class. Its sole job is to interact with the outside

world. It sits between remote clients interacting with the server and the things inside

the server. A remote client never interacts with objects working inside the server, as a

customer in the restaurant never interacts directly with servers in the kitchen. Figure 8-7

shows the architecture of non-blocking socket channel communication. It shows where

the selector fits into the architecture.

You cannot create a selector object directly using its constructor. You need to call its

open() static method to get a selector object as shown:

// Get a selector object

Selector selector = Selector.open();

A ServerSocketChannel is used to listen for a new connection request from clients.

Again, you cannot create a new ServerSocketChannel object using its constructor. You

need to call its open() static method as shown:

// Get a server socket channel

ServerSocketChannel ssChannel = ServerSocketChannel.open();

Figure 8-7. Architecture of non-blocking client-server sockets

Chapter 8 Network programmiNg

645

By default, a server socket channel or a socket channel is a blocking channel. You

need to configure it to make it a non-blocking channel as shown:

// Configure the server socket channel to be non-blocking

ssChannel.configureBlocking(false);

Your server socket channel needs to be bound to a local IP address and a local port

number, so a remote client may contact it for new connections. You bind a server socket

channel using its bind() method, which is part of the ServerSocketChannel and the

SocketChannel classes:

InetAddress hostIPAddress =

 InetAddress.getByName("localhost");

int port = 19000;

ssChannel.bind(new InetSocketAddress(hostIPAddress, port));

The most important step is taken now. The server socket has to register itself with

the selector showing interest in some kind of operation. It is like a pizza maker in a

restaurant letting the server at the counter know that they are ready to make pizza for

customers, and they need to be notified when an order for pizza is placed. There are

four kinds of operations for which you can register a channel with the selector. They are

defined as integer constants in the SelectionKey class listed in Table 8-8.

Table 8-8. Operations Recognized by the Selector

Operation
Type

Value (Constants in
SelectionKey Class)

Who Can Register for
This Operation

Description

Connect op_CoNNeCt SocketChannel at client Selector will notify about the connect

operation progress.

Accept op_aCCept ServerSocketChannel at

server

Selector will notify when a client

request for a new connection arrives.

Read op_reaD SocketChannel at client

and server

Selector will notify when the channel

is ready to read some data.

Write op_write SocketChannel at client

and server

Selector will notify when the channel

is ready to write some data.

Chapter 8 Network programmiNg

646

A ServerSocketChannel only listens for accepting a new client connection request,

and therefore it can register for only one operation as shown:

// Register the server socket channel with the selector

// for accept operation

ssChannel.register(selector, SelectionKey.OP_ACCEPT);

The register() method of ServerSocketChannel returns an object of type

SelectionKey. You can think of this object as a registration certificate with the selector.

You can store this key object in a variable if you need to use it later. The example ignores

it. The selector has a copy of your key (registration details) and will use it in the future to

notify you of any operation for which your channel is ready.

At this point, your selector is ready to intercept an incoming request for a client

connection and pass it on to the server socket channel. Suppose a client attempts to

connect to the server socket channel at this time. How does interaction between the

selector and the server socket channel take place? When the selector detects that there

is a registered key with it, which is ready for an operation, it places that key (an object of

the SelectionKey class) in a separate group called the ready set. A java.util.Set object

represents a ready set. You can determine the number of keys in a ready state by calling

the select() method of a Selector object:

// Get the key count in the ready set

int readyCount = selector.select();

Once you get at least one ready key in the ready set, you need to get the key and look

at the details. You can get all ready keys from the ready set as shown:

// Get the set of ready keys

Set readySet = selector.selectedKeys();

Note that you register a key for one or more operations. You need to look at the

key details for its readiness for a particular operation. If a key is ready for accepting a

new connection request, its isAcceptable() method will return true. If a key is ready

for a connection operation, its isConnectable() method will return true. If a key is

ready for read and write operations, its isReadable() and isWritable() methods will

return true. You may observe that there is a method to check for the readiness for each

operation type. When you are processing a ready set, you will also need to remove the

Chapter 8 Network programmiNg

647

key from the ready set. Here is some typical code that processes the ready set in a server

application. An infinite loop is typical on a server application because you need to keep

looking for the next ready set once you are done with the current ready set:

while(true) {

 // Get the count of keys in the ready set. If ready

 // key count is greater than zero, process each key

 // in the ready set.

}

The following snippet of code shows the typical logic that you can use to process all

keys in a ready set:

SelectionKey key = null;

Iterator iterator = readySet.iterator();

while (iterator.hasNext()) {

 // Get the next ready selection key object

 key = (SelectionKey)iterator.next();

 // Remove the key from ready set

 iterator.remove();

 // Process the key according to the operation

 if (key.isAcceptable()) {

 // Process new connection

 }

 if (key.isReadable()) {

 // Read from the channel

 }

 if (key.isWritable()) {

 // Write to the channel

 }

}

How do you accept a connection request from a remote client on a server

socket channel? The logic is similar to accepting a remote connection request

using a ServerSocket object. A SelectionKey object has a reference to the

ServerSocketChannel that registered it. You can get to the ServerSocketChannel object

of a SelectionKey object using its channel() method. You need to call the accept()

Chapter 8 Network programmiNg

648

method on the ServerSocketChannel object to accept a new connection request.

The accept() method returns an object of the SocketChannel class that is used to

communicate (read and write) with a remote client. You need to configure the new

SocketChannel object to be a non-blocking socket channel. The most important point

that you need to understand is that the new SocketChannel object must register itself

for read, write, or both operations with the selector to start reading/writing data on the

connection channel. The following snippet of code shows the logic to accept a remote

connection request:

ServerSocketChannel ssChannel =

 (ServerSocketChannel)key.channel();

SocketChannel sChannel = (SocketChannel)ssChannel.accept();

sChannel.configureBlocking(false);

// Register only for read. Your message is small and you

// write it back to the client as soon as you read it.

sChannel.register(key.selector(), SelectionKey.OP_READ);

If you wish to register the socket channel with a selector for a read and a write, you

can do so as shown:

// Register for read and write

sChannel.register(key.selector(),

 SelectionKey.OP_READ | SelectionKey.OP_WRITE);

Once your socket channel is registered with the selector, it will be notified through

the selector’s ready set when it receives any data from the remote client or when you can

write data to the remote client on its channel.

If data becomes available on a socket channel, the key.isReadable() will return

true for this socket channel. A typical read operation looks as follows. You must have a

basic understanding of Java NIO (New Input/Output) to read data using channels and

buffers.

SocketChannel sChannel = (SocketChannel) key.channel();

ByteBuffer buffer = ByteBuffer.allocate(1024);

int bytesCount = sChannel.read(buffer);

String msg = "";

Chapter 8 Network programmiNg

649

if (bytesCount > 0) {

 buffer.flip();

 Charset charset = Charset.forName("UTF-8");

 CharsetDecoder decoder = charset.newDecoder();

 CharBuffer charBuffer = decoder.decode(buffer);

 msg = charBuffer.toString();

 System.out.println("Received Message: " + msg);

}

If you can write to a channel, the selector will place the associated key in its ready set

whose isWritable() method will return true. Again, you need to understand Java NIO

to use the ByteBuffer object to write data on a channel.

SocketChannel sChannel = (SocketChannel)key.channel();

String msg =

 "message to be sent to remote client goes here";

ByteBuffer buffer = ByteBuffer.wrap(msg.getBytes());

sChannel.write(buffer);

What happens on a client side is easy to understand. You start with getting a selector

object, and you get a SocketChannel object by calling the SocketChannel.open()

method. At this point, you need to configure the socket channel to be non-blocking

before you connect to the server. Now you are ready to register your socket channel

with the selector. Typically, you register with the selector for connect, read, and write

operations. Processing the ready set of the selector is done the same way you processed

the ready set of the selector in the server application. The code for reading and writing

to the channel is similar to the server-side code. The following snippet of code shows the

typical logic used in a client application:

InetAddress serverIPAddress =

 InetAddress.getByName("localhost");

int port = 19000;

InetSocketAddress serverAddress =

 new InetSocketAddress(serverIPAddress, port);

// Get a selector

Selector selector = Selector.open();

Chapter 8 Network programmiNg

650

// Create and configure a client socket channel

SocketChannel channel = SocketChannel.open();

channel.configureBlocking(false);

// Connect to the server

channel.connect(serverAddress);

// Register the channel for connect, read and write

// operations

int operations = SelectionKey.OP_CONNECT |

 SelectionKey.OP_READ |

 SelectionKey.OP_WRITE;

channel.register(selector, operations);

// Process the ready set of the selector here

When you get a connect operation on a client-side SocketChannel, it may mean

either a successful or failed connection. You can call the finishConnect() method on

the SocketChannel object to finish the connection process. If the connection has failed,

the finishConnect() call will throw an IOException. Typically, you handle a connect

operation as follows:

if (key.isConnectable()) {

 try {

 // Call to finishConnect() is in a loop as it is

 // non-blocking for your channel

 while(channel.isConnectionPending()) {

 channel.finishConnect();

 }

 } catch (IOException e) {

 // Cancel the channel's registration with the

 // selector

 key.cancel();

 e.printStackTrace();

 }

}

It is time to build an echo client application and an echo server application using

these channels. Listings 8-14 and 8-15 contain the complete code for a non-blocking

socket channel for an echo server and an echo client, respectively.

Chapter 8 Network programmiNg

651

You need to run the NonBlockingEchoServer class first and then one or more

instances of the NonBlockingEchoClient class. They work similar to your other two

echo client-server programs. Note that, this time, you may not see the messages from

the server just after you enter a message in the client application. The client application

sends a message to the server, and it does not wait for the message to be echoed back.

Rather, it processes the server message when the socket channel receives the notification

from the selector. Therefore, it is possible to get the two messages echoed back from the

server at one time. Exception handling has been left out in these examples to keep the

code simple and readable.

Listing 8-14. A Non-blocking Socket Channel Echo Server Program

// NonBlockingEchoServer.java

package com.jdojo.net;

import java.io.IOException;

import java.net.InetAddress;

import java.net.InetSocketAddress;

import java.nio.ByteBuffer;

import java.nio.CharBuffer;

import java.nio.channels.SelectionKey;

import java.nio.channels.Selector;

import java.nio.channels.ServerSocketChannel;

import java.nio.channels.SocketChannel;

import java.nio.charset.Charset;

import java.nio.charset.CharsetDecoder;

import java.util.Iterator;

import java.util.Set;

public class NonBlockingEchoServer {

 public static void main(String[] args)

 throws Exception {

 InetAddress hostIPAddress =

 InetAddress.getByName("localhost");

 int port = 19000;

 // Get a selector

 Selector selector = Selector.open();

Chapter 8 Network programmiNg

652

 // Get a server socket channel

 ServerSocketChannel ssChannel =

 ServerSocketChannel.open();

 // Make the server socket channel non-blocking

 // and bind it to an address

 ssChannel.configureBlocking(false);

 ssChannel.socket().bind(

 new InetSocketAddress(hostIPAddress, port));

 // Register a socket server channel with the

 // selector for accept operation, so that it can

 // be notified when a new connection request

 // arrives

 ssChannel.register(selector,

 SelectionKey.OP_ACCEPT);

 // Now we will keep waiting in a loop for any kind

 // of request that arrives to the server -

 // connection, read, or write request. If a

 // connection request comes in, we will accept the

 // request and register a new socket channel with

 // the selector for read and write operations. If

 // read or write requests come in, we will forward

 // that request to the registered channel.

 while (true) {

 if (selector.select() <= 0) {

 continue;

 }

 processReadySet(selector.selectedKeys());

 }

 }

 public static void

 processReadySet(Set readySet) throws Exception {

 SelectionKey key = null;

 Iterator iterator = null;

 iterator = readySet.iterator();

Chapter 8 Network programmiNg

653

 while (iterator.hasNext()) {

 // Get the next ready selection key object

 key = (SelectionKey) iterator.next();

 // Remove the key from the ready key set

 iterator.remove();

 // Process the key according to the operation

 // it is ready for

 if (key.isAcceptable()) {

 processAccept(key);

 }

 if (key.isReadable()) {

 String msg = processRead(key);

 if (msg.length() > 0) {

 echoMsg(key, msg);

 }

 }

 }

 }

 public static void

 processAccept(SelectionKey key) throws IOException {

 // This method call indicates that we got a new

 // connection request. Accept the connection

 // request and register the new socket channel

 // with the selector, so that client can

 // communicate on a new channel

 ServerSocketChannel ssChannel =

 (ServerSocketChannel)key.channel();

 SocketChannel sChannel =

 (SocketChannel) ssChannel.accept();

 sChannel.configureBlocking(false);

 // Register only for read. Our message is small

 // and we write it back to the client as soon

 // as we read it

 sChannel.register(key.selector(),

 SelectionKey.OP_READ);

 }

Chapter 8 Network programmiNg

654

 public static String

 processRead(SelectionKey key) throws Exception {

 SocketChannel sChannel =

 (SocketChannel) key.channel();

 ByteBuffer buffer = ByteBuffer.allocate(1024);

 int bytesCount = sChannel.read(buffer);

 String msg = "";

 if (bytesCount > 0) {

 buffer.flip();

 Charset charset = Charset.forName("UTF-8");

 CharsetDecoder decoder = charset.newDecoder();

 CharBuffer charBuffer = decoder.decode(buffer);

 msg = charBuffer.toString();

 System.out.println("Received Message: " + msg);

 }

 return msg;

 }

 public static void

 echoMsg(SelectionKey key, String msg)

 throws IOException {

 SocketChannel sChannel =

 (SocketChannel) key.channel();

 ByteBuffer buffer =

 ByteBuffer.wrap(msg.getBytes());

 sChannel.write(buffer);

 }

}

Listing 8-15. A Non-blocking Socket Channel Echo Client Program

// NonBlockingEchoClient.java

package com.jdojo.net;

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;

import java.net.InetAddress;

Chapter 8 Network programmiNg

655

import java.net.InetSocketAddress;

import java.nio.ByteBuffer;

import java.nio.CharBuffer;

import java.nio.channels.SelectionKey;

import java.nio.channels.Selector;

import java.nio.channels.SocketChannel;

import java.nio.charset.Charset;

import java.nio.charset.CharsetDecoder;

import java.util.Iterator;

import java.util.Set;

public class NonBlockingEchoClient {

 private static BufferedReader userInputReader = null;

 public static void main(String[] args)

 throws Exception {

 InetAddress serverIPAddress =

 InetAddress.getByName("localhost");

 int port = 19000;

 InetSocketAddress serverAddress =

 new InetSocketAddress(serverIPAddress, port);

 // Get a selector

 Selector selector = Selector.open();

 // Create and configure a client socket

 // channelHello

 try (SocketChannel channel =

 SocketChannel.open()) {

 channel.configureBlocking(false);

 channel.connect(serverAddress);

 // Register the channel for connect, read and

 // write operations

 int operations =

 SelectionKey.OP_CONNECT |

 SelectionKey.OP_READ |

 SelectionKey.OP_WRITE;

 channel.register(selector, operations);

Chapter 8 Network programmiNg

656

 userInputReader =

 new BufferedReader(

 new InputStreamReader(System.in));

 while (true) {

 if (selector.select() > 0) {

 boolean doneStatus =

 processReadySet(

 selector.selectedKeys());

 if (doneStatus) {

 break;

 }

 }

 }

 }

 }

 public static boolean

 processReadySet(Set readySet) throws Exception {

 SelectionKey key = null;

 Iterator iterator = null;

 iterator = readySet.iterator();

 while (iterator.hasNext()) {

 // Get the next ready selection key object

 key = (SelectionKey) iterator.next();

 // Remove the key from the ready key set

 iterator.remove();

 if (key.isConnectable()) {

 boolean connected = processConnect(key);

 if (!connected) {

 return true; // Exit

 }

 }

 if (key.isReadable()) {

 String msg = processRead(key);

 System.out.println("[Server]: " + msg);

 }

Chapter 8 Network programmiNg

657

 if (key.isWritable()) {

 String msg = getUserInput();

 if (msg.equalsIgnoreCase("bye")) {

 return true; // Exit

 }

 processWrite(key, msg);

 }

 }

 return false; // Not done yet

 }

 public static boolean

 processConnect(SelectionKey key) {

 SocketChannel channel =

 (SocketChannel) key.channel();

 try {

 // Call the finishConnect() in a loop as it is

 // non-blocking for your channel

 while (channel.isConnectionPending()) {

 channel.finishConnect();

 }

 } catch (IOException e) {

 // Cancel the channel's registration with the

 // selector

 key.cancel();

 e.printStackTrace();

 return false;

 }

 return true;

 }

 public static String

 processRead(SelectionKey key) throws Exception {

 SocketChannel sChannel =

 (SocketChannel) key.channel();

 ByteBuffer buffer = ByteBuffer.allocate(1024);

 sChannel.read(buffer);

 buffer.flip();

Chapter 8 Network programmiNg

658

 Charset charset = Charset.forName("UTF-8");

 CharsetDecoder decoder = charset.newDecoder();

 CharBuffer charBuffer = decoder.decode(buffer);

 String msg = charBuffer.toString();

 return msg;

 }

 public static void

 processWrite(SelectionKey key, String msg)

 throws IOException {

 SocketChannel sChannel =

 (SocketChannel) key.channel();

 ByteBuffer buffer =

 ByteBuffer.wrap(msg.getBytes());

 sChannel.write(buffer);

 }

 public static String

 getUserInput() throws IOException {

 String promptMsg =

 "Please enter a message(Bye to quit): ";

 System.out.print(promptMsg);

 String userMsg = userInputReader.readLine();

 return userMsg;

 }

}

 Socket Security Permissions
You can control the access for a Java program to use sockets using an instance of

the java.net.SocketPermission class. The generic format used to grant a socket

permission in a Java policy file is as follows:

grant {

 permission java.net.SocketPermission

 "target", "actions";

};

Chapter 8 Network programmiNg

659

The target is of the form <host name>:<port range>. The possible values of actions

are accept, connect, listen, and resolve.

The listen action is meaningful only when “localhost” is used as the host name. The

resolve action refers to a DNS lookup, and it is implied if any of the other three actions

is present.

A host name could be either a DNS name or an IP address. You can use an asterisk (*)

as a wildcard character in the DNS host name. If an asterisk is used, it must be used as

the leftmost character in the DNS name. If the host name consists only of an asterisk, it

refers to any host. The “localhost” for the host name refers to the local machine. You can

indicate the port range for the host name in different formats, as described in Table 8-9.

Here, N1 and N2 indicate port numbers (0 to 65535), and it is assumed that N1 is less

than N2. Table 8-9 lists the format used for indicating the port range.

The following are examples of using a java.net.SocketPermission in a Java

policy file:

// Grant to all codebase

grant {

 // Permission to connect with 192.168.10.123

 // at port 5000

 permission java.net.SocketPermission

 "192.168.10.123:5000", "connect";

 // Connect permission to any host at port 80

 permission java.net.SocketPermission

 "*:80", "connect";

Table 8-9. The <port range> Format for java.net.

SocketPermission Security Settings

Port Range Value Description

N1 only one port number—N1

N1-N2 port numbers from N1 to N2

N1- port numbers from N1 and greater

-N1 port numbers from N1 and less

Chapter 8 Network programmiNg

660

 // All socket permissions to on port >= 1024

 // on the localhost

 permission java.net.SocketPermission

 "localhost:1024-", "listen, accept, connect";

};

 Asynchronous Socket Channels
Java has support for asynchronous socket operations such as connect, read, and write.

The asynchronous socket operations are performed using the following two socket

channel classes:

• java.nio.channels.AsynchronousServerSocketChannel

• java.nio.channels.AsynchronousSocketChannel

An AsynchronousServerSocketChannel serves as a server socket that listens for new

incoming client connections. Once it accepts a new client connection, the interaction

between the client and the server is handled by an AsynchronousSocketChannel at both

ends. Asynchronous socket channels are set up very similar to the synchronous sockets.

The main difference between the two setups is that the request for an asynchronous

socket operation returns immediately and the requestor is notified when the operation

is completed, whereas in a synchronous socket operation the request for a socket

operation blocks until it is complete. Because of the asynchronous nature of the

operations with the asynchronous socket channels, the code to handle the completion or

failure of a socket operation is a bit complex.

In an asynchronous socket channel, you request an operation using one of the methods

of the asynchronous socket channel classes. The method returns immediately. You receive

a notification about the completion or failure of the operation later. The methods that allow

you to request asynchronous operations are overloaded. One version returns a Future

object that lets you check the status of the requested operation. Another version of those

methods lets you pass a CompletionHandler. When the requested operation completes

successfully, the completed() method of the CompletionHandler is called. When the

requested operation fails, the failed() method of the CompletionHandler is called. The

following snippet of code demonstrates both approaches of handling the completion/

failure of a requested asynchronous socket operation. It shows how a server socket channel

accepts a client connection asynchronously:

Chapter 8 Network programmiNg

661

/* Using a Future Object */

// Get a server socket channel instance

AsynchronousServerSocketChannel server =

 ... /* get a server instance */;

// Bind the socket to a host and a port

server.bind(your_host, your_port);

// Start accepting a new client connection. Note that the

// accept() method returns immediately by returning a

// Future object

Future<AsynchronousSocketChannel> result = server.accept();

// Wait for the new client connection by calling the get()

// method of the Future object. Alternatively, you can poll

// the Future object periodically using its isDone() method

AsynchronousSocketChannel newClient = result.get();

// Handle the newClient here and call the server.accept()

// again to accept another client connection

/* Using a CompletionHandler Object */

// Get a server socket channel instance

AsynchronousServerSocketChannel server =

 ... /* get a server instance */;

// Bind the socket to a host and a port

server.bind(your_host, your_port);

// Start accepting a new client connection. The accept()

// method returns immediately. The completed() or failed()

// method of the ConnectionHandler will be called upon

// completion or failure of the requested operation

YourAnyClass attach = ...; // Get an attachment

server.accept(attach, new ConnectionHandler());

This version of the accept() method accepts an object of any class as an attachment.

It could be a null reference. The attachment is passed to the completed() and failed()

methods of the completion handler, which is an object of ConnectionHandler in this

case. The ConnectionHandler class may look as follows:

Chapter 8 Network programmiNg

662

private static class ConnectionHandler

 implements CompletionHandler

 <AsynchronousSocketChannel, YourAnyClass> {

 @Override

 public void

 completed(AsynchronousSocketChannel client,

 YourAnyClass attach) {

 // Handle the new client connection here and again

 // start accepting a new client connection

 }

 @Override

 public void

 failed(Throwable e, YourAnyClass attach) {

 // Handle the failure here

 }

}

In this section, I cover the following three steps in detail. During the discussion,

I build an application that consists of an echo server and a client. Clients will send

messages to the server asynchronously, and the server will echo back the message to

the client asynchronously. It is assumed that you are familiar working with buffers and

channels.

• Setting up an asynchronous server socket channel

• Setting up an asynchronous client socket channel

• Putting the asynchronous server and client socket channels in action

 Setting Up an Asynchronous Server Socket Channel
An instance of the AsynchronousServerSocketChannel class is used as an

asynchronous server socket channel to listen to the new incoming client

connections. Once a connection to a client is established, an instance of the

AsynchronousSocketChannel class is used to communicate with the client. The static

open() method of the AsynchronousServerSocketChannel class returns an object of the

AsynchronousServerSocketChannel class, which is not yet bound:

Chapter 8 Network programmiNg

663

// Create an asynchronous server socket channel object

AsynchronousServerSocketChannel server =

 AsynchronousServerSocketChannel.open();

// Bind the server to the localhost and the port 8989

String host = "localhost";

int port = 8989;

InetSocketAddress sAddr =

 new InetSocketAddress(host, port);

server.bind(sAddr);

At this point, your server socket channel can be used to accept a new client

connection by calling its accept() method as follows. The code uses two classes,

Attachment and ConnectionHandler, which are described later.

// Prepare the attachment

Attachment attach = new Attachment();

attach.server = server;

// Accept new connections

server.accept(attach, new ConnectionHandler());

Typically, a server application runs indefinitely. You can make the server application

run forever by waiting on the main thread in the main() method as follows:

try {

 // Wait indefinitely until someone interrupts the

 // main thread

 Thread.currentThread().join();

} catch (InterruptedException e) {

 e.printStackTrace();

}

You will use the completion handler mechanism to handle the completion/failure

notification for the server socket channel. An object of the following Attachment class

will be used to serve as an attachment to the completion handler. An attachment object

is used to pass the context for the server socket that may be used inside the completed()

and failed() methods of the completion handler:

Chapter 8 Network programmiNg

664

class Attachment {

 AsynchronousServerSocketChannel server;

 AsynchronousSocketChannel client;

 ByteBuffer buffer;

 SocketAddress clientAddr;

 boolean isRead;

}

You need a CompletionHandler implementation to handle the completion of an

accept() call. Let’s call your class as ConnectionHandler as shown:

private static class ConnectionHandler

 implements CompletionHandler

 <AsynchronousSocketChannel, Attachment> {

 @Override

 public void

 completed(AsynchronousSocketChannel client,

 Attachment attach) {

 try {

 // Get the client address

 SocketAddress clientAddr =

 client.getRemoteAddress();

 System.out.format(

 "Accepted a connection from %s%n",

 clientAddr);

 // Accept another connection

 attach.server.accept(attach, this);

 // Handle the client connection by invoking an

 // asyn read

 Attachment newAttach = new Attachment();

 newAttach.server = attach.server;

 newAttach.client = client;

 newAttach.buffer = ByteBuffer.allocate(2048);

 newAttach.isRead = true;

 newAttach.clientAddr = clientAddr;

 // Create a new completion handler for reading

 // to and writing from the new client

Chapter 8 Network programmiNg

665

 ReadWriteHandler readWriteHandler =

 new ReadWriteHandler();

 // Read from the client

 client.read(newAttach.buffer, newAttach,

 readWriteHandler);

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 @Override

 public void failed(Throwable e, Attachment attach) {

 System.out.println(

 "Failed to accept a connection.");

 e.printStackTrace();

 }

}

The ConnectionHandler class is simple. In its failed() method, it prints the

exception stack trace. In its completed() method, it prints a message that a new client

connection has been established and starts listening for another new client connection

by calling the accept() method on the server socket again. Note the reuse of the

attachment in another accept() method call inside the completed() method. It uses the

same CompletionHandler object again. Note that the attach.server.accept(attach,

this) method call uses the keyword this to refer to the same instance of the completion

handler. At the end, it prepares a new instance of the Attachment class, which wraps the

details of handling (reading and writing) the new client connection, and calls the read()

method on the client socket to read from the client. Note that the read() method uses

another completion handler, which is an instance of the ReadWriteHandler class. The

code for the ReadWriteHandler is as follows:

private static class ReadWriteHandler

 implements CompletionHandler<Integer, Attachment> {

 @Override

 public void

Chapter 8 Network programmiNg

666

 completed(Integer result, Attachment attach) {

 if (result == -1) {

 try {

 attach.client.close();

 System.out.format(

 "Stopped listening to the client %s%n",

 attach.clientAddr);

 } catch (IOException ex) {

 ex.printStackTrace();

 }

 return;

 }

 if (attach.isRead) {

 // A read to the client was completed

 // Get the buffer ready to read from it

 attach.buffer.flip();

 int limits = attach.buffer.limit();

 byte bytes[] = new byte[limits];

 attach.buffer.get(bytes, 0, limits);

 Charset cs = Charset.forName("UTF-8");

 String msg = new String(bytes, cs);

 // Print the message from the client

 System.out.format(

 "Client at %s says: %s%n",

 attach.clientAddr, msg);

 // Let us echo back the same message to the

 // client

 attach.isRead = false; // It is a write

 // Prepare the buffer to be read again

 attach.buffer.rewind();

 // Write to the client again

 attach.client.write(attach.buffer,

 attach, this);

 } else {

Chapter 8 Network programmiNg

667

 // A write to the client was completed.

 // Perform another read from the client.

 attach.isRead = true;

 // Prepare the buffer to be filled in

 attach.buffer.clear();

 // Perform a read from the client

 attach.client.read(attach.buffer, attach,

 this);

 }

 }

 @Override

 public void

 failed(Throwable e, Attachment attach) {

 e.printStackTrace();

 }

}

The first argument called result of the completed() method is the number of bytes

that is read from or written to the client. Its value of –1 indicates the end of stream, and

in that case, the client socket is closed. If a read operation was completed, it displays the

read text on the standard output and writes back the same text to the client. If a write

operation to a client was completed, it performs a read on the same client.

Listing 8-16 contains the complete code for your asynchronous server socket

channel. It uses three inner classes: one for the attachment, one for the connection

completion handler, and one for the read/write completion handler. The

AsyncEchoServerSocket class can be run now. However, it will not do any work as it

needs a client to connect to it to echo back messages that are sent from the client. You

will develop your asynchronous client socket channel in the next section, and then, in

the subsequent section, you will test both server and client socket channels together.

Listing 8-16. A Server Application That Uses an Asynchronous Server Socket

Channel

// AsyncEchoServerSocket.java

package com.jdojo.net;

import java.io.IOException;

import java.net.SocketAddress;

Chapter 8 Network programmiNg

668

import java.nio.ByteBuffer;

import java.nio.charset.Charset;

import java.net.InetSocketAddress;

import java.nio.channels.CompletionHandler;

import java.nio.channels.AsynchronousSocketChannel;

import java.nio.channels.AsynchronousServerSocketChannel;

public class AsyncEchoServerSocket {

 private static class Attachment {

 AsynchronousServerSocketChannel server;

 AsynchronousSocketChannel client;

 ByteBuffer buffer;

 SocketAddress clientAddr;

 boolean isRead;

 }

 private static class ConnectionHandler implements

 CompletionHandler

 <AsynchronousSocketChannel, Attachment> {

 @Override

 public void

 completed(AsynchronousSocketChannel client,

 Attachment attach) {

 try {

 // Get the client address

 SocketAddress clientAddr = client.

 getRemoteAddress();

 System.out.format(

 "Accepted a connection from %s%n",

 clientAddr);

 // Accept another connection

 attach.server.accept(attach, this);

 // Handle the client connection by using

 // an asyn read

 ReadWriteHandler rwHandler =

 new ReadWriteHandler();

Chapter 8 Network programmiNg

669

 Attachment newAttach = new Attachment();

 newAttach.server = attach.server;

 newAttach.client = client;

 newAttach.buffer = ByteBuffer.

 allocate(2048);

 newAttach.isRead = true;

 newAttach.clientAddr = clientAddr;

 client.read(newAttach.buffer, newAttach,

 rwHandler);

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 @Override

 public void

 failed(Throwable e, Attachment attach) {

 System.out.println(

 "Failed to accept a connection.");

 e.printStackTrace();

 }

 }

 private static class ReadWriteHandler

 implements CompletionHandler

 <Integer, Attachment> {

 @Override

 public void

 completed(Integer result, Attachment attach) {

 if (result == -1) {

 try {

 attach.client.close();

 System.out.format(

 "Stopped listening to the" +

 " client %s%n",

 attach.clientAddr);

Chapter 8 Network programmiNg

670

 } catch (IOException ex) {

 ex.printStackTrace();

 }

 return;

 }

 if (attach.isRead) {

 // A read to the client was completed.

 // Get the buffer ready to read from it

 attach.buffer.flip();

 int limits = attach.buffer.limit();

 byte bytes[] = new byte[limits];

 attach.buffer.get(bytes, 0, limits);

 Charset cs = Charset.forName("UTF-8");

 String msg = new String(bytes, cs);

 // Print the message from the client

 System.out.format(

 "Client at %s says: %s%n",

 attach.clientAddr, msg);

 // Let us echo back the same message to

 // the client

 attach.isRead = false; // It is a write

 // Prepare the buffer to be read again

 attach.buffer.rewind();

 // Write to the client

 attach.client.write(attach.buffer,

 attach, this);

 } else {

 // A write to the client was completed.

 // Perform another read.

 attach.isRead = true;

 // Prepare the buffer to be filled in

 attach.buffer.clear();

Chapter 8 Network programmiNg

671

 // Perform a read from the client

 attach.client.read(attach.buffer,

 attach, this);

 }

 }

 @Override

 public void

 failed(Throwable e, Attachment attach) {

 e.printStackTrace();

 }

 }

 public static void main(String[] args) {

 try (AsynchronousServerSocketChannel server

 = AsynchronousServerSocketChannel.open()) {

 // Bind the server to the localhost and the

 // port 8989

 String host = "localhost";

 int port = 8989;

 InetSocketAddress sAddr

 = new InetSocketAddress(host, port);

 server.bind(sAddr);

 // Display a message that server is ready

 System.out.format(

 "Server is listening at %s%n", sAddr);

 // Prepare the attachment

 Attachment attach = new Attachment();

 attach.server = server;

 // Accept new connections

 server.accept(attach,

 new ConnectionHandler());

 try {

 // Wait until the main thread is

 // interrupted

 Thread.currentThread().join();

Chapter 8 Network programmiNg

672

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

 Setting Up an Asynchronous Client Socket Channel
An instance of the AsynchronousSocketChannel class is used as an asynchronous

client socket channel in a client application. The static open() method

of the AsynchronousSocketChannel class returns an open channel of the

AsynchronousSocketChannel type that is not yet connected to a server socket channel.

The channel’s connect() method is used to connect to a server socket channel. The

following snippet of code shows how to create an asynchronous client socket channel

and connect it to a server socket channel. It uses a Future object to handle the

completion of the connection to the server:

// Create an asynchronous socket channel

AsynchronousSocketChannel channel =

 AsynchronousSocketChannel.open();

// Connect the channel to the server

String serverName = "localhost";

int serverPort = 8989;

SocketAddress serverAddr =

 new InetSocketAddress(serverName, serverPort);

Future<Void> result = channel.connect(serverAddr);

System.out.println("Connecting to the server...");

// Wait for the connection to complete

result.get();

// Connection to the server is complete now

System.out.println("Connected to the server...");

Chapter 8 Network programmiNg

673

Once the client socket channel is connected to a server, you can start reading from

the server and writing to the server using the channel’s read() and write() methods

asynchronously. Both methods let you handle the completion of the operation using a

Future object or a CompletionHandler object. You will use an Attachment class as shown

to pass the context to the completion handler:

class Attachment {

 AsynchronousSocketChannel channel;

 ByteBuffer buffer;

 Thread mainThread;

 boolean isRead;

}

In the Attachment class, the channel instance variable holds the reference to the

client channel. The buffer instance variable holds the reference to the data buffer. You

will use the same data buffer for reading and writing. The mainThread instance variable

holds the reference to the main thread of the application. When the client channel is

done, you can interrupt the waiting main thread, so the client application terminates.

The isRead instance variable indicates if the operation is a read or a write. If it is true, it

means it is a read operation. Otherwise, it is a write operation.

Listing 8-17 contains the complete code for an asynchronous client socket channel.

It uses two inner classes called Attachment and ReadWriteHandler. An instance of the

Attachment class is used as an attachment to the read() and write() asynchronous

operations. An instance of the ReadWriteHandler class is used as a completion handler

for the read() and write() operations. Its getTextFromUser() method prompts the

user to enter a message on the standard input and returns the user-entered message.

The completed() method of the completion handler checks if it is a read or a write

operation. If it is a read operation, it prints the text that was read from the server on

the standard output. It prompts the user for another message. If the user enters Bye,

it terminates the application by interrupting the waiting main thread. Note that the

channel is closed automatically when the program exits the try block because it is

opened inside a try- with- resources block in the main() method.

Chapter 8 Network programmiNg

674

Listing 8-17. An Asynchronous Client Socket Channel

// AsyncEchoClientSocket.java

package com.jdojo.net;

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;

import java.net.InetSocketAddress;

import java.net.SocketAddress;

import java.nio.ByteBuffer;

import java.nio.charset.Charset;

import java.util.concurrent.Future;

import java.nio.channels.CompletionHandler;

import java.util.concurrent.ExecutionException;

import java.nio.channels.AsynchronousSocketChannel;

public class AsyncEchoClientSocket {

 private static class Attachment {

 AsynchronousSocketChannel channel;

 ByteBuffer buffer;

 Thread mainThread;

 boolean isRead;

 }

 private static class ReadWriteHandler

 implements CompletionHandler<Integer, Attachment>

 {

 @Override

 public void

 completed(Integer result, Attachment attach) {

 if (attach.isRead) {

 attach.buffer.flip();

 // Get the text read from the server

 Charset cs = Charset.forName("UTF-8");

 int limits = attach.buffer.limit();

 byte bytes[] = new byte[limits];

 attach.buffer.get(bytes, 0, limits);

 String msg = new String(bytes, cs);

Chapter 8 Network programmiNg

675

 // A read from the server was completed

 System.out.format(

 "Server Responded: %s%n", msg);

 // Prompt the user for another message

 msg = this.getTextFromUser();

 if (msg.equalsIgnoreCase("bye")) {

 // Interrupt the main thread, so the

 // program terminates

 attach.mainThread.interrupt();

 return;

 }

 // Prepare buffer to be filled in again

 attach.buffer.clear();

 byte[] data = msg.getBytes(cs);

 attach.buffer.put(data);

 // Prepared buffer to be read

 attach.buffer.flip();

 attach.isRead = false; // It is a write

 // Write to the server

 attach.channel.write(

 attach.buffer, attach, this);

 } else {

 // A write to the server was completed.

 // Perform another read from the server

 attach.isRead = true;

 // Prepare the buffer to be filled in

 attach.buffer.clear();

 // Read from the server

 attach.channel.read(attach.buffer,

 attach, this);

 }

 }

Chapter 8 Network programmiNg

676

 @Override

 public void

 failed(Throwable e, Attachment attach) {

 e.printStackTrace();

 }

 private String getTextFromUser() {

 System.out.print(

 "Please enter a message (Bye to quit):");

 String msg = null;

 BufferedReader consoleReader =

 new BufferedReader(

 new InputStreamReader(System.in));

 try {

 msg = consoleReader.readLine();

 } catch (IOException e) {

 e.printStackTrace();

 }

 return msg;

 }

 }

 public static void main(String[] args) {

 // Use a try-with-resources to open a channel

 try (AsynchronousSocketChannel channel =

 AsynchronousSocketChannel.open()) {

 // Connect the client to the server

 String serverName = "localhost";

 int serverPort = 8989;

 SocketAddress serverAddr =

 new InetSocketAddress(serverName,

 serverPort);

 Future<Void> result = channel.

 connect(serverAddr);

 System.out.println(

 "Connecting to the server...");

 // Wait for the connection to complete

 result.get();

Chapter 8 Network programmiNg

677

 // Connection to the server is complete now

 System.out.println(

 "Connected to the server...");

 // Start reading from and writing to the server

 Attachment attach = new Attachment();

 attach.channel = channel;

 attach.buffer = ByteBuffer.allocate(2048);

 attach.isRead = false;

 attach.mainThread = Thread.currentThread();

 // Place the "Hello" message in the buffer

 Charset cs = Charset.forName("UTF-8");

 String msg = "Hello";

 byte[] data = msg.getBytes(cs);

 attach.buffer.put(data);

 attach.buffer.flip();

 // Write to the server

 ReadWriteHandler readWriteHandler =

 new ReadWriteHandler();

 channel.write(attach.buffer, attach,

 readWriteHandler);

 // Let this thread wait for ever on its own

 // death until interrupted

 attach.mainThread.join();

 } catch (ExecutionException | IOException e) {

 e.printStackTrace();

 } catch (InterruptedException e) {

 System.out.println(

 "Disconnected from the server.");

 }

 }

}

Chapter 8 Network programmiNg

678

 Putting the Server and the Client Together
At this point, your asynchronous server and client programs are ready. You need to use

the following steps to run the server and the client.

Run the AsyncEchoServerSocket class as listed in Listing 8-16. You should get a

message on the standard output as follows:

Server is listening at localhost/127.0.0.1:8989

If you get this message, you need to proceed to the next step. If you do not get this

message, it is most likely that the port 8989 is being used by another process. In such a

case, you should get the following error message:

java.net.BindException: Address already in use: bind

If you get the "Address already in use" error message, you need to change the

port value in the AsyncEchoServerSocket class from 8989 to some other value and

retry running the AsyncEchoServerSocket class. If you change the port number in the

server program, you must also change the port number in the client program to match

the server port number. The server socket channel listens at a port, and the client must

connect to the same port on which the server is listening.

Before proceeding with this step, make sure that you were able to perform the

previous step successfully. Run one or more instances of the AsyncEchoClientSocket

class that is listed in Listing 8-17. You should get the following message on the standard

output if the client application was able to connect to the server successfully:

Connecting to the server...

Connected to the server...

Server Responded: Hello

Please enter a message (Bye to quit):

You might receive the following error message when you attempt to run the

AsyncEchoClientSocket class:

Connecting to the server...

java.util.concurrent.ExecutionException:

 java.io.IOException: The remote system refused

the network connection.

Chapter 8 Network programmiNg

679

Typically, this error message indicates one of the following problems:

• The server is not running. If this is the case, make sure that the server

is running.

• The client is attempting to connect to the server on a different host

and port than the host and the port on which the server is listening. If

this is the case, make sure that the server and the client are using the

same host names (or IP addresses) and the port numbers.

You need to stop the server program manually such as by pressing Ctrl+C keys on the

command prompt on Windows.

 Datagram-Oriented Socket Channels
An instance of the java.nio.channels.DatagramChannel class represents a datagram

channel. By default, it is blocking. You can configure it to be non-blocking by using the

configureBlocking(false) method.

To create a DatagramChannel, you need to invoke one of its open() static methods. If

you want to use it for IP multicasting, you need to specify the address type (or protocol

family) of the multicast group as an argument to its open() method. The open()

method creates a DatagramChannel, which is not connected. If you want your datagram

channel to send and receive datagrams only to a specific remote host, you need to use

its connect() method to connect the channel to that specific host. A datagram channel

that is not connected may send datagrams to and receive datagrams from any remote

host. The following sections outline the steps that are typically needed to send/receive

datagrams using a datagram channel.

 Creating the Datagram Channel
You can create a datagram channel using the open() method of the DatagramChannel

class. The following snippet of code shows three different ways to create a datagram

channel:

Chapter 8 Network programmiNg

680

// Create a new datagram channel to send/receive datagram

DatagramChannel channel = DatagramChannel.open();

// Create a datagram channel to receive datagrams from a

// multicast group

// that uses IPv4 address type

DatagramChannel ipv4MulticastChannel =

 DatagramChannel.open(StandardProtocolFamily.INET);

// Create a datagram channel to receive datagrams from a

// multicast group that uses IPv6 address type

DatagramChannel iPv6MulticastChannel =

 DatagramChannel.open(StandardProtocolFamily.INET6);

 Setting the Channel Options
You can set the channel options using the setOption() method of the DatagramChannel

class. Some options must be set before binding the channel to a specific address,

whereas some can be set after the binding. The following snippet of code shows

how to set the channel options. The socket options are defined as constants in the

StandardSocketOptions class. Refer to the Javadoc for the StandardSocketOptions

class for the complete list of socket options, which are supported by all types of sockets.

Table 8-10 contains the list of socket options with their descriptions supported by a

DatagramChannel.

Table 8-10. Standard Socket Options

Socket Option Name Description

SO_SNDBUF the size of the socket send buffer in bytes. its value is of Integer type.

SO_RCVBUF the size of the socket receive buffer in bytes. its value is of Integer type.

SO_REUSEADDR For datagram sockets, it allows multiple programs to bind to the same

address. its value is of Boolean type. this option should be enabled for ip

multicasting using the datagram channels.

SO_BROADCAST allows transmission of broadcast datagrams. its value is of type

Boolean.

(continued)

Chapter 8 Network programmiNg

681

There exist three methods, setOption(), getOption(), and supportedOptions(),

inside the Socket, ServerSocket, and DatagramSocket classes. These methods let you

set the socket option, query the value of a socket option, and get a set of supported

socket options by a socket. Refer to the Javadoc for these classes for more details on how

to use these methods.

To bind multiple sockets to the same socket address, you need to set the SO_

REUSEADDR option for the socket as follows:

channel.setOption(StandardSocketOptions.SO_REUSEADDR, true)

Bind the datagram channel to a specific local address and port using the bind()

method of the DatagramChannel class. If you use null as the bind address, this method

will bind the socket to an available address automatically. The following snippet of code

shows how to bind a datagram channel:

// Bind the channel to any available address automatically

channel.bind(null);

// Bind the channel to "localhost" and port 8989

InetSocketAddress sAddr =

 new InetSocketAddress("localhost", 8989);

channel.bind(sAddr);

Socket Option Name Description

IP_TOS the type of Service (toS) octet in the internet protocol (ip) header. its value

is of the Integer type.

IP_MULTICAST_IF the network interface for internet protocol (ip) multicast datagrams. its

value is a reference of the NetworkInterface type.

IP_MULTICAST_TTL the time to live for internet protocol (ip) multicast datagrams. its value is of

type Integer in the range of 0 to 255.

IP_MULTICAST_LOOP Loopback for internet protocol (ip) multicast datagrams. its value is of type

Boolean.

Table 8-10. (continued)

Chapter 8 Network programmiNg

682

 Sending Datagrams
To send a datagram to a remote host, use the send() method of the DatagramChannel

class. The method accepts a ByteBuffer and a remote SocketAddress. If you call

the send() method on an unbound datagram channel, the send() method binds the

channel automatically to an available address:

// Prepare a message to send

String msg = "Hello";

ByteBuffer buffer = ByteBuffer.wrap(msg.getBytes());

// Pack the remote address and port into an object

InetSocketAddress serverAddress =

 new InetSocketAddress("localhost", 8989);

// Send the message to the remote host

channel.send(buffer, serverAddress);

The receive() method of the DatagramChannel class lets a datagram channel

receive a datagram from a remote host. This method requires you to provide a

ByteBuffer to receive the data. The received data is copied to the specified ByteBuffer

at its current position. If the ByteBuffer has less space available than the received data,

the extra data is discarded silently. The receive() method returns the address of the

remote host. If the datagram channel is in a non-blocking mode, the receive() method

returns immediately by returning null. Otherwise, it waits until it receives a datagram.

// Prepare a ByteBufer to receive data

ByteBuffer buffer = ByteBuffer.allocate(1024);

// Wait to receive data from a remote host

SocketAddress remoteAddress = channel.receive(buffer);

Finally, close the datagram channel using its close() method:

// Close the channel

channel.close();

Listing 8-18 contains a program that acts as an echo server. Listing 8-19 has a

program that acts as a client. The echo server waits for a message from a remote client.

It echoes the message that it receives from the remote client. You need to start the echo

server program before starting the client program. You can run multiple client programs

simultaneously. A sample output is shown for both client and server programs.

Chapter 8 Network programmiNg

683

Listing 8-18. An Echo Server Based on the Datagram Channel

// DGCEchoServer.java

package com.jdojo.net;

import java.io.IOException;

import java.net.InetSocketAddress;

import java.net.SocketAddress;

import java.nio.ByteBuffer;

import java.nio.channels.DatagramChannel;

public class DGCEchoServer {

 public static void main(String[] args) {

 // Create a datagram channel and bind it to

 // localhost at port 8989

 try (DatagramChannel server =

 DatagramChannel.open()) {

 InetSocketAddress sAddr =

 new InetSocketAddress("localhost", 8989);

 server.bind(sAddr);

 ByteBuffer buffer = ByteBuffer.allocate(1024);

 // Wait in an infinite loop for a client to

 // send data

 while (true) {

 System.out.println(

 "Waiting for a message from"

 + " a remote host at " + sAddr);

 // Wait for a client to send a message

 SocketAddress remoteAddr =

 server.receive(buffer);

 // Prepare the buffer to read the message

 buffer.flip();

 // Convert the buffer data into a String

 int limits = buffer.limit();

 byte bytes[] = new byte[limits];

 buffer.get(bytes, 0, limits);

 String msg = new String(bytes);

Chapter 8 Network programmiNg

684

 System.out.println(

 "Client at " + remoteAddr +

 " says: " + msg);

 // Reuse the buffer to echo the message to

 // the client

 buffer.rewind();

 // Send the message back to the client

 server.send(buffer, remoteAddr);

 // Prepare the buffer to receive the next

 // message

 buffer.clear();

 }

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

Waiting for a message from a remote host

 at localhost/127.0.0.1:8989

Client at /127.0.0.1:62644 says: Hello

Waiting for a message from a remote host

 at localhost/127.0.0.1:8989

Listing 8-19. A Client Program Based on the Datagram Channel

// DGCEchoClient.java

package com.jdojo.net;

import java.io.IOException;

import java.net.InetSocketAddress;

import java.nio.ByteBuffer;

import java.nio.channels.DatagramChannel;

public class DGCEchoClient {

 public static void main(String[] args) {

 // Create a new datagram channel

Chapter 8 Network programmiNg

685

 try (DatagramChannel client =

 DatagramChannel.open()) {

 // Bind the client to any available local

 // address and port

 client.bind(null);

 // Prepare a message for the server

 String msg = "Hello";

 ByteBuffer buffer =

 ByteBuffer.wrap(msg.getBytes());

 InetSocketAddress serverAddress =

 new InetSocketAddress("localhost", 8989);

 // Send the message to the server

 client.send(buffer, serverAddress);

 // Reuse the buffer to receive a response from

 // the server

 buffer.clear();

 // Wait for the server to respond

 client.receive(buffer);

 // Prepare the buffer to read the message

 buffer.flip();

 // Convert the buffer into a string

 int limits = buffer.limit();

 byte bytes[] = new byte[limits];

 buffer.get(bytes, 0, limits);

 String response = new String(bytes);

 // Print the server message on the standard

 // output

 System.out.println("Server responded: " +

 response);

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

Server responded: Hello

Chapter 8 Network programmiNg

686

 Multicasting Using Datagram Channels
Java provides support for IP multicasting using a datagram channel. A datagram

channel that is interested in receiving multicast datagrams joins a multicast group.

The datagrams that are sent to a multicast group are delivered to all its members.

The following sections outline the steps that are typically needed to set up a client

application that is interested in receiving a multicast datagram.

 Creating the Datagram Channel
Create a datagram channel to use a specific multicast address type as follows. In your

application, you will be using IPv4 or IPv6, not both.

// Need to use INET protocol family for an IPv4 addressing

// scheme

DatagramChannel client =

 DatagramChannel.open(StandardProtocolFamily.INET);

// Need to use INET6 protocol family for an IPv6

// addressing scheme

DatagramChannel client =

 DatagramChannel.open(StandardProtocolFamily.INET6);

 Setting the Channel Options
Set the options for the client channel using the setOption() method as shown:

// Let other sockets reuse the same address

client.setOption(StandardSocketOptions.SO_REUSEADDR, true);

 Binding the Channel
Bind the client channel to a local address and a port as shown:

int MULTICAST_PORT = 8989;

client.bind(new InetSocketAddress(MULTICAST_PORT));

Chapter 8 Network programmiNg

687

 Setting the Multicast Network Interface
Set the socket option IP_MULTICAST_IF that specifies the network interface on which the

client channel will join the multicast group:

// Get the reference of a network interface named "eth1"

NetworkInterface interf =

 NetworkInterface.getByName("eth1");

// Set the IP_MULTICAST_IF option

client.setOption(StandardSocketOptions.IP_MULTICAST_IF,

 interf);

Listing 8-20 contains the complete program that prints the names of all network

interfaces available on your machine. It also prints whether a network interface supports

multicast and whether it is up. You may get a different output when you run the code on

your machine. You will need to use the name of one of the available network interfaces

that supports multicast, and that network interface should be up. For example, as shown

in the output, the network interface named eth2 is up and supports multicast on my

machine, so I used eth2 as the network interface for working with multicast messages.

Listing 8-20. Listing the Available Network Interface on a Machine

// ListNetworkInterfaces.java

package com.jdojo.net;

import java.net.NetworkInterface;

import java.net.SocketException;

import java.util.Enumeration;

public class ListNetworkInterfaces {

 public static void main(String[] args) {

 try {

 Enumeration<NetworkInterface> e =

 NetworkInterface.getNetworkInterfaces();

 while (e.hasMoreElements()) {

 NetworkInterface nif = e.nextElement();

Chapter 8 Network programmiNg

688

 System.out.println("Name: "

 + nif.getName()

 + ", Supports Multicast: "

 + nif.supportsMulticast()

 + ", isUp(): " + nif.isUp());

 }

 } catch (SocketException ex) {

 ex.printStackTrace();

 }

 }

}

Name: lo, Supports Multicast: true, isUp(): true

Name: eth0, Supports Multicast: true, isUp(): false

Name: net0, Supports Multicast: true, isUp(): false

Name: wlan0, Supports Multicast: true, isUp(): false

Name: net1, Supports Multicast: true, isUp(): false

Name: wlan1, Supports Multicast: true, isUp(): false

Name: wlan2, Supports Multicast: true, isUp(): false

Name: eth1, Supports Multicast: true, isUp(): false

Name: wlan3, Supports Multicast: true, isUp(): false

Name: wlan4, Supports Multicast: true, isUp(): false

Name: eth2, Supports Multicast: true, isUp(): true

Name: eth3, Supports Multicast: true, isUp(): false

Name: eth4, Supports Multicast: true, isUp(): false

Name: eth5, Supports Multicast: true, isUp(): false

Name: eth6, Supports Multicast: true, isUp(): false

Name: wlan5, Supports Multicast: true, isUp(): false

Name: wlan6, Supports Multicast: true, isUp(): false

Name: wlan7, Supports Multicast: true, isUp(): false

Name: wlan8, Supports Multicast: true, isUp(): false

Name: wlan9, Supports Multicast: true, isUp(): false

Name: wlan10, Supports Multicast: true, isUp(): false

Name: wlan11, Supports Multicast: true, isUp(): false

Name: wlan12, Supports Multicast: true, isUp(): false

Name: wlan13, Supports Multicast: true, isUp(): false

Chapter 8 Network programmiNg

689

Name: wlan14, Supports Multicast: true, isUp(): false

Name: wlan15, Supports Multicast: true, isUp(): false

Name: wlan16, Supports Multicast: true, isUp(): false

Name: wlan17, Supports Multicast: true, isUp(): false

 Joining the Multicast Group
Now it is time to join the multicast group using the join() method as follows. Note that

you must use a multicast IP address for the group:

String MULTICAST_IP = "239.1.1.1";

// Join the multicast group on interf interface

InetAddress group = InetAddress.getByName(MULTICAST_IP);

MembershipKey key = client.join(group, interf);

The join() method returns an object of the MembershipKey class that represents the

membership of the datagram channel with the multicast group. If a datagram channel is

not interested in receiving multicast datagrams anymore, it can use the drop() method

of the key to drop its membership from the multicast group.

Note a datagram channel may decide to receive multicast datagrams only from
selective sources. You can use the block(InetAddress source) method of the
MembershipKey class to block a multicast datagram from the specified source
address. its unblock(InetAddress source) lets you unblock a previously
blocked source address.

 Receiving a Message
At this point, receiving datagrams that are addressed to the multicast group is just a

matter of calling the receive() method on the channel as shown:

// Prepare a buffer to receive the message from the

// multicast group

ByteBuffer buffer = ByteBuffer.allocate(1048);

// Wait to receive a message from the multicast group

client.receive(buffer);

Chapter 8 Network programmiNg

690

After you are done with the channel, you can drop its membership from the group as

shown:

// We are no longer interested in receiving multicast

// message from the group. So, we need to drop the

// channel's membership from the group

key.drop();

 Closing the Channel
Finally, you need to close the channel using its close() method as shown:

// Close the channel

client.close();

To send a message to a multicast group, you do not need to be a member of that

multicast group. You can send a datagram to a multicast group using the send() method

of the DatagramChannel class.

Listing 8-21 contains a class with three constants that are used in the subsequent

two classes to build the multicast application. The constants contain the multicast IP

address, multicast port number, and multicast network interface name that will be used

in the subsequent example. Make sure that the value eth1 for the MULTICAST_INTERFACE_

NAME constant is the network interface name on your machine that supports multicast

and it is up. You can get the list of all network interfaces on your machine by running the

program in Listing 8-20.

Listing 8-21. A DatagramChannel-Based Multicast Client Program

// DGCMulticastUtil.java

package com.jdojo.net;

public class DGCMulticastUtil {

 public static final String MULTICAST_IP = "239.1.1.1";

 public static final int MULTICAST_PORT = 8989;

 /* You need to change the following network interface

 name "eth2" to the network interface name that

 supports multicast and is up on your machine.

Chapter 8 Network programmiNg

691

 Please run the ListNetworkInterfaces class to

 get the list of all available network interface on

 your machine.

 */

 public static final String MULTICAST_INTERFACE_NAME =

 "eth2";

}

Listing 8-22 contains a program that joins a multicast group as a member. It waits for

a message from a multicast group to arrive, prints the message, and quits. Listing 8-23

contains a program that sends a message to the multicast group. You can run multiple

instances of the DGCMulticastClient class and then run the DGCMulticastServer class.

All client instances should receive and print the same message on the standard output.

Listing 8-22. A DatagramChannel-Based Multicast Client Program

// DGCMulticastClient.java

package com.jdojo.net;

import java.io.IOException;

import java.net.InetAddress;

import java.net.InetSocketAddress;

import java.net.NetworkInterface;

import java.net.StandardProtocolFamily;

import java.net.StandardSocketOptions;

import java.nio.ByteBuffer;

import java.nio.channels.DatagramChannel;

import java.nio.channels.MembershipKey;

public class DGCMulticastClient {

 public static void main(String[] args) {

 MembershipKey key = null;

 // Create, configure and bind the client datagram

 // channel

 try (DatagramChannel client =

 DatagramChannel.open(

 StandardProtocolFamily.INET)) {

Chapter 8 Network programmiNg

692

 // Get the reference of a network interface

 NetworkInterface interf =

 NetworkInterface.getByName(

 DGCMulticastUtil.

 MULTICAST_INTERFACE_NAME);

 client.setOption(

 StandardSocketOptions.SO_REUSEADDR,

 true);

 client.bind(

 new InetSocketAddress(

 DGCMulticastUtil.MULTICAST_PORT));

 client.setOption(

 StandardSocketOptions.IP_MULTICAST_IF,

 interf);

 // Join the multicast group on the interf

 // interface

 InetAddress group =

 InetAddress.getByName(

 DGCMulticastUtil.MULTICAST_IP);

 key = client.join(group, interf);

 // Print some useful messages for the user

 System.out.println(

 "Joined the multicast group:" + key);

 System.out.println(

 "Waiting for a message from the"

 + " multicast group....");

 // Prepare a data buffer to receive a message

 // from the multicast group

 ByteBuffer buffer = ByteBuffer.allocate(1048);

 // Wait to receive a message from the

 // multicast group

 client.receive(buffer);

 // Convert the message in the ByteBuffer

 // into a string

Chapter 8 Network programmiNg

693

 buffer.flip();

 int limits = buffer.limit();

 byte bytes[] = new byte[limits];

 buffer.get(bytes, 0, limits);

 String msg = new String(bytes);

 System.out.format(

 "Multicast Message:%s%n", msg);

 } catch (IOException e) {

 e.printStackTrace();

 } finally {

 // Drop the membership from the multicast

 // group

 if (key != null) {

 key.drop();

 }

 }

 }

}

Joined the multicast group:<239.1.1.1,eth3>

Waiting for a message from the multicast group....

Multicast Message:Hello from multicast!

Listing 8-23. A DatagramChannel-Based Multicast Program That Sends a

Message to a Multicast Group

// DGCMulticastServer.java

package com.jdojo.net;

import java.io.IOException;

import java.net.InetSocketAddress;

import java.net.NetworkInterface;

import java.net.StandardSocketOptions;

import java.nio.ByteBuffer;

import java.nio.channels.DatagramChannel;

Chapter 8 Network programmiNg

694

public class DGCMulticastServer {

 public static void main(String[] args) {

 // Get a datagram channel object to act as a server

 try (DatagramChannel server =

 DatagramChannel.open()) {

 // Bind the server to any available local

 // address

 server.bind(null);

 // Set the network interface for outgoing

 // multicast data

 NetworkInterface interf =

 NetworkInterface.getByName(

 DGCMulticastUtil.

 MULTICAST_INTERFACE_NAME);

 server.setOption(

 StandardSocketOptions.IP_MULTICAST_IF,

 interf);

 // Prepare a message to send to the multicast

 // group

 String msg = "Hello from multicast!";

 ByteBuffer buffer =

 ByteBuffer.wrap(msg.getBytes());

 // Get the multicast group reference to send

 // data to

 InetSocketAddress group =

 new InetSocketAddress(

 DGCMulticastUtil.MULTICAST_IP,

 DGCMulticastUtil.MULTICAST_PORT);

 // Send the message to the multicast group

 server.send(buffer, group);

 System.out.println(

 "Sent the multicast message: " + msg);

Chapter 8 Network programmiNg

695

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

Sent the multicast message: Hello from multicast!

 Further Reading
Network programming in Java is a vast topic. There are a few books written especially

on this topic. This chapter covers only the basics of the network programming support

that is available in Java. Java also supports secured socket communications using a

Secured Socket Layer (SSL) protocol. The classes for secured socket communication

programming are in the javax.net.ssl package. This chapter does not cover SSL

sockets. I have not covered many of the options for sockets that you can use in your

Java programs. If you want to do advanced level network programming in Java, it is

recommended that you read a book that devotes itself solely to network programming in

Java after you finish this chapter.

 Summary
A network is a group of two or more computers or other types of electronic devices

such as printers, linked together with a goal to share information. Each device linked

to a network is called a node. A computer that is linked to a network is called a host.

Network programming in Java involves writing Java programs that facilitate exchange of

information between processes running on different computers on the network.

The communication between two remote hosts is performed by a layered protocol

suite called the Internet Reference Model or TCP/IP Layering Model. The protocol

suite consists of five layers named application, transport, internet, network interface,

and physical. A user application such as a Java program uses the application layer to

communicate to a remote application. The transport layer protocol handles the ways

messages are transported from one application on one computer to another application

on a remote computer. The internet layer accepts the messages from the transport layer

Chapter 8 Network programmiNg

696

and prepares a packet suitable for sending over the internet. It includes the Internet

Protocol (IP). The packet prepared by IP is also known as an IP datagram, and it consists

of a header and a data area, apart from other pieces of information. The network

interface layer prepares a packet to be transmitted on the network. The packet is called

a frame. The network interface layer sits on top of the physical layer, which involves the

hardware. The physical layer consists of the hardware. It is responsible for converting the

bits of information into signals and transmitting the signal over the wire.

An IP address uniquely identifies a connection between a computer and a router.

There are two versions of an Internet Protocol—IPv4 (or simply IP) and IPv6, where v4

and v6 stand for version 4 and version 6. IPv6 is also known as the Internet Protocol next

generation (IPng). An object of the InetAddress class represents an IP address in Java

programs. The InetAddress class has two subclasses, Inet4Address and Inet6Address,

which represent IPv4 and IPv6 addresses, respectively.

A port number is a 16-bit unsigned integer ranging from 0 to 65535 that is used to

uniquely identify a process for a specific protocol.

An object of the InetSocketAddress class represents a socket address that combines

an IP address and a port number.

An object of the ServerSocket class represents a TCP server socket for accepting

connections from remote hosts. An object of the Socket class represents a server/client

socket. The client and server applications exchange information using objects of the

Socket class. The Socket class provides the getInputStream() and getOutputStream()

methods to obtain the input and output streams of the socket, respectively. The input

stream of the socket is used to read the data from the socket, and the output stream of

the socket is used to write data to the socket.

An object of the DatagramPacket class represents a UDP datagram that is the unit of

data transmission over a UDP socket. An object of the DatagramSocket class represents a

UDP server/client socket.

A Uniform Resource Identifier (URI) is a sequence of characters that identifies a

resource. A URI that uses a location to identify a resource is called a Uniform Resource

Locator (URL). A URI that uses a name to identify a resource is called a Uniform

Resource Name (URN). A URL and a URN are subsets of a URI. An object of the java.

net.URI class represents a URI in Java. An object of the java.net.URL class represents a

URL in Java. Java provides classes to access the contents identified by a URL.

Java supports non-blocking socket channels using the ServerSocketChannel,

SocketChannel, Selector, and SelectionKey classes in the java.nio.channels

package.

Chapter 8 Network programmiNg

697

Java also supports asynchronous socket channels through the

AsynchronousServerSocketChannel and AsynchronousSocketChannel classes in the

java.nio.channels package.

Java supports datagram-oriented socket channel through the DatagramChannel class.

IP multicasting is also supported on datagram channels.

 Exercises
Exercise 1

What is network programming in Java?

Exercise 2

What are the network types: LAN, CAN, MAN, and WAN?

Exercise 3

What is a network protocol?

Exercise 4

What is an IP address? Can a computer have more than one IP address?

Exercise 5

How many bytes are used to represent an IP address in IPv4 and IPv6? Describe the

textual format of representing IP addresses in IPv4 and IPv6 formats.

Exercise 6

You have an IP address of 0.0.0.0, which is in IPv4 format. How will you rewrite this

IP address in IPv6 format?

Exercise 7

Describe the use of the following address types: loopback IP address, unicast IP

address, multicast IP address, anycast IP address, broadcast IP address, and unspecified

IP address.

Exercise 8

What is a port number and why is it used?

Exercise 9

What is a socket? What is the difference between a connection-oriented socket and

a connectionless socket? Give an example of a protocol that supports these types of

sockets.

Chapter 8 Network programmiNg

698

Exercise 10

What does an instance of the InetAddress class represent? Write a program that

prints the computer name and the IP address of the computer on which the program is

executed.

Exercise 11

What does an instance of the InetSocketAddress class represent?

Exercise 12

What do the instances of the ServerSocket and Socket classes represent?

Exercise 13

What do the instances of the DatagramSocket and DatagramPacket classes

represent?

Exercise 14

UDP sockets do not support an end-to-end connection like the TCP sockets. The

DatagramSocket class, which represents UDP sockets, contains a connect() method.

What is the purpose of this connect() method?

Exercise 15

What do the instances of the MulticastSocket class represent? Does a socket have to

be a member of a multicast group to send a datagram packet to a multicast address?

Exercise 16

What are URI, URL, and URN? How do you represent them in a Java program?

Chapter 8 Network programmiNg

699
© Kishori Sharan, Peter Späth 2021
K. Sharan and P. Späth, More Java 17, https://doi.org/10.1007/978-1-4842-7135-3_9

CHAPTER 9

Java Remote
Method Invocation
In this chapter, you will learn:

• What Java Remote Method Invocation (RMI) is and the RMI architecture

• How to develop and package RMI server and client applications

• How to start the rmiregistry, RMI server, and client applications

• How to troubleshoot and debug RMI applications

• Dynamic class downloading in an RMI application

• Garbage collections of remote objects in RMI applications

An RMI application contains classes and interfaces that fall into three parts:

• Server part

• Client part

• Common part, which is present in both the client and server

You will package three parts of the example application in this chapter into three

modules named jdojo.rmi.common, jdojo.rmi.server, and jdojo.rmi.client. The

declarations for these modules are shown in Listings 9-1 to 9-3.

Listing 9-1. The Declaration of a jdojo.rmi.common Module

// module-info.java

module jdojo.rmi.common {

 requires java.rmi;

 exports com.jdojo.rmi.common;

}

https://doi.org/10.1007/978-1-4842-7135-3_9#DOI

700

Listing 9-2. The Declaration of a jdojo.rmi.server Module

// module-info.java

module jdojo.rmi.server {

 requires java.rmi;

 requires jdojo.rmi.common;

 exports com.jdojo.rmi.server;

}

Listing 9-3. The Declaration of a jdojo.rmi.client Module

// module-info.java

module jdojo.rmi.client {

 requires java.rmi;

 requires jdojo.rmi.common;

 exports com.jdojo.rmi.client;

}

The RMI-related classes and interfaces are in the java.rmi module. Your module

that contains RMI programs needs to read the java.rmi module. The jdojo.rmi.common

module contains types that will be used by the server and client applications, and

this is the reason that the jdojo.rmi.server and jdojo.rmi.client modules read the

jdojo.rmi.common module.

 What Is Java Remote Method Invocation?
Java supports a variety of application architectures that determine how and where the

application code is deployed and executed. In the simplest application architecture, all

Java code resides on a single machine, and one JVM manages all Java objects and the

interaction among them. This is an example of a standalone application, where all that is

needed is a machine that can launch a JVM. Java also supports a distributed application

architecture in which the application’s code and execution can be distributed among

multiple machines.

In Chapter 8, you learned network programming in Java that involves at least two

JVMs running on different machines that execute the Java code for the client and

server sockets. Typically, sockets are used to transfer data between two applications.

In socket programming, it is possible for the client program to send a message to the

Chapter 9 Java remote method InvoCatIon

701

server program. The server program creates a Java object, invokes a method on that

object, and returns the result of the method invocation to the client program. Finally,

the client program reads the result using sockets. In such cases, the client is able to

invoke a method on a Java object that resides in a different JVM. This possibility opens

up doors for new application architectures, called distributed programming, in which

an application may utilize multiple machines, running multiple JVMs to process the

business logic. Although it is possible to invoke a method on an object that resides in a

different JVM (possibly on a different machine too) using socket programming, it is not

easy to code. To achieve this, Java provides a separate mechanism called Java Remote

Method Invocation (Java RMI).

Java RMI enables a Java application to invoke a method on a Java object in a remote

JVM. I use the term “remote object” to refer to a Java object that is created and managed

by a JVM, other than the JVM that manages the Java code that calls methods on that

“remote object.” Typically, a remote object also implies that it is managed by a JVM

that runs on a machine other than the machine from which it is accessed. However, it

is not a requirement for a Java object to be a remote object that it should exist in a JVM

on a different machine. For learning purposes, you will use one machine to deploy the

remote object in one JVM and launch another application in a different JVM to access

the remote object. RMI lets you treat the remote object as if it is a local object. Internally,

it uses sockets to handle access to the remote object and to invoke its methods.

An RMI application consists of two programs, a client and a server, that run in two

different JVMs. The server program creates Java objects and makes them accessible to

the remote client programs to invoke methods on those objects. The client program

needs to know the location of the remote objects on the server, so it can invoke methods

on them. The server program creates a remote object and registers (or binds) its

reference to an RMI registry. An RMI registry is a name service that is used to bind a

remote object reference to a name, so a client can get the reference of the remote object

using a name-based lookup in the registry. An RMI registry runs in a separate process

from the server program. It is supplied as a tool called rmiregistry. When you install

a JDK/JRE on your machine, it is copied in the bin sub-directory under the JDK/JRE

installation directory.

After the client program gets the remote reference of a remote object, it invokes

methods using that reference as if it were a reference to a local object. RMI technology

takes care of the details of invoking the methods on the remote reference in the server

program running on a different JVM on a different machine. In an RMI application, Java

Chapter 9 Java remote method InvoCatIon

702

code is written in terms of interfaces. The server program contains implementations

for the interfaces. The client program uses interfaces along with the remote object

references to invoke methods on the remote object that exists in the server’s

JVM. All Java library classes supporting Java RMI are in the java.rmi package and its

subpackages.

 The RMI Architecture
Figure 9-1 shows the RMI architecture in a simplified form. A rectangular box in the

figure represents a component in an RMI application. An arrow line shows a message

sent from one component to another in the direction of the arrow. The ovals showing

numbers from 1 to 11 represent the sequence of steps that take place in a typical RMI

application. I explain these steps in detail in this section.

Figure 9-1. The RMI architecture

Chapter 9 Java remote method InvoCatIon

703

Let’s assume that you have developed all Java classes and interfaces that are needed

for an RMI application. In this section, I walk you through all the steps that are involved

when you run an RMI application. You will develop the Java code that is needed for each

step in the next few sections.

The first step involved in an RMI application is to create a Java object in the server.

The object will be used as the remote object. There is an additional step that needs

to be performed to make an ordinary Java object a remote object. The step is known

as exporting the remote object. When an ordinary Java object is exported as a remote

object, it becomes ready to receive/handle calls from remote clients. The export process

produces a remote object reference (also called a stub). The remote reference knows

the details about the exported object such as its location and methods that can be called

remotely. This step is not labeled in the figure. It happens inside the server program.

When this step finishes, the remote object has been created in the server and is ready to

receive a remote method invocation.

The next step is performed by the server to register (or bind) the remote reference

with an RMI registry. The server chooses a unique name for each remote reference it

registers with an RMI registry. A remote client will need to use the same name to look

up the remote reference in the RMI registry. This is labeled as #1 in the figure. When this

step finishes, the RMI registry has registered the remote object reference, and a client

interested in invoking a method on the remote object may ask for its reference from the

RMI registry.

Note For security reasons, an rmI registry and the server must run on the same
machine so that a server can register the remote references with the rmI registry.
If this restriction is not imposed, a hacker may register their own harmful Java
objects to your rmI registry from their machine.

This step involves the interaction between a client and an RMI registry. Typically,

a client and an RMI registry run on two different machines. The client sends a lookup

request to the RMI registry for a remote reference. The client uses a name to look up

the remote reference in the RMI registry. The name is the same as the name used by

the server to bind the remote reference in the RMI registry in step #1. The lookup step

is labeled as #2 in the figure. The RMI registry returns the remote reference (or stub) to

the client labeled as step #3 in the figure. If a remote reference is not bound in the RMI

registry with the name used by the client in the lookup request, the RMI registry throws a

Chapter 9 Java remote method InvoCatIon

704

NotBoundException. If this step finishes successfully, the client has received the remote

reference (or stub) of the remote object.

In this step, the client invokes a method on the stub. It is shown as step #4 in the

figure. At this point, the stub connects to the server and transmits the information

required to invoke the method on the remote object, such as the name of the method,

the method’s arguments, etc. The stub knows about the server location and the details

about how to contact the remote object on the server. This step is labeled as step

#5 in the figure. Many different layers at the network level are involved in transmitting

information emanating from the stub to the server.

A skeleton is the server-side counterpart of a stub on the client side. Its job is to

receive the data sent by the stub. This is shown as step #6 in the figure. After a skeleton

receives the data, it reassembles the data into a more meaningful format and invokes the

method on the remote object, which is shown as step #7 in the figure. Once the remote

method call is over on the server, the skeleton receives the result of the method call (step

#8) and transmits the information back to the stub (step #9) through the network layers.

The stub receives the result of the remote method invocation (step #10), reassembles the

result, and passes the result to the client program (step #11).

Steps #4 through #11 may be repeated to call the same or different methods on the

same remote object. If a client wants to call a method on a different remote object, it will

have to first perform steps #2 and #3 before initiating a remote method call.

It is typical in an RMI application that a client contacts an RMI registry to get the

stub of a remote object in the beginning. If the client needs the stub of another remote

object running in the server, it may get it by calling a method on the stub that it already

has. Note that a remote object’s method can also return a stub to a remote client. This

way, a remote client may perform a lookup in the RMI registry only once at startup. The

Java code that you write for an RMI application is no different from that of a non-RMI

application, except for looking up for a remote object reference in the RMI registry.

 Developing an RMI Application
This section walks you through the steps to write the Java code to develop an RMI

application. You will develop a remote utility RMI application that will let you perform

three things: echo a message from the server, get the current date and time from

Chapter 9 Java remote method InvoCatIon

705

the server, and add two integers. The following steps are involved in writing an RMI

application:

• Writing a remote interface.

• Implementing the remote interface in a class. An object of this class

serves as the remote object.

• Writing a server program. It creates an object of the class that

implements the remote interface and registers it with the RMI registry.

• Writing a client program that accesses the remote object on the server.

 Writing the Remote Interface
A remote interface is like any other Java interface whose methods are meant to be called

from a remote client running in a different JVM. It has four special requirements:

• It must extend the marker Remote interface.

• All methods in a remote interface must throw a RemoteException

or an exception, which is its superclass such as IOException or

Exception. The RemoteException is a checked exception. A remote

method can also throw any number of other application-specific

exceptions.

• A remote method may accept the reference of a remote object as a

parameter. It may also return the reference of a remote object as its

return value. If a method in a remote interface accepts or returns

a remote object reference, the parameter or return type must be

declared of the type Remote rather than of the type of the class that

implements the Remote interface.

• A remote interface may only use three data types in its method’s

parameters or return value. It could be a primitive type, a remote

object, or a serializable non-remote object. A remote object is

passed by reference, whereas a non-remote serializable object is

passed by copy. An object is serializable if its class implements the

java.io.Serializable interface.

Chapter 9 Java remote method InvoCatIon

706

You will name your remote interface RemoteUtility. Listing 9-4 contains the code

for the RemoteUtility remote interface, which is a member of the jdojo.rmi.common

module. It contains three methods called echo(), getServerTime(), and add(), which

provide your three intended functionalities.

Listing 9-4. A RemoteUtility Interface

// RemoteUtility.java

package com.jdojo.rmi.common;

import java.rmi.Remote;

import java.rmi.RemoteException;

import java.time.ZonedDateTime;

public interface RemoteUtility extends Remote {

 // Echoes a string message back to the client

 String echo(String msg) throws RemoteException;

 // Returns the current date and time to the client

 ZonedDateTime getServerTime() throws RemoteException;

 // Adds two integers and returns the result to the

 // client

 int add(int n1, int n2) throws RemoteException;

}

 Implementing the Remote Interface
This step involves creating a class that implements the remote interface. You will name

the class RemoteUtilityImpl. It will implement the RemoteUtility remote interface

and will provide implementations for three methods: echo(), getServerTime(), and

add(). You can have any number of other methods in this class. The only thing you must

do is provide implementations for all methods defined in the RemoteUtility remote

interface. The remote client will be able to call only remote methods of this class. If you

define methods in this class other than those defined in the remote interface, those

methods are not available for remote method invocations. However, you can use the

additional methods to implement the remote methods. Listing 9-5 contains the code for

the RemoteUtilityImpl class, which is a member of the jdojo.rmi.server module.

Chapter 9 Java remote method InvoCatIon

707

Listing 9-5. An Implementation Class for the RemoteUtility Remote Interface

// RemoteUtilityImpl.java

package com.jdojo.rmi.server;

import com.jdojo.rmi.common.RemoteUtility;

import java.time.ZonedDateTime;

public class RemoteUtilityImpl implements RemoteUtility {

 public RemoteUtilityImpl() {

 }

 @Override

 public String echo(String msg) {

 return msg;

 }

 @Override

 public ZonedDateTime getServerTime() {

 return ZonedDateTime.now();

 }

 @Override

 public int add(int n1, int n2) {

 return n1 + n2;

 }

}

The remote object implementation class is very simple. It implements the

RemoteUtility interface and provides implementations for three methods of the

interface. Note that these methods in the RemoteUtilityImpl class do not declare that

they throw a RemoteException. The requirement to declare that all remote methods

throw a RemoteException is for the remote interface, not the class implementing the

remote interface.

There are two ways to write your implementation class for a remote interface. One

way is to inherit it from the java.rmi.server.UnicastRemoteObject class. Another

way is to inherit it from no class or any class other than the UnicastRemoteObject class.

Listing 9-5 took the latter approach. It did not inherit the RemoteUtilityImpl class from

any class.

Chapter 9 Java remote method InvoCatIon

708

What difference does it make if the implementation class for a remote interface

inherits from the UnicastRemoteObject class or some other class? The implementation

class of a remote interface is used to create remote objects whose methods are invoked

remotely. The object of this class must go through an export process, which makes it

suitable for a remote method invocation. The constructors for the UnicastRemoteObject

class export the object automatically for you. So, if your implementation class inherits

from the UnicastRemoteObject class, it will save you one step in the entire process

later. Sometimes, your implementation class must inherit from another class, and

that will force you not to inherit it from the UnicastRemoteObject class. One thing

you need to note is that the constructors for the UnicastRemoteObject class throw

a RemoteException. If you inherit the remote object implementation class from the

UnicastRemoteObject class, the implementation class’s constructor must throw a

RemoteException in its declaration.

Listing 9-6 rewrites the RemoteUtilityImpl class by inheriting it from the

UnicastRemoteObject class. There are two new things in this implementation—it uses

the extends clause in the class declaration, and it uses a throws clause in the constructor

declaration. Everything else remains the same. I discuss the difference in using the

implementation of the RemoteUtilityImpl class shown in Listings 9-5 and 9-6 when you

write the server program later in this chapter.

Listing 9-6. Rewriting the RemoteUtilityImpl Class by Inheriting It from the

UnicastRemoteObject Class

// RemoteUtilityImpl.java

package com.jdojo.rmi.server;

import com.jdojo.rmi.common.RemoteUtility;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

import java.time.ZonedDateTime;

public class RemoteUtilityImpl

 extends UnicastRemoteObject

 implements RemoteUtility {

 // Must throw the RemoteException

 public RemoteUtilityImpl() throws RemoteException {

 }

Chapter 9 Java remote method InvoCatIon

709

 @Override

 public String echo(String msg) {

 return msg;

 }

 @Override

 public ZonedDateTime getServerTime() {

 return ZonedDateTime.now();

 }

 @Override

 public int add(int n1, int n2) {

 return n1 + n2;

 }

}

 Writing the RMI Server Program
The responsibility of a server program is to create the remote object and make it

accessible to remote clients. A server program performs the following things:

• Installs the security manager

• Creates and exports the remote object

• Registers the remote object with the RMI registry application

The subsequent sections discuss these steps in detail.

You need to make sure that the server code is running under a security manager. An

RMI program cannot download Java classes from remote locations if it is not running

with a security manager. Without a security manager, it can only use local Java classes.

In both RMI servers and RMI clients, programs may need to download class files

from remote locations. You will look at examples of downloading Java classes from

remote locations shortly. When you run a Java program under a security manager,

you must also control access to the privileged resources through a Java policy file. The

following snippet of code shows how to install a security manager if it is not already

installed. You can use an object of the java.lang.SecurityManager class or java.rmi.

RMISecurityManager class to install a security manager.

Chapter 9 Java remote method InvoCatIon

710

SecurityManager secManager = System.getSecurityManager();

if (secManager == null) {

 System.setSecurityManager(new SecurityManager());

}

A security manager controls the access to privileged resources through a policy file.

You will need to set appropriate permissions to access the resources used in a Java RMI

application. For this example, you will give all permissions to all code. However, you

should use a properly controlled policy file in a production environment. The entry that

you need to make in the policy file to grant all permissions is as follows:

grant {

 permission java.security.AllPermission;

};

Typically, a Java policy file resides in the user’s home directory on a computer, and it

is named .java.policy. Note that the file name starts with a dot.

The next step the RMI server program performs is to create an object of the class that

implements the remote interface, which will serve as a remote object. In your case, you

will create an object of the RemoteUtilityImpl class:

RemoteUtilityImpl remoteUtility = new RemoteUtilityImpl();

You need to export the remote object, so remote clients can invoke its remote

methods. If your remote object class (RemoteUtility class in this case) inherits

from the UnicastRemoteObject class, you do not need to export it. It is exported

automatically when you create it. If your remote object’s class does not inherit from

the UnicastRemoteObject class, you need to export it explicitly using one of the

exportObject() static methods of the UnicastRemoteObject class. When you export a

remote object, you can specify a port number where it can listen for a remote method

invocation. By default, it listens at port 0, which is an anonymous port. The following

statement exports a remote object:

int port = 0;

RemoteUtility remoteUtilityStub = (RemoteUtility)

 UnicastRemoteObject.exportObject(remoteUtility, port);

Chapter 9 Java remote method InvoCatIon

711

The exportObject() method returns the reference of the exported remote object,

which is also called a stub or a remote reference. You need to keep the reference of the

stub, so you can register it with an RMI registry.

The final step that the server program performs is to register (or bind) the remote

object reference with an RMI registry using a name. An RMI registry is a separate

application that provides a name service. To register a remote reference with an RMI

registry, you must first locate it. An RMI registry runs on a machine at a specific port.

By default, it runs on port 1099. Once you locate the registry, you need to call its bind()

method to bind the remote reference. You can also use its rebind() method, which will

replace an old binding if it already exists for the specified name. The name used is a

String. You will use the name MyRemoteUtility as the name for your remote reference.

It is better to follow a naming convention for binding a reference object in the RMI

registry to avoid name collisions.

Registry registry =

 LocateRegistry.getRegistry("localhost", 1099);

String name = "MyRemoteUtility";

registry.rebind(name, remoteUtilityStub);

That is all needed to write a server program. Listing 9-7 contains the complete code

for the RMI server, which is a member of the jdojo.rmi.server module. It assumes that

the RemoteUtilityImpl class does not inherit from the UnicastRemoteObject class, as

listed in Listing 9-5.

Listing 9-7. An RMI Remote Server Program

// RemoteServer.java

package com.jdojo.rmi.server;

import com.jdojo.rmi.common.RemoteUtility;

import java.rmi.RemoteException;

import java.rmi.registry.LocateRegistry;

import java.rmi.registry.Registry;

import java.rmi.server.UnicastRemoteObject;

public class RemoteServer {

 public static void main(String[] args) {

 SecurityManager secManager =

 System.getSecurityManager();

Chapter 9 Java remote method InvoCatIon

712

 if (secManager == null) {

 System.setSecurityManager(

 new SecurityManager());

 }

 try {

 RemoteUtilityImpl remoteUtility =

 new RemoteUtilityImpl();

 // Export the object as a remote object

 int port = 0; // An anonymous port

 RemoteUtility remoteUtilityStub =

 (RemoteUtility) UnicastRemoteObject.

 exportObject(remoteUtility, port);

 // Locate the registry

 Registry registry =

 LocateRegistry.

 getRegistry("localhost", 1099);

 // Bind the exported remote reference in the

 // registry

 String name = "MyRemoteUtility";

 registry.rebind(name, remoteUtilityStub);

 System.out.println(

 "Remote server is ready...");

 } catch (RemoteException e) {

 e.printStackTrace();

 }

 }

}

If you use the implementation of the RemoteUtilityImpl class listed in Listing 9-6,

you will need to modify the code in Listing 9-7. The code in the try-catch block will

change to the code as follows. All other code will remain the same:

RemoteUtilityImpl remoteUtility = new RemoteUtilityImpl();

// No need to export the object

// Locate the registry

Registry registry = LocateRegistry.

Chapter 9 Java remote method InvoCatIon

713

 getRegistry("localhost", 1099);

// Bind the exported remote reference in the registry

String name = "MyRemoteUtility";

registry.rebind(name, remoteUtility);

System.out.println("Remote server is ready...");

You are not ready to start your server program yet. I discuss how to start an RMI

application in the sections that follow.

For security reasons, you can bind a remote reference to an RMI registry only from

the RMI server program that is running on the same machine as the RMI registry.

Otherwise, a hacker may be able to bind any arbitrary and potentially harmful remote

references to your RMI registry. By default, the getRegistry() static method of the

LocateRegistry class returns a stub for a registry that runs on the same machine at port

1099. You may just use the following code to locate a registry in the server program:

// Get a registry stub for a local machine at port 1099

Registry registry = LocateRegistry.getRegistry();

Note that the call to the LocateRegistry.getRegistry() method does not try to

connect to a registry application. It just returns a stub for the registry. It is the subsequent

call on this stub, bind(), rebind(), or any other method call that attempts to connect to

the registry application.

 Writing the RMI Client Program
The RMI client program calls the methods on remote objects, which exist on the remote

server. The first thing that a client program must do is to know the location of the remote

object. It is the RMI server program that creates and knows the location of the remote

object. It is the responsibility of the server program to publish the location details of

the remote object so a client can locate it and use it. The server program publishes the

remote object’s location details by binding it with an RMI registry and gives it a name,

which is MyRemoteUtility in your case. The client program contacts the RMI registry

and performs a name-based lookup to get the remote reference. After getting the remote

Chapter 9 Java remote method InvoCatIon

714

reference, the client program calls methods on the remote reference, which are executed

in the server. Typically, the RMI client program performs the following:

• It makes sure that it is running under a security manager:

SecurityManager secManager =

 System.getSecurityManager();

if (secManager == null) {

 System.setSecurityManager(

 new SecurityManager());

• It locates the registry where the remote reference has been bound

by the server. You must know the machine name or IP address, and

the port number at which the RMI registry is running. In a real-

world RMI program, you would not be using localhost in the client

program to locate the registry. Rather, an RMI registry will be running

on a separate machine. For this example, you will run all three

programs—RMI registry, server, and client—on the same machine:

// Locate the registry

Registry registry =

 LocateRegistry.getRegistry(

 "localhost", 1099);

• It performs the lookup in the registry using the lookup() method

of the Registry interface. It passes the name of the bound remote

reference to the lookup() method and gets back the remote reference

(or stub). Note that the lookup() method must use the same name

that was used to bind/rebind a remote reference by the server. The

lookup() method returns a Remote object. You must cast it to the

type of your remote interface. The following snippet of code casts

the returned remote reference from the lookup() method to the

RemoteUtility interface type:

String name = "MyRemoteUtility";

RemoteUtility remoteUtilStub =

 (RemoteUtility) registry.

 lookup(name);

Chapter 9 Java remote method InvoCatIon

715

• It calls methods on the remote reference (or stub). The client

program treats the remoteUtilStub reference as if it is a reference

to a local object. Any method call made on it is sent to the server for

execution. All remote methods throw a RemoteException. You must

handle the RemoteException when you call any remote method.

// Call the echo() method

String reply = remoteUtilStub.echo(

 "Hello from the RMI client.");

...

Listing 9-8 contains the complete code for your client program, which is a member

of the jdojo.rmi.client module. Do not run this program yet. You will go through

the step-by-step process in the next few sections to run your RMI application. You may

notice that writing RMI code is not complex. It is the plumbing of different components

in RMI that is complex.

Listing 9-8. An RMI Remote Client Program

// RemoteClient.java

package com.jdojo.rmi;

import com.jdojo.rmi.common.RemoteUtility;

import java.rmi.RemoteException;

import java.rmi.registry.LocateRegistry;

import java.rmi.registry.Registry;

import java.rmi.server.UnicastRemoteObject;

public class RemoteClient {

 public static void main(String[] args) {

 SecurityManager secManager =

 System.getSecurityManager();

 if (secManager == null) {

 System.setSecurityManager(

 new SecurityManager());

 }

Chapter 9 Java remote method InvoCatIon

716

 try {

 // Locate the registry

 Registry registry =

 LocateRegistry.getRegistry(

 "localhost", 1099);

 String name = "MyRemoteUtility";

 RemoteUtility remoteUtilStub =

 (RemoteUtility) registry.

 lookup(name);

 // Call the echo() method

 String reply = remoteUtilStub.echo(

 "Hello from the RMI client.");

 System.out.println("Reply: " +

 reply);

 } catch (RemoteException e) {

 e.printStackTrace();

 } catch (NotBoundException e) {

 e.printStackTrace();

 }

 }

}

 Separating the Server and Client Code
It is important that you separate the code for the server and client programs in an RMI

application. The server program needs to have the following three components:

• The remote interface

• The implementation class for the remote interface

• The server program

The client program needs to have the following two components:

• The remote interface

• The client program

Chapter 9 Java remote method InvoCatIon

717

You were prepared for this client-server code separation from the very

beginning of this chapter. To achieve this, you will deploy the jdojo.rmi.server

and jdojo.rmi.common modules to the server machine, and you will deploy

jdojo.rmi.client and jdojo.rmi.common modules to the client machine. I refer to

these modular JARs as jdojo.rmi.server.jar, jdojo.rmi.client.jar, and

jdojo.rmi.common.jar in subsequent sections when you run the RMI application.

 Running the RMI Application
You need to start all programs involved in an RMI application in the following specific

sequence:

• Run the RMI registry.

• Run the RMI server program.

• Run the RMI client program.

Refer to the “Troubleshooting an RMI Application” section later in this chapter if you

have any problem in running any of the programs.

Your server and client programs use security managers. You must have your Java

policy file properly configured before you can run the RMI application successfully. You

can grant all security permissions to an RMI application for learning purposes. You can

do so by creating a text file named rmi.policy (you can use any other file name you

want) and entering the following content, which grants all permissions to all code:

grant {

 permission java.security.AllPermission;

};

When you run the RMI client or server program, you need to set the rmi.policy

file as your Java security policy file using the java.security.policy JVM option. It is

assumed that you have saved the rmi.policy file in the C:\mypolicy folder on Windows:

java - Djava.security.policy=^

file:///C:/mypolicy/rmi.policy <other-options>

Chapter 9 Java remote method InvoCatIon

718

This approach of setting a Java policy file has a temporary effect. It should be used

only for learning purposes. You will need to set a fine-grained security in a production

environment.

 Running the RMI Registry
The RMI registry application is supplied with the JDK/JRE installation. It is copied in

the bin subfolder of the respective installation main folder. On the Windows platform,

it is the rmiregistry.exe executable file. You can run the RMI registry by starting the

rmiregistry application using a command prompt. It accepts a port number on which

it will run. By default, it runs on port 1099. The following command starts it at port 1099

using a command prompt on Windows:

C:\java9\bin> rmiregistry

The following command starts the RMI registry at port 8967:

C:\java9\bin> rmiregistry 8967

The rmiregistry application does not print any startup message on the prompt.

Usually, it is started as a background process.

Most likely, the command is not going to work on your machine. Using this

command, you will be able to start the rmiregistry successfully. However, you will get

ClassNotFoundException when you run the RMI server application in the next section.

The rmiregistry application needs access to some of the classes (the registered ones)

used in the RMI server application. There are three ways to make the classes available to

rmiregistry:

• Set the CLASSPATH appropriately.

• Set the java.rmi.server.codebase JVM property to the URL that

contains the classes needed by the rmiregistry.

• Set the JVM property named java.rmi.server.useCodebaseOnly to

false. This property is set to true by default. If this property is set to

false, the rmiregistry can download the needed class files from the

server.

Chapter 9 Java remote method InvoCatIon

719

The following command adds the JARs containing the server classes and common

interfaces to the CLASSPATH, before starting the rmiregistry:

C:\java9\bin> SET CLASSPATH=^

C:\Java9APIsAndModules\dist\jdojo.rmi.common.jar;^

C:\Java9APIsAndModules\dist\jdojo.rmi.server.jar

C:\java9\bin> rmiregistry

Instead of setting the CLASSPATH to make classes available to the rmiregistry, you

can also set the java.rmi.server.codebase JVM property that is a space-separated list

of URLs, as shown:

C:\java9\bin> rmiregistry ^

-J-Djava.rmi.server.codebase=^

file:///C:/Java9APIsAndModules/dist/jdojo.rmi.common.jar ^

file:///C:/Java9APIsAndModules/dist/jdojo.rmi.server.jar

The following command resets the CLASSPATH and sets the java.rmi.server.

useCodebaseOnly property for the JVM to false so the rmiregistry will download any

class files needed from the RMI server. Your example will work using this command:

C:\java9\bin> SET CLASSPATH=

C:\java9\bin> rmiregistry ^

-J-Djava.rmi.server.useCodebaseOnly=false

 Running the RMI Server
The RMI registry must be running before you can run the RMI server. Recall that the

server runs under a security manager that requires you to grant permissions to perform

certain actions in a Java policy file. Make sure that you have entered the required grants

in a policy file. You can use the following command to run the server program. The

command text is entered in one line; it has been shown in multiple lines for clarity.

Each part in the command text should be separated by a space, not a new line. In the

command, you will need to change the path to the JAR and policy files that will reflect

their paths on your machine:

C:\Java9APIsAndModules>java --module-path ^

dist\jdojo.rmi.common.jar;dist\jdojo.rmi.server.jar ^

Chapter 9 Java remote method InvoCatIon

720

-Djava.security.policy=file:///C:/mypolicy/rmi.policy ^

-Djava.rmi.server.codebase=^

file:///C:/Java9APIsAndModules/dist/jdojo.rmi.common.jar ^

--module ^

jdojo.rmi.server/com.jdojo.rmi.server.RemoteServer

Remote server is ready...

You need to set a java.rmi.server.codebase property. This is used by an RMI

registry and a client program if they need to download class files that they do not have.

The value of this property is a URL, which can point to a local file system, a web server,

an FTP server, or any other resource. The URL may point to a JAR file, as it does in this

case, or it can point to a directory. If it points to a directory, the URL must end with a

forward slash. The following command uses a folder as its codebase. If an RMI registry

and a client need any class files, they will attempt to download the class files from the

URL file:///C:/myrmi/classes/.

java -Djava.rmi.server.codebase=^

file:///C:/myrmi/classes/ <other-options>

You can also set a java.rmi.server.codebase property to point to a web server,

where you can store your necessary class files as shown:

java -Djava.rmi.server.codebase=^

http://www.jdojo.com/rmi/classes/ <other-options>

If you store class files at multiple locations, you can specify all locations separated by

a space as follows:

java -Djava.rmi.server.codebase=^

 "http://www.jdojo.com/rmi/classes/

 ftp://www.jdojo.com/rmi/some/classes/c.jar" ^

<other-options>

It specifies one location as a directory and another as a JAR file. One uses the http

protocol and another ftp. The two values are separated by a space, and they are on one

line, not on two lines as shown. A ClassNotFoundException may occur when you run

the server or client program, which is most likely caused by an incorrect setting for the

java.rmi.server.codebase property or by not setting this property at all.

Chapter 9 Java remote method InvoCatIon

721

 Running an RMI Client Program
After the RMI registry and server applications are started successfully, it is time to

start the RMI client application. You can use the following command to run the client

program:

C:\Java9APIsAndModules>java ^

--module-path ^

dist\jdojo.rmi.common.jar;dist\jdojo.rmi.client.jar ^

-Djava.rmi.server.codebase=^

file:///C:/Java9APIsAndModules/dist/jdojo.rmi.common.jar ^

-Djava.security.policy=file:///C:/mypolicy/rmi.policy ^

--module ^

jdojo.rmi.client/com.jdojo.rmi.client.RemoteClient

Reply: Hello from the RMI client.

For this example, you do not have to include a java.rmi.server.codebase option

when you run the previous command. However, you will need to include this option if

your client program uses parameters in remote methods, and the class files for those

parameter types are not available on the server. In that case, the server will download

those class files from the specified java.rmi.server.codebase option.

You should be able to see an output on the console when the client program runs

successfully. You may get a different output when you run the program because it prints

the current date and time with the zone information for the server machine running the

server application.

 Troubleshooting an RMI Application
It is very likely that you will get many errors before you will be able to run the RMI

application the first time. This section lists a few errors that you may receive. It will also

list some possible causes for those errors and some possible solutions. It is not possible

to list all possible errors that you might get when you attempt to run an RMI application.

You should be able to figure out most of the errors by looking at the stack prints of the

errors.

Chapter 9 Java remote method InvoCatIon

722

 java.rmi.server.ExportException
You get an ExportException when you try to run the rmiregistry application or the

server application. The exception stack trace will be similar to the one shown if you get

this exception when you attempt to run the rmiregistry application:

java.rmi.server.ExportException:

 Port already in use: 1099; nested exception is:

 java.net.BindException: Address already in use:

 JVM_Bind...

It states that the port number 1099 (may be a different number in your case) is

already in use. Maybe you have already started the rmiregistry application at port

1099 (which is the default port number for an rmiregistry application), or some other

application is using the port 1099. You can do one of the following two things to fix this

problem:

• You can stop the application that is using the port 1099.

• You can start the rmiregistry application at a port other than 1099.

If you get an ExportException when you run the server program, it is caused by the

failure of the export process of the remote object. There are many reasons for the export

process to fail. The following exception stack trace (partial trace is shown) is caused by

exporting the same remote object twice:

java.rmi.server.ExportException:

 object already exported

 at sun.rmi.transport.ObjectTable.putTarget(

 ObjectTable.java:189)

 at sun.rmi.transport.Transport.exportObject(

 Transport.java:92)...

Check your server program and make sure that you are exporting your remote

object only once. It is a common mistake to inherit the remote object implementation

class from the UnicastRemoteObject class and use the exportObject() method of the

UnicastRemoteObject class to export the remote object. When you inherit the remote

object’s implementation class from the UnicastRemoteObject class, the remote object,

Chapter 9 Java remote method InvoCatIon

723

which you create, is exported automatically. If you try to export it again using the

exportObject() method, you will get this exception. I have stressed this point a few times

when discussing the remote interface implementation class. When you are developing

an RMI application, remember the saying, “To err is programmer, to punish, Java.” Even a

little mistake in the setup of an RMI program may take hours to detect and fix.

 java.security.AccessControlException
You get this exception when your Java policy file does not have grant entries that are

necessary to run the RMI application. The following is the partial stack trace of an

exception, which is caused when you attempt to run the server program, and it attempts

to bind a remote object to the RMI registry:

java.security.AccessControlException:

 access denied (java.net.SocketPermission

127.0.0.1:1099 connect,resolve)...

Communications among registry, server, and client are performed using sockets.

You must grant appropriate socket permission in the Java policy file for security, so that

the three components of your RMI application may be able to communicate. Most of the

security-related exceptions can be fixed by granting appropriate permissions in the Java

policy file.

 java.lang.ClassNotFoundException
You get a ClassNotFoundException exception when a class file that is needed by Java

runtime is not found. You must have received this exception many times by now. Most

of the time, you receive this exception when the CLASSPATH is not appropriately set. In an

RMI application, this exception may be the cause for another exception. The following

stack trace shows that the java.rmi.ServerException exception was thrown, which has

its cause in a ClassNotFoundException exception:

java.rmi.ServerException:

 RemoteException occurred in server thread;

 nested exception is:

 java.rmi.UnmarshalException:

 error unmarshalling arguments;

Chapter 9 Java remote method InvoCatIon

724

 nested exception is:

 java.lang.ClassNotFoundException:

 com.jdojo.rmi.RemoteUtility

...

Caused by: java.lang.ClassNotFoundException:

 com.jdojo.rmi.RemoteUtility

 at java.net.URLClassLoader$1.run(

 URLClassLoader.java:220)

 at java.net.URLClassLoader$1.run(

 URLClassLoader.java:209)

This type of exception is thrown when the java.rmi.server.codebase option is not

set properly or not set at all when you run the server or the client application.

This exception was thrown when the server program was started without using

the java.rmi.server.codebase option and the rmiregistry application was run

without setting the CLASSPATH. When you try to bind/rebind a remote reference with

an rmiregistry application, the server application sends the remote reference to the

rmiregistry application. The rmiregistry application must load the class before it can

represent the remote reference as a Java object in its JVM. At this time, the rmiregistry

will try to download the required class files from the location that was specified at the

server startup using the java.rmi.server.codebase property.

If you get this exception when you run the client program, make sure you have set

the java.rmi.server.codebase property when you run the client program.

Please check the CLASSPATH and java.rmi.server.codebase property when you run

the server and the client program to avoid this exception.

You get a ClassNotFoundException when you run the client program because the

server was not able to find some class definitions that were required in unmarshalling

the client call on the server side. The sample partial stack trace of the exception is shown:

java.rmi.ServerException:

 RemoteException occurred in server thread;

 nested exception is:

 java.rmi.UnmarshalException:

 error unmarshalling arguments;

 nested exception is: java.lang.

 ClassNotFoundException:

Chapter 9 Java remote method InvoCatIon

725

 com.jdojo.rmi.client.Square

 at sun.rmi.server.UnicastServerRef.dispatch(

 UnicastServerRef.java:336)

 at sun.rmi.transport.Transport$1.run(

 Transport.java:159)...

A remote method defined in a remote interface may accept a parameter, which may

be of an interface or a class type. The client may pass an object of a class that implements

the interface or an object of a subclass of type defined in the remote interface’s method

signature. If the class definition does not exist on the server, the server will attempt to

download the class using the java.rmi.server.codebase property that was set in the

client application. You need to make sure the class for which you are getting this error

(the exception stack trace shows com.jdojo.rmi.client.Square as the class name) is in

the CLASSPATH of the server JVM or set the java.rmi.server.codebase property when

you run the remote client, so that this class can be downloaded by the sever.

 Debugging an RMI Application
You can turn on RMI logging for an RMI server application by setting the JVM property

named java.rmi.server.logCalls to true. By default, it is set to false. The following

command launches your RemoteServer application setting the java.rmi.server.

logCalls property to true:

C:\Java9APIsAndModules>java ^

--module-path ^

dist\jdojo.rmi.common.jar;dist\jdojo.rmi.server.jar ^

-Djava.rmi.server.logCalls=true ^

-Djava.security.policy=file:///C:/mypolicy/rmi.policy ^

-Djava.rmi.server.codebase=^

file:///C:/Java9APIsAndModules/dist/jdojo.rmi.common.jar ^

--module ^

jdojo.rmi.server/com.jdojo.rmi.server.RemoteServer

When the java.rmi.server.logCalls property for the server JVM is set to true, all

incoming calls to the server and stack trace of any exceptions that are thrown during

execution of an incoming call are logged to the standard error.

Chapter 9 Java remote method InvoCatIon

726

The RMI runtime also lets you log the incoming calls in a server application to a file,

irrespective of the value set for the java.rmi.server.logCalls property for the server

JVM. You can log all incoming call details to a file using the setLog(OutputStream out)

static method of the java.rmi.server.RemoteServer class. Typically, you set the file

output stream for logging in the beginning of the server program code such as the very

first statement in the main() method of your com.jdojo.rmi.server.RemoteServer

class. The following snippet of code enables call logging in a remote server application

to a C:\rmilogs\rmi.log file. You can disable call logging by using null as the

OutputStream in the setLog() method:

try {

 java.io.OutputStream os =

 new java.io.FileOutputStream(

 "C:\\rmilogs\\rmi.log");

 java.rmi.server.RemoteServer.setLog(os);

} catch (FileNotFoundException e) {

 System.err.println(

 "Could not enable incoming calls logging.");

 e.printStackTrace();

}

When a security manager is installed on the server, the running code, which enables

logging to a file, must have a java.util.logging.LoggingPermission with permission

target as "control". The following grant entry in the Java policy file will grant this

permission. You will also have to grant the "write" permission to the log file

(C:\rmilogs\rmi.log in this example) in the Java policy file:

grant {

 permission java.io.FilePermission

 "c:\\rmilogs\\rmi.log", "write";

 permission java.util.logging.LoggingPermission

 "control";

};

If you want to get debugging information about an RMI client application, set a

non- standard sun.rmi.client.logCalls property to true when you launch the RMI

client application. It will display the debugging information on the standard error.

Chapter 9 Java remote method InvoCatIon

727

Since this property is not part of a public specification, it may be removed in future

releases. You need to refer to the RMI specification for more details on debugging

options. You can find the RMI specification at https://docs.oracle.com/javase/8/

docs/technotes/guides/rmi/faq.html.

If you still have problems compiling and running your RMI application, you can refer

to the web page at https://docs.oracle.com/javase/8/docs/technotes/guides/rmi/

faq.html. This web page provides answers to several frequently asked questions while

working with RMI applications.

 Dynamic Class Downloading
The JVM loads the class definition before it can create an object of a class. It uses a

class loader to load a class at runtime. A class loader is an instance of the java.lang.

ClassLoader class. A class loader must locate the bytecodes for a class before it can load

its definition into the JVM. A Java class loader is capable of loading the bytecodes of a

class from any location such as a local file system and a network. There could be multiple

class loaders in one JVM, and they could be system or custom defined.

The JVM creates a class loader at startup, which is called a bootstrap class loader. The

bootstrap class loader is responsible for loading initial classes required for basic JVM

functions. Class loaders are organized in a tree-like structure based on a parent-child

relationship. The bootstrap class loader has no parent. All other class loaders have the

bootstrap class loader as their direct or indirect parent. In a typical class loading process,

when a class loader is asked to load the bytecode for a class, it asks its parent to load the

class, which in turn asks its parent and so on, until the bootstrap class loader gets

the request to load the class. If none of the parent class loaders is able to load the class, the

class loader that received the initial request to load the class will attempt to load the class.

The RMI runtime uses a special RMI class loader that is responsible for loading

the classes in an RMI application. When an object is being passed around in an RMI

application from one JVM to another, the sending JVM has to serialize and marshal the

object, and the receiving JVM has to deserialize and unmarshal it. The sending JVM adds

the value of the property java.rmi.server.codebase to the object’s serialized stream.

When the object stream is received at the other end, the receiving JVM must load the

class definition of the object using a class loader before it can convert the object stream

into a Java object. The JVM instructs the RMI class loader to load the class definition of

Chapter 9 Java remote method InvoCatIon

https://docs.oracle.com/javase/8/docs/technotes/guides/rmi/faq.html
https://docs.oracle.com/javase/8/docs/technotes/guides/rmi/faq.html
https://docs.oracle.com/javase/8/docs/technotes/guides/rmi/faq.html
https://docs.oracle.com/javase/8/docs/technotes/guides/rmi/faq.html

728

the object, which it has received in a stream form. The class loader attempts to load the

class definition from its JVM CLASSPATH. If the class definition is not found using the

CLASSPATH, the class loader uses the value of the java.rmi.server.codebase property

from the object’s stream to load the class definition.

Note that the java.rmi.server.codebase property is set in one JVM, and it is used

to download the class definition in another JVM. This property can be set when you run

the RMI server or client program. When one side (server or client) transmits an object to

another side, which does not have the bytecode to represent the class definition for the

object being received, the sending side must have set the java.rmi.server.codebase

property at the time of sending the object, so that the receiving end can download

the class bytecode using this property. The value for the java.rmi.server.codebase

property is a space-separated list of URLs.

Downloading code from an RMI server to the client may be fine from a security point

of view. Sometimes, it may not be considered safe to download code from a client to the

server. By default, downloading the classes from remote JVMs is disabled. RMI lets you

enable/disable this feature by using a java.rmi.server.useCodebaseOnly property. By

default, it is set to true. If it is set to true, the JVM’s class loader will load classes only

from local CLASSPATH or locally set java.rmi.server.codebase property. That is, if it is

set to true, the class loader will not read the value of java.rmi.server.codebase from

the received object’s stream to download the class definition. Rather, it will look for the

class definition in its JVM CLASSPATH and use URLs that are set as the value of the

java.rmi.server.codebase property for its own JVM. That is, when the java.rmi.

server.useCodebaseOnly property is set to true, the RMI class loader ignores the value

for the codebase that is sent from the sending JVM in an object’s stream. The property

name useCodebaseOnly seems to be a misnomer. It could have conveyed its meaning

better had it been named useLocallySetCodebaseOnly. Here is how you can set this

property when you run the RMI server:

java –Djava.rmi.server.codebase=^

"http://www.myurl.com/rmiclasses" ^

 -Djava.rmi.server.useCodebaseOnly=true ^

 <other-options> ^

 com.jdojo.rmi.RemoteServer

Chapter 9 Java remote method InvoCatIon

729

Note the default value for the java.rmi.server.codebase property is set to
true. It means, by default, the application is not allowed to download classes from
other Jvms.

There are two implications of setting the java.rmi.server.useCodebaseOnly

property to true:

• If the server needs a class as part of a remote call from a client, it will

always look in its CLASSPATH, or it will use the value of java.rmi.

server.codebase that you set for the server program. In the previous

example, all classes in the server must be found in its CLASSPATH or at

the URL http://www.myurl.com/rmiclasses.

• If a client needs to use a new class type in a remote method call, the

new class type must be known to the server in advance because the

server will never use the client’s instruction (set by using the java.

rmi.server.codebase property at the client side) about the location

from where to download the required new classes. This means that

you must make the new classes that will be used by a remote client

available in the server’s CLASSPATH or at the URLs specified as the

java.rmi.server.codebase property for the server. This situation

may arise when a remote method accepts an interface type and the

client sends an object of a class that implements that interface. In

this case, the server may not have the same definition of the new

implementation of the interface as the client.

The previous argument applies to running an RMI client application as well if you

set the java.rmi.server.useCodebaseOnly property to true for the JVM running the

RMI client application. If this property is set to true for the client application, you must

make all required classes available to the client either by placing them in its CLASSPATH

or placing them at URLs and setting the URLs as the value for the java.rmi.server.

codebase property at the client side.

Chapter 9 Java remote method InvoCatIon

http://www.myurl.com/rmiclasses

730

 Garbage Collection of Remote Objects
In an RMI application, remote objects are created in the JVM on the server. The RMI

registry and remote clients keep references of the remote objects. Does a remote object

ever get garbage collected? And, if it does get garbage collected, when does it happen

and how does it happen? Garbage collection of a local object is easy. A local object is

created and referenced in the same JVM. It is an easy task for a garbage collector to

determine that a local object is no longer referenced in the JVM.

In an RMI application, you need a garbage collector that can keep track of the

references of a remote object in remote JVMs. Suppose an RMI server creates a remote

object of the RemoteUtilityImpl class, and five clients get its remote reference. An RMI

registry is also a client that gets the remote reference as part of the bind/rebind process.

When and how does the server garbage collect the lone object of the RemoteUtilityImpl

class, which is being referenced by five clients?

The JVM on the server, which has the remote object, and the five JVMs at five

different clients must interact, so the remote object in the server’s JVM can be garbage

collected when it is no longer used by any remote clients. Let’s ignore the local

references of the remote object in the server JVM for this discussion. The interaction

between a remote client and an RMI server depends on many unreliable factors.

For example, the network may go down, and a remote client may not be able to

communicate with the server. The second consideration is who initiates the interaction

between the remote client and the server? Is it the server that keeps asking a remote

client if it has a live remote reference? Is it the remote client who keeps telling the server

that it still has a live remote reference? The responsibility of the interaction between the

client and the server is shared by both. The remote client needs to update the server

about the aliveness of its remote references. If the server does not hear from any clients

for a specific period of time, it takes a unilateral decision to make the remote object a

candidate for a future garbage collection.

The RMI garbage collector is based on reference count. A reference count has an

associated lease. A lease has a time period for which it is valid. When a remote client

(including an RMI registry) gets a reference to a remote object, it sends a message to

the RMI runtime on the server requesting a lease for that remote object reference. The

server grants a lease for a specified time period to that client. The server increments

the reference count for that remote object by one and sends back the lease to the client.

Chapter 9 Java remote method InvoCatIon

731

By default, an RMI server grants a lease for ten minutes for a remote object. Now, the

following are some possibilities:

• The client may be done with the remote object reference within the

time period for which it had acquired the lease from the server.

• The client may want to renew the lease for another extended time

period.

• The client crashes. The server does not receive any message from the

client, and the lease period for a remote reference that was acquired

by the client expires.

Let’s look at each possibility. A client sends messages to the server on three different

occasions. It sends a message the very first time it receives a remote reference. It tells the

server that it has a reference of the remote object. The second time, it sends a message

to the server when it wants to renew the lease for a remote reference. The third time, it

sends a message to the server when it is done with the remote reference. In fact, when

a remote reference is garbage collected in a client application, it sends a message to

the server that it is done with the remote object. Internally, there are only two types

of messages that a remote client sends to a server: dirty and clean. The dirty message

is sent to get a lease, and the clean message is sent to remove/cancel the lease. These

two messages are sent from a remote client to a server using the dirty() and clean()

methods of the java.rmi.dgc.DGC interface. As a developer, you do not have any control

over these messages (sending or receiving) except that you can customize the lease time

period. The lease time period controls the frequency of these messages sent to the server.

When a client is done with a remote object reference, it sends a message to the server

that it is done with it. The message is sent when the remote reference in the client’s JVM

is garbage collected. Therefore, it is important that you set the remote reference in the

client program code to null as soon as you are done with it. Otherwise, the server will

keep holding on to the remote object, even if it is no longer used by the remote client.

You do not have any control on the timing of this message, which is sent from the remote

client to the server. All you can do to expedite this message sending is to set the remote

object reference in the client code to null, so the garbage collector will attempt to

garbage collect it and send a clean message to the server.

The RMI runtime keeps track of the leases for remote references in a remote client

JVM. When a lease is halfway through its expiration period, the remote client sends

a lease renewal request to the server and gets the lease renewed. When a lease for a

Chapter 9 Java remote method InvoCatIon

732

remote client is renewed for a remote reference, the server keeps track of the lease

expiration time, and it will not garbage collect the remote object. It is important that you

understand the importance of setting the lease period for a remote reference. If it is too

small, a significant amount of network bandwidth will be used for renewing the lease

frequently. If it is too large, the server will keep the remote object alive for a longer time

in case a client is done with its remote reference, and it does not inform the server to

cancel the lease. I discuss shortly how to set a lease period value in an RMI application.

If the server does not hear anything from a remote client about the lease of a remote

reference that the client had acquired, after the expiration of the lease period, it simply

cancels the lease and decrements the reference count for that remote object by one.

This unilateral decision that is made by the server is important to handle the cases of

ill-behaved remote clients (not telling the server that it is done with a remote reference)

or any network/system hiccups that may prevent the remote client from communicating

with the server.

When all clients are done with a remote reference of a remote object, its reference

count in the server will go down to zero. A remote client is considered done with a

remote reference when either its lease is expired or it has sent a clean message to the

server. In this case, the RMI runtime will reference the remote object using a weak

reference, so if there is no local reference to the remote object, it may be garbage

collected.

By default, the lease period is set for ten minutes. You can set the lease period using

the java.rmi.dgc.leaseValue property when you start the RMI server. The value for

the lease period is specified in milliseconds. The following command starts the server

program with a lease period set to 5 minutes (300000 milliseconds):

C:\Java9APIsAndModules>java --module-path ^

dist\jdojo.rmi.common.jar;dist\jdojo.rmi.server.jar ^

-Djava.security.policy=file:///C:/mypolicy/rmi.policy ^

-Djava.rmi.dgc.leaseValue=300000 ^

-Djava.rmi.server.codebase=^

file:///C:/Java9APIsAndModules/dist/jdojo.rmi.common.jar ^

--module ^

jdojo.rmi.server/com.jdojo.rmi.server.RemoteServer

Remote server is ready...

Chapter 9 Java remote method InvoCatIon

733

Except for setting the lease time period, everything is handled by the RMI runtime.

The RMI runtime gives you one more piece of information about the garbage collection

of a remote object. It can tell you when the reference count of the remote object has

gone down to zero. It is important to get this notification if a remote object holds some

resources that you would like to free when no remote client is referencing it. To get this

notification, you need to implement the java.rmi.server.Unreferenced interface in

your remote object implementation class. Its declaration is as follows:

public interface Unreferenced {

 void unreferenced()

}

The unreferenced() method is called when the remote reference count for

a remote object becomes zero. If you want to get a notification in your example

for the RemoteUtility remote object, you need to modify the declaration of the

RemoteUtilityImpl class, as shown in Listing 9-9.

Listing 9-9. A Modified Version of the RemoteUtilityImpl Class That Implements

the Unreferenced Interface

// RemoteUtilityImpl.java

package com.jdojo.rmi.server;

import com.jdojo.rmi.common.RemoteUtility;

import java.rmi.server.Unreferenced;

import java.time.ZonedDateTime;

public class RemoteUtilityImpl implements

 RemoteUtility, Unreferenced {

 public RemoteUtilityImpl() {

 }

 @Override

 public String echo(String msg) {

 return msg;

 }

 @Override

 public ZonedDateTime getServerTime() {

 return ZonedDateTime.now();

 }

Chapter 9 Java remote method InvoCatIon

734

 @Override

 public int add(int n1, int n2) {

 return n1 + n2;

 }

 @Override

 public void unreferenced() {

 System.out.println(

 "RemoteUtility unreferenced at: " +

 ZonedDateTime.now());

 }

}

You may notice that, this time, the RemoteUtilityImpl class implements the

Unreferenced interface and provides implementation for the unreferenced() method,

which prints a message to the standard output with the time when its reference count

becomes zero. The unreferenced() method will be called by the RMI runtime. To test

that the unreferenced() method is called, you can start the RMI registry application

and then start the RMI server application. The RMI registry will keep renewing the

lease for the remote object. As long as an RMI registry is running, you will never see

the unreferenced() method being called. You need to shut down the RMI registry

application and wait for the remote object reference’s lease to expire or to be cancelled

by the RMI registry when you shut it down. After the RMI registry is shut down, you will

see the message on the standard output for the server program that will be printed by the

unreferenced() method.

An RMI registry should be used just as a bootstrap means to start the remote client.

Later on, the remote client can receive a remote object’s reference as a method call to

another remote object. If a remote client receives a remote object reference by a remote

method call on a remote object, that remote object’s reference need not be registered

with the RMI registry. In this case, after the last remote client is finished with the remote

reference, the server will garbage collect the remote object instead of keeping it in

memory when it is bound to an RMI registry.

Chapter 9 Java remote method InvoCatIon

735

 Summary
Java Remote Method Invocation (RMI) allows a program running in one JVM to invoke

methods on Java objects running in another JVM. RMI provides an API to develop

distributed applications using the Java programming language.

An RMI application involves three applications running in three JVMs: the

rmiregistry application, a server application, and a client application. The rmiregistry

application is shipped with the JDK. You are responsible for developing the server and

client applications. The server application creates Java objects called remote objects

and registers them with the rmiregistry for later name lookup by clients. The client

application looks up the remote object in the rmiregistry using a logical name and gets

back a reference of the remote object. The client application invokes methods on the

remote object reference that is sent to the server application for execution of the method

on the remote object. The result of the method invocation is sent back from the server

application to the client application.

An RMI application must follow a few rules to develop the classes and interfaces

involved in the remote communication. You need to create an interface (called remote

interface) that must inherit from the Remote interface. All methods in the interface must

include a throws clause that throws at least the RemoteException. The class for the

remote object must implement the remote interface. The server application creates an

object of the class implementing the remote interface, exports the object to give a status

of a real remote object, and registers it with the rmiregistry. The client application

needs only the remote interface.

If any of the three applications needs classes that are not locally available, they can

download them dynamically at runtime. For a JVM to download classes dynamically, the

java.rmi.server.useCodebaseOnly property must be set to false. By default, it is set to

true, which disables dynamic downloading of the classes in a JVM. Along with a remote

object reference, the JVM also receives the value of a property named java.rmi.server.

codebase, which is the URL from where the JVM may download (if permitted by its own

java.rmi.server.useCodebaseOnly property setting) the classes needed to work with

the remote object reference.

There are several components working together in an RMI application that make

it hard to debug. You can log all calls to the RMI server by running it with the JVM

property java.rmi.server.logCalls set to true. All calls to the server will be logged to a

standard error. You can also log RMI server calls to a file.

Chapter 9 Java remote method InvoCatIon

736

RMI provides automatic garbage collection for remote objects running in the RMI

server. The garbage collection of remote objects is based on reference counts and leases.

When the client application gets the reference of the remote object, it also obtains a lease

for the remote object from the server application. The lease is valid for a period. The

client application keeps renewing the lease periodically as long as it keeps the remote

object reference. The server application keeps track of the reference count and the leases

for the remote objects. When the client application is done with the remote reference,

it sends a message to the server application, and the server application reduces the

reference count for the remote object by one. When the reference count of the remote

object reduces to zero in the server application, the remote object is garbage collected.

 Exercises
Exercise 1

What is Java Remote Method Invocation?

Exercise 2

What is the fully qualified name of the interface that every remote interface must

extend?

Exercise 3

What steps do you need to perform in your RMI server program after you create a

remote object, so the remote object is available for a client to use?

Exercise 4

What is RMI registry and where is it located?

Exercise 5

In an RMI application, can an RMI registry and RMI server be deployed to two

different machines? If your answer is no, explain why.

Exercise 6

Describe the typical sequence of steps an RMI client program needs to perform to

call a method on a remote object.

Exercise 7

An RMI application involves three layers of applications: client, RMI registry, and

server. In what order must these applications be run?

Exercise 8

Describe the use of the java.rmi.server.codebase command-line option while

running an RMI client and server application.

Chapter 9 Java remote method InvoCatIon

737

Exercise 9

What is the effect of using the java.rmi.server.logCalls=true command-line

option while running an RMI server program?

Exercise 10

How do you log remote calls in an RMI server application to a file?

Exercise 11

What is the effect of using the java.rmi.server.useCodebaseOnly=true command-

line option while running an RMI application?

Exercise 12

Briefly explain how remote objects are garbage collected.

Exercise 13

Describe the steps to get notified when a remote object is no longer being

referenced.

Chapter 9 Java remote method InvoCatIon

739
© Kishori Sharan, Peter Späth 2021
K. Sharan and P. Späth, More Java 17, https://doi.org/10.1007/978-1-4842-7135-3_10

CHAPTER 10

Scripting in Java
In this chapter, you will learn:

• What scripting in Java is

• How to execute scripts from Java and how to pass parameters to scripts

• How the ScriptContext is used in executing scripts

• How to use the Java programming language in scripts

• How to implement a script engine

All example programs in this chapter are members of a jdojo.script module, as

declared in Listing 10-1, unless specified otherwise.

Listing 10-1. The Declaration of a jdojo.script Module

// module-info.java

module jdojo.script {

 requires java.scripting;

 requires jdk.unsupported;

 // <- needed for GraalVM JavaScript

 exports com.jdojo.script;

}

The scripting support in JDK is in the java.scripting module. Your module using

the Java Scripting API needs to read the java.scripting module as the jdojo.script

module does.

https://doi.org/10.1007/978-1-4842-7135-3_10#DOI

740

 What Is Scripting in Java?
Some believe that the Java Virtual Machine (JVM) can execute programs written only in

the Java programming language, which is not true. The JVM executes language-neutral

bytecode. It can execute programs written in any programming language, if the program

can be compiled into Java bytecode.

A scripting language is a programming language that provides the ability to write

scripts that are evaluated (or interpreted) by a runtime environment called a script engine

(or an interpreter). A script is a sequence of characters that is written using the syntax

of a scripting language and used as the source for a program executed by an interpreter.

The interpreter parses the scripts; produces intermediate code, which is an internal

representation of the program; and executes the intermediate code. The interpreter

stores the variables used in a script in data structures called symbol tables.

Typically, unlike in a compiled programming language, the source code (called a

script) in a scripting language is not compiled, but is interpreted at runtime. However,

scripts written in some scripting languages may be compiled into Java bytecode that can

be run by the JVM.

Java has included scripting support to the Java platform that lets a Java application

execute scripts written in scripting languages such as JavaScript, Groovy, Jython, JRuby,

etc. Two-way communication is supported. It also lets scripts access Java objects

created by the host application. The Java runtime and a scripting language runtime can

communicate and use each other’s features.

Support for scripting languages in Java comes through the Java Scripting API. All

classes and interfaces in the Java Scripting API are in the javax.script package, which

is in the java.scripting module.

Using a scripting language in a Java application provides several advantages:

• Most scripting languages are dynamically typed, which makes it

simpler to write programs.

• They provide a quicker way to develop and test small applications.

• Customization by end users is possible.

• A scripting language may provide domain-specific features that are

not available in Java.

Chapter 10 SCripting in Java

741

Scripting languages have some disadvantages as well. For example, dynamic typing

is good to write simpler code; however, it turns into a disadvantage when a type is

interpreted incorrectly, and you have to spend a lot of time debugging it.

Scripting support in Java lets you take advantage of both worlds: it allows you

to use the Java programming language for developing statically typed, scalable, and

high- performance parts of the application and use a scripting language that fits the

domain- specific needs for other parts.

I use the term script engine frequently in this chapter. A script engine is a software

component that executes programs written in a scripting language. Typically, but

not necessarily, a script engine is an implementation of an interpreter for a scripting

language. Interpreters for several scripting languages have been implemented in Java.

They expose programming interfaces so a Java program may interact with them.

JDK used to be co-bundled with a script engine called Nashorn JavaScript. However,

Nashorn was removed in Oracle’s JDK15, although you can still find it in OpenJDK 16.

We don’t talk about Nashorn in this chapter.

Java can execute scripts in any scripting language that provides an implementation

for a script engine. For example, Java can execute scripts written in GraalVM JavaScript,

Groovy, Jython, JRuby, etc. Examples in this chapter use the Groovy language.

Note as a substitute for the nashorn JavaScript engine, you might consider using
the JavaScript script engine provided with graalvM. Unfortunately, this one doesn’t
work well with OpenJDK 17.

 Installing Script Engines in Maven
In case you are using Maven as a build tool, installing scripting engines is easy. All you

need to do is to add a non-standard repository and certain dependencies in your pom.xml:

<project xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation=

 "http://maven.apache.org/POM/4.0.0

 https://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

Chapter 10 SCripting in Java

742

 <groupId>your.project.group.id</groupId>

 <artifactId>your.project.artifact.id</artifactId>

 <version>your.project.version</version>

<dependencies>

 <dependency>

 <groupId>org.codehaus.groovy</groupId>

 <artifactId>groovy-jsr223</artifactId>

 <version>3.0.8</version>

 </dependency>

 <!-- Other script engines:-->

 <dependency>

 <groupId>org.scijava</groupId>

 <artifactId>scripting-jython</artifactId>

 <version>1.0.0</version>

 </dependency>

 <dependency>

 <groupId>org.scijava</groupId>

 <artifactId>scripting-jruby</artifactId>

 <version>0.3.1</version>

 </dependency>

 <dependency>

 <groupId>org.graalvm.js</groupId>

 <artifactId>js-scriptengine</artifactId>

 <version>21.1.0</version>

 </dependency>

 <dependency>

 <!-- needed for GraalVM.js -->

 <groupId>org.graalvm.truffle</groupId>

 <artifactId>truffle-api</artifactId>

 <version>21.1.0</version>

 </dependency>

 ...

</dependencies>

Chapter 10 SCripting in Java

743

<repositories>

 <repository>

 <id>Maven Repo</id>

 <url>

https://repo1.maven.org/maven2/

 </url>

 </repository>

 <repository>

 <id>Maven Repo 2</id>

 <url>

http://maven.imagej.net/content/repositories/releases/

 </url>

 </repository>

</repositories>

...

</project>

Of course, you can comment out or remove scripting engines you don’t need.

 Executing Your First Script
In this section, you will use Groovy to print a message on the standard output. The

same steps can be used to print a message using any other scripting languages, with

one difference: you will need to use the scripting language–specific code to print the

message. You need to perform the following three steps to run a script in Java:

• Create a script engine manager.

• Get an instance of a script engine from the script engine manager.

• Call the eval() method of the script engine to execute a script.

A script engine manager is an instance of the ScriptEngineManager class:

// Create an script engine manager

ScriptEngineManager manager = new ScriptEngineManager();

Chapter 10 SCripting in Java

744

An instance of the ScriptEngine interface represents a script engine in a

Java program. The getEngineByName(String engineShortName) method of the

ScriptEngineManager returns an instance of a script engine. To get an instance of the

Groovy engine, use Groovy as the short name of the engine as shown:

// Get the reference of the Groovy engine

ScriptEngine engine =

 manager.getEngineByName("Groovy");

Note the short name of a script engine is case-sensitive. Sometimes, a script
engine has multiple short names. groovy engine has the following short names:
groovy, groovy. You can use any of these short names of an engine to get its
instance using the getEngineByName() method of the ScriptEngineManager
class. Just watch out for possible name clashes with other scripting engines.

In Groovy, the println() function prints a message on the standard output. A string

literal in Groovy is a sequence of characters enclosed in single or double quotes. The

following snippet of code stores a Groovy script in a Java String object that prints Hello

Scripting! to the standard output:

// Store a Groovy script in a String

String script = "println('Hello Scripting!')";

If you want to use double quotes to enclose the string literal in Groovy, the statement

will look as shown:

// Store a Groovy script in a String

String script = "println(\"Hello Scripting!\")";

or

// Store a Groovy script in a String

String script = """println("Hello Scripting!")""";

Chapter 10 SCripting in Java

745

To execute the script, you need to pass the script to the eval() method of the script

engine. A script engine may throw a ScriptException when it runs a script. For this

reason, you need to handle this exception when you call the eval() method of the

ScriptEngine. The following snippet of code executes the script stored in the script

variable:

try {

 engine.eval(script);

} catch (ScriptException e) {

 e.printStackTrace();

}

Listing 10-2 contains the complete code for the program to print a message on the

standard output.

Listing 10-2. Printing a Message on the Standard Output Using Groovy

// HelloScripting.java

package com.jdojo.script;

import javax.script.ScriptEngine;

import javax.script.ScriptEngineManager;

import javax.script.ScriptException;

public class HelloScripting {

 public static void main(String[] args) {

 // Create a script engine manager

 ScriptEngineManager manager =

 new ScriptEngineManager();

 // Obtain a Groovy script engine from the manager

 ScriptEngine engine =

 manager.getEngineByName("Groovy");

 // Store the Groovy script in a String

 String script = """

 println('Hello Scripting!')

 """;

 try {

 // Execute the script

 engine.eval(script);

Chapter 10 SCripting in Java

746

 } catch (ScriptException e) {

 e.printStackTrace();

 }

 }

}

Hello Scripting!

 Using Other Scripting Languages
It is very simple to use a scripting language, other than Groovy, in a Java program. You

need to perform only one task before you can use a script engine: include the JAR files

for a particular script engine in your application module path. Implementors of the

script engines provide those JAR files.

Java’s service provider mechanism will list all script engines whose modular JAR

or JAR files have been included in the application’s module path. An instance of the

ScriptEngineFactory interface is used to create and describe a script engine. The

provider of a script engine provides an implementation for the ScriptEngineFactory

interface. The getEngineFactories() method of the ScriptEngineManager

returns a List<ScriptEngineFactory> of all available script engine factories. The

getScriptEngine() method of the ScriptEngineFactory returns an instance of the

ScriptEngine. Several other methods of the factory return metadata about the engine.

Listing 10-3 shows how to print details of all available script engines. The output

shows that the script engine for Groovy is available. It is available because I have added the

org.codehaus.groovy:groovy-jsr223:3.0.8 artifact to the Maven project, which leads to

including all the JARs necessary to the module path on my machine. This program is helpful

when you have included a script engine in the module path, and you want to know the short

name of the script engine. You may get a different output when you run the program.

Listing 10-3. Listing All Available Script Engines

// ListingAllEngines.java

package com.jdojo.script;

import java.util.List;

import javax.script.ScriptEngineFactory;

import javax.script.ScriptEngineManager;

Chapter 10 SCripting in Java

747

public class ListingAllEngines {

 public static void main(String[] args) {

 ScriptEngineManager manager =

 new ScriptEngineManager();

 // Get the list of all available engines

 List<ScriptEngineFactory> list =

 manager.getEngineFactories();

 // Print the details of each engine

 for (ScriptEngineFactory f : list) {

 System.out.println("Engine Name:" +

 f.getEngineName());

 System.out.println("Engine Version:" +

 f.getEngineVersion());

 System.out.println("Language Name:" +

 f.getLanguageName());

 System.out.println("Language Version:" +

 f.getLanguageVersion());

 System.out.println("Engine Short Names:" +

 f.getNames());

 System.out.println("Mime Types:" +

 f.getMimeTypes());

 System.out.println(

 "----------------------------");

 }

 }

}

ScriptEngineFactory Info

Script Engine: Groovy Scripting Engine (2.0)

Engine Alias: groovy

Engine Alias: Groovy

Language: Groovy (3.0.8)

Listing 10-4 shows how to print a message on the standard output using JavaScript,

Groovy, Jython, and JRuby. If a script engine is not available, the program prints a

message to that effect. You may get a different output.

Chapter 10 SCripting in Java

748

Listing 10-4. Printing a Message on the Standard Output Using Different

Scripting Languages

// HelloEngines.java

package com.jdojo.script;

import javax.script.ScriptEngine;

import javax.script.ScriptEngineManager;

import javax.script.ScriptException;

public class HelloEngines {

 public static void main(String[] args) {

 // Get the script engine manager

 ScriptEngineManager manager =

 new ScriptEngineManager();

 // Try executing scripts in JavaScript, Groovy,

 // Jython, and JRuby

 execute(manager, "JavaScript",

 "print('Hello JavaScript')");

 execute(manager, "Groovy",

 "println('Hello Groovy')");

 execute(manager, "jython",

 "print 'Hello Jython'");

 execute(manager, "jruby",

 "puts('Hello JRuby')");

 }

 public static void

 execute(ScriptEngineManager manager, String engineName,

 String script) {

 // Try getting the engine

 ScriptEngine engine =

 manager.getEngineByName(engineName);

 if (engine == null) {

 System.out.println(engineName +

 " is not available.");

 return;

 }

Chapter 10 SCripting in Java

749

 // If we get here, it means we have the engine

 // installed. So, run the script

 try {

 engine.eval(script);

 } catch (ScriptException e) {

 e.printStackTrace();

 }

 }

}

JavaScript is not available.

Hello Groovy

jython is not available.

jruby is not available.

 Exploring the javax.script Package
The Java Scripting API in Java consists of a small number of classes and interfaces. They

are in the javax.script package in the java.scripting module. This section contains

a brief description of classes and interfaces in this package. I discuss their usage in

subsequent sections.

 The ScriptEngine and ScriptEngineFactory Interfaces
The ScriptEngine interface is the main interface in the Java Scripting API whose

instances facilitate the execution of scripts written in a particular scripting language.

The implementer of the ScriptEngine interface also provides an implementation of

the ScriptEngineFactory interface. A ScriptEngineFactory performs two tasks:

• It creates instances of the script engine.

• It provides information about the script engine such as engine name,

version, language, etc.

Chapter 10 SCripting in Java

750

 The AbstractScriptEngine Class
AbstractScriptEngine is an abstract class. It provides a partial implementation for the

ScriptEngine interface. You will not use this class directly unless you are implementing

a script engine.

 The ScriptEngineManager Class
The ScriptEngineManager class provides a discovery and instantiation mechanism

for script engines. It also maintains a mapping of key-value pairs as an instance of the

Bindings interface storing state that is shared by all script engines that it creates.

 The Compilable Interface and the CompiledScript Class
The Compilable interface may optionally be implemented by a script engine that allows

compiling scripts for their repeated execution without recompilation.

The CompiledScript class is declared abstract. It is extended by the providers of a

script engine. It stores a script in a compiled form, which may be executed repeatedly

without recompilation. Note that using a ScriptEngine to execute a script repeatedly

causes the script to recompile every time, thus slowing down the performance. A script

engine is not required to support script compilation. It must implement the Compilable

interface if it supports script compilation.

 The Invocable Interface
The Invocable interface may optionally be implemented by a script engine that may

allow invoking procedures, functions, and methods in scripts that have been compiled

previously.

 The Bindings Interface and the SimpleBindings Class
An instance of a class that implements the Bindings interface is a mapping of key-value

pairs with a restriction that a key must be a non-null, non-empty String. It extends

the java.util.Map interface. The SimpleBindings class is an implementation of the

Bindings interface.

Chapter 10 SCripting in Java

751

 The ScriptContext Interface and the SimpleScriptContext
Class
An instance of the ScriptContext interface acts as a bridge between the Java host

application and the script engine. It is used to pass the execution context of the Java

host application to the script engine. The script engine may use the context information

while executing a script. A script engine may store its state in an instance of a class that

implements the ScriptContext interface, which may be accessible to the Java host

application.

The SimpleScriptContext class is an implementation of the ScriptContext

interface.

 The ScriptException Class
The ScriptException class is an exception class. A script engine throws a

ScriptException if an error occurs during the execution, compilation, or invocation

of a script. The class contains three useful methods called getLineNumber(),

getColumnNumber(), and getFileName(). These methods report the line number,

the column number, and the file name of the script in which the error occurs. The

ScriptException class overrides the getMessage() method of the Throwable class and

includes the line number, column number, and the file name in the message that it returns.

 Discovering and Instantiating Script Engines
You can create a script engine using a ScriptEngineFactory or ScriptEngineManager.

Who is actually responsible for creating a script engine: ScriptEngineFactory,

ScriptEngineManager, or both? The short answer is that a ScriptEngineFactory is

always responsible for creating instances of a script engine. The next question is “What is

the role of a ScriptEngineManager?”

A ScriptEngineManager uses the service provider mechanism to locate all available

script engine factories. The service provider mechanism has been covered in Chapter 7

of this book.

A ScriptEngineManager locates and instantiates all available ScriptEngineFactory

classes. You can get a list of instances of all factory classes using the

getEngineFactories() method of the ScriptEngineManager class. When you call

Chapter 10 SCripting in Java

752

a method of the manager to get a script engine based on a criterion such as the

getEngineByName(String shortName) method to get an engine by name, the manager

searches all factories for that criterion and returns the matching script engine reference.

If no factories are able to provide a matching engine, the manager returns null. Refer

to Listing 10-3 for more details on listing all available factories and describing script

engines that they can create.

Now you know that a ScriptEngineManager does not create instances of a script

engine. Rather, it queries all available factories and passes the reference of a script

engine created by the factory back to the caller.

To make the discussion complete, let’s add a twist to the ways a script engine can be

created. You can create an instance of a script engine in three ways:

• Instantiate the script engine class directly.

• Instantiate the script engine factory class directly and call its

getScriptEngine() method.

• Use one of the getEngineByXxx() methods of the

ScriptEngineManager class.

It is advised to use the ScriptEngineManager class to get instances of a script

engine. This method allows all engines created by the same manager to share a state

that is a set of key-value pairs stored as an instance of the Bindings interface. The

ScriptEngineManager instance stores this state. Using this method also makes your code

unaware of the actual script engine/factory implementation class.

Note it is possible to have more than one instance of the
ScriptEngineManager class in an application. in that case, each
ScriptEngineManager instance maintains a state common to all engines that
it creates. that is, if two engines are obtained by two different instances of the
ScriptEngineManager class, those engines will not share a common state
maintained by their managers unless you make that happen programmatically.

Chapter 10 SCripting in Java

753

 Executing Scripts
A ScriptEngine can execute a script in a String and a Reader. Using a Reader, you can

execute a script stored on the network or in a file. One of the following versions of the

eval() method of the ScriptEngine is used to execute a script:

• Object eval(String script)

• Object eval(Reader reader)

• Object eval(String script, Bindings bindings)

• Object eval(Reader reader, Bindings bindings)

• Object eval(String script, ScriptContext context)

• Object eval(Reader reader, ScriptContext context)

The first argument of the eval() method is the source of the script. The second

argument lets you pass information from the host application to the script engine that

can be used during the execution of the script.

In Listing 10-2, you saw how to use a String to execute a script using the first version

of the eval() method. In this section, you will store your script in a file and use a Reader

object as the source of the script, which will use the second version of the eval()

method. The next section discusses the other four versions of the eval() method.

Typically, a script file is given a .js extension.

Listing 10-5 shows the contents of a file named helloscript.groovy. It contains only

one statement in Groovy that prints a message on the standard output.

Listing 10-5. The Contents of the helloscript.groovy File

// Print a message

println('Hello from Groovy!')

Listing 10-6 has the Java program that executes the script stored in the helloscript.

groovy file, which should be stored in the scripts sub-directory in the current directory. If

the script file is not found, the program prints the full path of the helloscript.js file where

it is expected. If you have trouble executing the script file, try using the absolute path in

the main() method such as C:\scripts\helloscript.js on Windows, assuming that the

helloscript.js file is saved in the C:\scripts directory. All scripts used in examples in this

chapter are provided under the Java9APIsAndModules\scripts directory in the source code.

Chapter 10 SCripting in Java

754

Listing 10-6. Executing a Script Stored in a File

// ReaderAsSource.java

package com.jdojo.script;

import java.io.IOException;

import java.io.Reader;

import java.nio.file.Files;

import java.nio.file.Path;

import java.nio.file.Paths;

import javax.script.ScriptEngine;

import javax.script.ScriptEngineManager;

import javax.script.ScriptException;

public class ReaderAsSource {

 public static void main(String[] args) {

 // Construct the script file path

 String scriptFileName =

 "scripts/helloscript.groovy";

 Path scriptPath = Paths.get(scriptFileName);

 // Make sure the script file exists. If not,

 // print the full path of the script file and

 // terminate the program.

 if (!Files.exists(scriptPath)) {

 System.out.println(

 scriptPath.toAbsolutePath() +

 " does not exist.");

 return;

 }

 // Get the Groovy script engine

 ScriptEngineManager manager =

 new ScriptEngineManager();

 ScriptEngine engine = manager.getEngineByName(

 "Groovy");

Chapter 10 SCripting in Java

755

 try {

 // Get a Reader for the script file

 Reader scriptReader = Files.newBufferedReader(

 scriptPath);

 // Execute the script in the file

 engine.eval(scriptReader);

 } catch (IOException | ScriptException e) {

 e.printStackTrace();

 }

 }

}

Hello from Groovy!

In a real-world application, you should store all scripts in files that allow modifying

scripts without modifying and recompiling your Java code. You will not follow this rule in

most of the examples in this chapter; you will store your scripts in String objects to keep

the code short and simple.

 Passing Parameters
The Java Scripting API allows you to pass parameters from the host environment (Java

application) to the script engine and vice versa. In this section, you will see the technical

details of parameter passing mechanisms between the host application and the script

engine.

 Passing Parameters from Java Code to Scripts
A Java program may pass parameters to scripts. A Java program may also access global

variables declared in a script after the script is executed. Let’s discuss a simple example

of this kind where a Java program passes a parameter to a script. Consider the program

in Listing 10-7 that passes a parameter to a script.

Chapter 10 SCripting in Java

756

Listing 10-7. Passing Parameters from a Java Program to Scripts

// PassingParam.java

package com.jdojo.script;

import javax.script.ScriptEngine;

import javax.script.ScriptEngineManager;

import javax.script.ScriptException;

public class PassingParam {

 public static void main(String[] args) {

 // Get the Groovy engine

 ScriptEngineManager manager =

 new ScriptEngineManager();

 ScriptEngine engine = manager.getEngineByName(

 "Groovy");

 // Store the script in a String. Here, msg is a

 // variable that we have not declared in the script

 String script = "println(msg)";

 try {

 // Store a parameter named msg in the engine

 engine.put("msg",

 "Hello from the Java program");

 // Execute the script

 engine.eval(script);

 } catch (ScriptException e) {

 e.printStackTrace();

 }

 }

}

Hello from the Java program

The program stores a script in a String as follows:

// Store the script in a String

String script = "println(msg)";

In the statement, the script that will be executed by the script engine is

println(msg)

Chapter 10 SCripting in Java

757

Note that msg is a variable used in the println() function call. The script does not

declare the msg variable or assign it a value. If you try to execute this script without telling

the engine what the msg variable is, the engine will throw an exception stating that it does

not understand the meaning of the variable named msg. This is where the concept of

passing parameters from a Java program to a script engine comes into play.

You can pass a parameter to a script engine in several ways. The simplest way is to

use the put(String paramName, Object paramValue) method of the script engine,

which accepts two arguments:

• The first argument is the name of the parameter, which needs to

match the name of the variable in the script.

• The second argument is the value of the parameter.

In your case, you want to pass a parameter named msg to the script engine and its

value is a String. The call to the put() method is

// Store the value of the msg parameter in the engine

engine.put("msg", "Hello from Java program");

Note that you must call the put() method of the engine before calling the eval()

method. In your case, when the engine attempts to execute print(msg), it will use the

value of the msg parameter that you passed to the engine.

Most script engines let you use the parameter names that you pass to it as the

variable name in the script. You saw this kind of example when you passed the value of

the parameter named msg and used it as a variable name in the script in Listing 10-7.

A script engine may have a requirement for declaring variables in scripts, for example,

a variable name must start with a $ prefix in PHP and a global variable name contains a $

prefix in JRuby. If you want to pass a parameter named msg to a script in JRuby, your

code would be as shown:

// Get the JRuby script engine

ScriptEngineManager manager = new ScriptEngineManager();

ScriptEngine engine = manager.getEngineByName("jruby");

// Must use the $ prefix in JRuby script

String script = "puts($msg)";

// No $ prefix used in passing the msg parameter to the

Chapter 10 SCripting in Java

758

// JRuby engine

engine.put("msg", "Hello from Java");

// Execute the script

engine.eval(script);

Properties and methods of Java objects passed to scripts can be accessed in scripts,

as they are accessed in Java code. Different scripting languages use different syntax to

access Java objects in scripts. For example, you can use the expression msg.toString()

in the example shown in Listing 10-7, and the output will be the same. In this case, you

are calling the toString() method of the variable msg. Change the statement that assigns

the value to the script variable in Listing 10-7 to the following and run the program,

which will produce the same output:

String script = "println(msg.toString())";

 Passing Parameters from Scripts to Java Code
A script engine may make variables in its global scope available to the Java code. The

get(String variableName) method of a ScriptEngine is used to access those variables

in Java code. It returns a Java Object. The declaration of a global variable is scripting

language dependent. The following snippet of code declares a global variable and

assigns it a value in Groovy:

// Declare a variable named year in Groovy

// Note the missing of the 'def' in front of it. If you

// don't prepend 'def', Groovy puts the variable in a

// script-wide global scope.

year = 1969;

Listing 10-8 contains a program that shows how to access a global variable in Groovy

from Java code.

Listing 10-8. Accessing Script Global Variables in Java Code

// AccessingScriptVariable.java

package com.jdojo.script;

import javax.script.ScriptEngine;

import javax.script.ScriptEngineManager;

Chapter 10 SCripting in Java

759

import javax.script.ScriptException;

public class AccessingScriptVariable {

 public static void main(String[] args) {

 // Get the Groovy engine

 ScriptEngineManager manager =

 new ScriptEngineManager();

 ScriptEngine engine = manager.getEngineByName(

 "Groovy");

 // Write a script that declares a global variable

 // named year and assign it a value of 1969.

 String script = "year = 1969";

 try {

 // Execute the script

 engine.eval(script);

 // Get the year global variable from the

 // engine

 Object year = engine.get("year");

 // Print the class name and the value of the

 // variable year

 System.out.println("year's class: " +

 year.getClass().getName());

 System.out.println("year's value: " +

 year);

 } catch (ScriptException e) {

 e.printStackTrace();

 }

 }

}

year's class: java.lang.Integer

year's value: 1969

The program declares a global variable year in the script and assigns it a value of

1969 as shown:

String script = "year = 1969";

Chapter 10 SCripting in Java

760

When the script is executed, the engine adds the year variable to its state. In Java

code, the get() method of the engine is used to retrieve the value of the year variable as

shown:

Object year = engine.get("year");

When the year variable was declared in the script, you did not specify its data type.

The conversion of a script variable value to an appropriate Java object is automatically

performed. In this case, the value 1969 was evaluated as an Integer.

 Advanced Parameter Passing Techniques
To understand the details of the parameter passing mechanism, three terms must be

understood clearly: bindings, scope, and context. These terms are confusing at first. This

section explains the parameter passing mechanism using the following steps:

• First, it defines these terms.

• Second, it defines the relationship between these terms.

• Third, it explains how to use them in Java code.

 Bindings
A Bindings is a set of key-value pairs where all keys must be non-empty, non-

null strings. In Java code, a Bindings is an instance of the Bindings interface. The

SimpleBindings class is an implementation of the Bindings interface. A script engine

may provide its own implementation of the Bindings interface.

Note if you are familiar with the java.util.Map interface, it is easy
to understand Bindings. the Bindings interface inherits from the
Map<String,Object> interface. therefore, a Bindings is just a Map with a
restriction that its keys must be non-empty, non-null strings.

Listing 10-9 shows how to use a Bindings. It creates an instance of SimpleBindings,

adds some key-value pairs to it, retrieves the values of the keys, removes a key-value pair,

etc. The get() method of the Bindings interface returns null if the key does not exist or

Chapter 10 SCripting in Java

761

the key exists and its value is null. If you want to test if a key exists, you need to call its

contains() method.

Listing 10-9. Using Bindings Objects

// BindingsTest.java

package com.jdojo.script;

import javax.script.Bindings;

import javax.script.SimpleBindings;

public class BindingsTest {

 public static void main(String[] args) {

 // Create a Bindings instance

 Bindings params = new SimpleBindings();

 // Add some key-value pairs

 params.put("msg", "Hello");

 params.put("year", 1969);

 // Get values

 Object msg = params.get("msg");

 Object year = params.get("year");

 System.out.println("msg = " + msg);

 System.out.println("year = " + year);

 // Remove year from Bindings

 params.remove("year");

 year = params.get("year");

 boolean containsYear = params.containsKey("year");

 System.out.println("year = " + year);

 System.out.println("params contains year = " +

 containsYear);

 }

}

msg = Hello

year = 1969

year = null

params contains year = false

Chapter 10 SCripting in Java

762

You will not use a Bindings by itself. Often, you will use it to pass parameters from

Java code to a script engine. The ScriptEngine interface contains a createBindings()

method that returns an instance of the Bindings interface. This method gives a script

engine a chance to return an instance of the specialized implementation of the Bindings

interface. You can use this method as shown:

// Get the Groovy engine

ScriptEngineManager manager = new ScriptEngineManager();

ScriptEngine engine = manager.getEngineByName(

 "Groovy");

// Do not instantiate SimpleBindings class directly.

// Use the createBindings() method of the engine to create

// a Bindings.

Bindings params = engine.createBindings();

// Work with params as usual

 Scope
Let’s move to the next term, which is scope. A scope is used for a Bindings. The scope of

a Bindings determines the visibility of its key-value pairs. You can have multiple Bindings

occurring in multiple scopes. However, one Bindings may occur only in one scope. How

do you specify the scope for a Bindings? I cover this shortly.

Using the scope for a Bindings lets you define parameter variables for script engines

in a hierarchical order. If a variable name is searched in an engine state, the Bindings

with a higher precedence is searched first, followed by Bindings with lower precedence.

The first found value of the variable is returned. The Java Scripting API defines two

scopes. They are defined as two int constants in the ScriptContext interface. They are

• ScriptContext.ENGINE_SCOPE

• ScriptContext.GLOBAL_SCOPE

The engine scope has higher precedence than the global scope. If you add two key-

value pairs with the same key to two Bindings—one in the engine scope and one in the

global scope—the key-value pair in the engine scope will be used whenever a variable

with the same name as the key has to be resolved.

Understanding the role of the scope for a Bindings is so important that I run through

another analogy to explain it. Think about a Java class that has two sets of variables: one

Chapter 10 SCripting in Java

763

set contains all instance variables in the class, and another contains all local variables

in a method. These two sets of variables with their values are two Bindings. The type of

variables in these Bindings defines the scope. Just for the sake of this discussion, I define

two scopes: instance scope and local scope. When a method is executed, a variable

name is looked up in the local scope Bindings first because the local variables take

precedence over instance variables. If a variable name is not found in the local scope

Bindings, it is looked up in the instance scope Bindings. When a script is executed,

Bindings and their scopes play a similar role.

 Defining the Script Context
A script engine executes a script in a context. You can think of the context as the

environment in which a script is executed. A Java host application provides two things

to a script engine: a script and the context in which the script needs to be executed.

An instance of the ScriptContext interface represents the context for a script. The

SimpleScriptContext class is an implementation of the ScriptContext interface. A

script context consists of four components:

• A set of Bindings, where each Bindings is associated with a different

scope

• A Reader that is used by the script engine to read inputs

• A Writer that is used by the script engine to write outputs

• An error Writer that is used by the script engine to write error

outputs

The set of Bindings in a context is used to pass parameters to the script. The reader

and writers in a context control input source and output destinations of the script,

respectively. For example, by setting a file writer as a writer, you can send all outputs

from a script to a file.

Each script engine maintains a default script context, which it uses to execute scripts.

So far, you have executed several scripts without providing script contexts. In those

cases, script engines were using their default script contexts to execute scripts. In this

section, I cover how to use a ScriptContext by itself. In the next section, I cover how a

ScriptContext is passed to a ScriptEngine during script execution.

Chapter 10 SCripting in Java

764

You can create an instance of the ScriptContext interface using the

SimpleScriptContext class:

// Create a script context

ScriptContext ctx = new SimpleScriptContext();

An instance of the SimpleScriptContext class maintains two instances of Bindings:

one for the engine scope and one for the global scope. The Bindings in the engine scope

is created when you create the instance of the SimpleScriptContext. To work with the

global scope Bindings, you will need to create an instance of the Bindings interface.

By default, the SimpleScriptContext class initializes the input reader, the output

writer, and the error writer for the context to the standard input System.in, the standard

output System.out, and standard error output System.err, respectively. You can use

the getReader(), getWriter(), and getErrorWriter() methods of the ScriptContext

interface to get the references of the reader, writer, and the error writer from the

ScriptContext, respectively. Setter methods are also provided to set a reader and

writers. The following snippet of code shows how to obtain the reader and writers. It also

shows how to set a writer to a FileWriter to write the script output to a file:

// Get the reader and writers from the script context

Reader inputReader = ctx.getReader();

Writer outputWriter = ctx.getWriter();

Writer errWriter = ctx.getErrorWriter();

// Write all script outputs to an out.txt file

Writer fileWriter = new FileWriter("out.txt");

ctx.setWriter(fileWriter);

After you create a SimpleScriptContext, you can start storing key-value pairs in the

engine scope Bindings because an empty Bindings in the engine scope is created when

you create the SimpleScriptContext object. The setAttribute() method is used to add

a key-value pair to a Bindings. You must provide the key name, value, and the scope for

the Bindings. The following snippet of code adds three key-value pairs:

// Add three key-value pairs to the engine scope bindings

ctx.setAttribute("year", 1969, ScriptContext.ENGINE_SCOPE);

ctx.setAttribute("month", 9, ScriptContext.ENGINE_SCOPE);

ctx.setAttribute("day", 19, ScriptContext.ENGINE_SCOPE);

Chapter 10 SCripting in Java

765

If you want to add key-value pairs to a Bindings in a global scope, you will need to

create and set the Bindings first, like so:

// Add a global scope Bindings to the context

Bindings globalBindings = new SimpleBindings();

ctx.setBindings(globalBindings,

 ScriptContext.GLOBAL_SCOPE);

Now you can add key-value pairs to the Bindings in the global scope using the

setAttribute() method, like so:

// Add two key-value pairs to the global scope bindings

ctx.setAttribute("year", 1982,

 ScriptContext.GLOBAL_SCOPE);

ctx.setAttribute("name", "Boni",

 ScriptContext.GLOBAL_SCOPE);

At this point, you can visualize the state of the ScriptContext instance, as shown in

Figure 10-1.

Figure 10-1. A pictorial view of an instance of the SimpleScriptContext class

Chapter 10 SCripting in Java

766

You can perform several operations on a ScriptContext. You can set a

different value for an already stored key using the setAttribute(String name,

Object value, int scope) method. You can remove a key-value pair using the

removeAttribute(String name, int scope) method for a specified key and a scope.

You can get the value of a key in the specified scope using the getAttribute(String

name, int scope) method.

The most interesting thing that you can do with a ScriptContext is to retrieve a

key-value without specifying its scope using its getAttribute(String name) method. A

ScriptContext searches for the key in the engine scope Bindings first. If it is not found

in the engine scope, the Bindings in the global scope is searched. If the key is found

in these scopes, the corresponding value from the scope, in which it is found first, is

returned. If neither scope contains the key, null is returned.

In your example, you have stored the key named year in the engine scope as well

as in the global scope. The following snippet of code returns 1969 for the key year

from the engine scope as the engine scope is searched first. The return type of the

getAttribute() method is Object:

// Get the value of the key year without specifying the

// scope. It returns 1969 from the Bindings in the engine

// scope.

int yearValue = (Integer) ctx.getAttribute("year");

You have stored the key named name only in the global scope. If you attempt to

retrieve its value, the engine scope is searched first, which does not return a match.

Subsequently, the global scope is searched, and the value "Boni" is returned as shown:

// Get the value of the key named name without specifying

// the scope.

// It returns "Boni" from the Bindings in the global scope.

String nameValue = (String) ctx.getAttribute("name");

You can also retrieve the value of a key in a specific scope. The following snippet of

code retrieves values for the key “year” from the engine scope and the global scope:

// Assigns 1969 to engineScopeYear and 1982 to

// globalScopeYear

int engineScopeYear = (Integer) ctx.getAttribute(

Chapter 10 SCripting in Java

767

 "year", ScriptContext.ENGINE_SCOPE);

int globalScopeYear = (Integer) ctx.getAttribute(

 "year", ScriptContext.GLOBAL_SCOPE);

Note the Java Scripting api defines only two scopes: engine and global.
a subinterface of the ScriptContext interface may define additional scopes.
the getScopes() method of the ScriptContext interface returns a list of
supported scopes as a List<Integer>. note that a scope is represented as an
integer. the two constants in the ScriptContext interface—ENGINE_SCOPE
and GLOBAL_SCOPE—are assigned values 100 and 200, respectively. When a key
is searched in multiple Bindings occurring in multiple scopes, the scope with the
lower integer value is searched first. Because the value 100 for the engine scope is
lower than the value 200 for the global scope, the engine scope is searched for a
key first when you do not specify the scope.

Listing 10-10 shows how to work with an instance of a class implementing the

ScriptContext interface. Note that you do not use a ScriptContext in your application

by itself. It is used by script engines during script execution. Most often, you manipulate

a ScriptContext indirectly through a ScriptEngine and a ScriptEngineManager, which

are discussed in detail in the next section.

Listing 10-10. Using an Instance of the ScriptContext Interface

// ScriptContextTest.java

package com.jdojo.script;

import java.util.List;

import javax.script.Bindings;

import javax.script.ScriptContext;

import javax.script.SimpleBindings;

import javax.script.SimpleScriptContext;

import static javax.script.ScriptContext.ENGINE_SCOPE;

import static javax.script.ScriptContext.GLOBAL_SCOPE;

public class ScriptContextTest {

 public static void main(String[] args) {

 // Create a script context

Chapter 10 SCripting in Java

768

 ScriptContext ctx = new SimpleScriptContext();

 // Get the list of scopes supported by the script

 // context

 List<Integer> scopes = ctx.getScopes();

 System.out.println("Supported Scopes: " + scopes);

 // Add three key-value pairs to the engine scope

 // bindings

 ctx.setAttribute("year", 1969, ENGINE_SCOPE);

 ctx.setAttribute("month", 9, ENGINE_SCOPE);

 ctx.setAttribute("day", 19, ENGINE_SCOPE);

 // Add a global scope Bindings to the context

 Bindings globalBindings = new SimpleBindings();

 ctx.setBindings(globalBindings, GLOBAL_SCOPE);

 // Add two key-value pairs to the global scope

 // bindings

 ctx.setAttribute("year", 1982, GLOBAL_SCOPE);

 ctx.setAttribute("name", "Boni", GLOBAL_SCOPE);

 // Get the value of year without specifying the

 // scope

 int yearValue =

 (Integer) ctx.getAttribute("year");

 System.out.println("yearValue = " + yearValue);

 // Get the value of name

 String nameValue =

 (String) ctx.getAttribute("name");

 System.out.println("nameValue = " + nameValue);

 // Get the value of year from engine and global

 // scopes

 int engineScopeYear = (Integer) ctx.

 getAttribute("year", ENGINE_SCOPE);

 int globalScopeYear = (Integer) ctx.

 getAttribute("year", GLOBAL_SCOPE);

 System.out.println("engineScopeYear = " +

 engineScopeYear);

Chapter 10 SCripting in Java

769

 System.out.println("globalScopeYear = " +

 globalScopeYear);

 }

}

Supported Scopes: [100, 200]

yearValue = 1969

nameValue = Boni

engineScopeYear = 1969

globalScopeYear = 1982

 Putting Them Together
In this section, I show you how instances of Bindings and their scopes, ScriptContext,

ScriptEngine, ScriptEngineManager, and the host application work together. The focus

is on how to manipulate the key-value pairs stored in Bindings in different scopes using

a ScriptEngine and a ScriptEngineManager.

A ScriptEngineManager maintains a set of key-value pairs in a Bindings. It lets you

work with those key-value pairs using the following methods:

• void put(String key, Object value)

• Object get(String key)

• void setBindings(Bindings bindings)

• Bindings getBindings()

The put() method adds a key-value pair to the Bindings. The get() method returns

the value for the specified key; it returns null if the key is not found. The Bindings for an

engine manager can be replaced using the setBindings() method. The getBindings()

method returns the reference of the Bindings of the ScriptEngineManager.

Every ScriptEngine, by default, has a ScriptContext known as its default context.

Recall that, besides readers and writers, a ScriptContext has two Bindings: one in the

engine scope and one in the global scope. When a ScriptEngine is created, its engine

scope Bindings is empty, and its global scope Bindings refers to the Bindings of the

ScriptEngineManager that created it.

By default, all instances of the ScriptEngine created by a ScriptEngineManager

share the Bindings of the ScriptEngineManager. It is possible to have multiple instances

Chapter 10 SCripting in Java

770

of ScriptEngineManager in the same Java application. In that case, all instances of

ScriptEngine created by the same ScriptEngineManager share the Bindings of the

ScriptEngineManager as their global scope Bindings for their default contexts.

The following snippet of code creates a ScriptEngineManager, which is used to

create three instances of ScriptEngine:

// Create a ScriptEngineManager

ScriptEngineManager manager = new ScriptEngineManager();

// Create three ScriptEngines using the same

// ScriptEngineManager

ScriptEngine engine1 = manager.getEngineByName(

 "Groovy");

ScriptEngine engine2 = manager.getEngineByName(

 "Groovy");

ScriptEngine engine3 = manager.getEngineByName(

 "Groovy");

Now, let’s add three key-value pairs to the Bindings of the ScriptEngineManager

and two key-value pairs to the engine scope Bindings of each ScriptEngine:

// Add three key-value pairs to the Bindings

// of the manager

manager.put("K1", "V1");

manager.put("K2", "V2");

manager.put("K3", "V3");

// Add two key-value pairs to each engine

engine1.put("KE11", "VE11");

engine1.put("KE12", "VE12");

engine2.put("KE21", "VE21");

engine2.put("KE22", "VE22");

engine3.put("KE31", "VE31");

engine3.put("KE32", "VE32");

Figure 10-2 shows a pictorial view of the state of the ScriptEngineManager and

three ScriptEngines after the previous snippet of code is executed. It is evident from

the figure that the default contexts of all ScriptEngines share the Bindings of the

ScriptEngineManager as their global scope Bindings.

Chapter 10 SCripting in Java

771

The Bindings in a ScriptEngineManager can be modified in the following ways:

• By using the put() method of the ScriptEngineManager

• By getting the reference of the Bindings using the getBindings()

method of the ScriptEngineManager, and then using the put() and

remove() methods on the Bindings

• By getting the reference of the Bindings in the global scope of the

default context of a ScriptEngine using its getBindings() method,

and then using the put() and remove() methods on the Bindings

When the Bindings in a ScriptEngineManager is modified, the global

scope Bindings in the default context of all ScriptEngines created by this

ScriptEngineManager are modified because they share the same Bindings.

The default context of each ScriptEngine maintains an engine scope Bindings

separately. To add a key-value pair to the engine scope Bindings of a ScriptEngine, use

its put() method as shown:

ScriptEngine engine1 = null; // get an engine

// Add an "engineName" key with its value as "Engine-1"

// to the engine scope Bindings of the default context

// of engine1

engine1.put("engineName", "Engine-1");

Figure 10-2. A pictorial view of three ScriptEngines created by a
ScriptEngineManager

Chapter 10 SCripting in Java

772

The get(String key) method of the ScriptEngine returns the value of the specified

key from its engine scope Bindings. The following statement returns "Engine-1", which

is the value for the engineName key:

String eName = (String) engine1.get("engineName");

It is a two-step process to get to the key-value pairs of the global scope Bindings in

the default context of a ScriptEngine. First, you need to get the reference of the global

scope Bindings using its getBindings() method as shown:

Bindings e1Global =

 engine1.getBindings(ScriptContext.GLOBAL_SCOPE);

Now you can modify the global scope Bindings of the engine using the e1Global

reference. The following statement adds a key-value pair to the e1Global Bindings:

e1Global.put("id", 89999);

Because of the sharing of the global scope Bindings of a ScriptEngine by

all ScriptEngines, this snippet of code will add the key “id” with its value to the

global scope Bindings of the default context of all ScriptEngines created by the

same ScriptEngineManager that created engine1. Modifying the Bindings in a

ScriptEngineManager using the previous code is not recommended. You should modify

the Bindings using the ScriptEngineManager reference instead, which makes the logic

clearer to the readers of the code.

Listing 10-11 demonstrates the concepts discussed in this section.

Listing 10-11. Using Global and Engine Scope Bindings of Engines Created by

the Same

ScriptEngineManager

// GlobalBindings.java

package com.jdojo.script;

import javax.script.ScriptEngine;

import javax.script.ScriptEngineManager;

import javax.script.ScriptException;

public class GlobalBindings {

 public static void main(String[] args) {

 ScriptEngineManager manager =

Chapter 10 SCripting in Java

773

 new ScriptEngineManager();

 // Add two numbers to the Bindings of the

 // manager - shared by all its engines

 manager.put("n1", 100);

 manager.put("n2", 200);

 // Create two JavaScript engines and add the name

 // of the engine in the engine scope of the default

 // context of the engines

 ScriptEngine engine1 = manager.getEngineByName(

 "Groovy");

 engine1.put("engineName", "Engine-1");

 ScriptEngine engine2 = manager.getEngineByName(

 "Groovy");

 engine2.put("engineName", "Engine-2");

 // Execute a script that adds two numbers and

 // prints the result

 String script = """

 def sum = n1 + n2

 println(engineName + ' - Sum = ' + sum)

 """;

 try {

 // Execute the script in two engines

 engine1.eval(script);

 engine2.eval(script);

 // Now add a different value for n2 for each

 // engine

 engine1.put("n2", 1000);

 engine2.put("n2", 2000);

 // Execute the script in two engines again

 engine1.eval(script);

 engine2.eval(script);

 } catch (ScriptException e) {

 e.printStackTrace();

 }

 }

}

Chapter 10 SCripting in Java

774

Engine-1 - Sum = 300

Engine-2 - Sum = 300

Engine-1 - Sum = 1100

Engine-2 - Sum = 2100

A ScriptEngineManager adds two key-value pairs with keys n1 and n2 to its

Bindings. Two ScriptEngines are created; they add a key called engineName to their

engine scope Bindings. When the script is executed, the value of the engineName

variable in the script is used from the engine scope of the ScriptEngine. The values

for variables n1 and n2 in the script are retrieved from the global scope Bindings of the

ScriptEngine. After executing the script for the first time, each ScriptEngine adds a key

called n2 with a different value to their engine scope Bindings. When you execute the

script for the second time, the value for the n1 variable is retrieved from the global scope

Bindings of the engine, whereas the value for the variable n2 is retrieved from the engine

scope Bindings as shown in the output.

The story of the global scope Bindings shared by all ScriptEngines that are created

by a ScriptEngineManager is not over yet. It is as complex, and confusing, as it can

get! Now the focus will be on the effects of using the setBindings() method of the

 ScriptEngineManager class and the ScriptEngine interface. Consider the following

snippet of code:

// Create a ScriptEngineManager and two ScriptEngines

ScriptEngineManager manager = new ScriptEngineManager();

ScriptEngine engine1 = manager.getEngineByName(

 "Groovy");

ScriptEngine engine2 = manager.getEngineByName(

 "Groovy");

// Add two key-value pairs to the manager

manager.put("n1", 100);

manager.put("n2", 200);

Figure 10-3 shows the state of the engine manager and its engines after this script is

executed. At this point, there is only one Bindings stored in the ScriptEngineManager,

and two ScriptEngines are referring to it as their global scope Bindings.

Chapter 10 SCripting in Java

775

Let’s create a new Bindings and set it as the Bindings for the ScriptEngineManager

using its setBindings() method, like so:

// Create a Bindings, add two key-value pairs to it, and

// set it as the new Bindings for the manager

Bindings newGlobal = new SimpleBindings();

newGlobal.put("n3", 300);

newGlobal.put("n4", 400);

manager.setBindings(newGlobal);

Figure 10-4 shows the state of the ScriptEngineManager and two ScriptEngines

after the previous snippet of code is executed. Notice that the ScriptEngineManager has

a new Bindings, and the two ScriptEngines are still referring to the old Bindings as

their global scope Bindings.

Figure 10-3. Initial state of ScriptEngineManager and two ScriptEngines

Figure 10-4. State of ScriptEngineManager and two ScriptEngines after a new
Bindings is set

Chapter 10 SCripting in Java

776

At this point, any changes made to the Bindings of the ScriptEngineManager will

not be reflected in the global scope Bindings of the two ScriptEngines.

You can still make changes to the Bindings shared by the two ScriptEngines, and

both ScriptEngines will see the changes made by either of them.

Let’s create a new ScriptEngine as shown:

// Create a new ScriptEngine

ScriptEngine engine3 = manager.getEngineByName(

 "Groovy");

Recall that a ScriptEngine gets a global scope Bindings at the time it is created

and that Bindings is the same as the Bindings of the ScriptEngineManager. The states

of the ScriptEngineManager and three ScriptEngines, after the previous statement is

executed, are shown in Figure 10-5.

Here is another twist to the so-called “globalness” of the global scope of

ScriptEngines. This time, you will use the setBindings() method of a ScriptEngine to

set its global scope Bindings:

// Set a new Bindings for the global scope of engine1

Bindings newGlobalEngine1 = new SimpleBindings();

newGlobalEngine1.put("n5", 500);

newGlobalEngine1.put("n6", 600);

engine1.setBindings(newGlobalEngine1,

 ScriptContext.GLOBAL_SCOPE);

Figure 10-5. States of ScriptEngineManager and three ScriptEngines after the
third ScriptEngine is created

Chapter 10 SCripting in Java

777

Figure 10-6 shows the states of the ScriptEngineManager and three ScriptEngines

after the previous snippet of code is executed.

Note By default, all ScriptEngines that a ScriptEngineManager
creates share its Bindings as their global scope Bindings. if you use the
setBindings() method of a ScriptEngine to set its global scope Bindings
or if you use the setBindings() method of a ScriptEngineManager to set
its Bindings, you break the “globalness” chain as discussed in this section. to
keep the “globalness” chain intact, you should always use the put() method
of the ScriptEngineManager to add key-value pairs to its Bindings. to
remove a key-value pair from the global scope of all ScriptEngines created
by a ScriptEngineManager, you need to get the reference of the Bindings
using the getBindings() method of the ScriptEngineManager and use the
remove() method on the Bindings.

 Using a Custom ScriptContext
In the previous section, you saw that each ScriptEngine has a default script context.

The get(), put(), getBindings(), and setBindings() methods of the ScriptEngine

operate on its default ScriptContext. When no ScriptContext is specified to the eval()

method of the ScriptEngine, the default context of the engine is used. The following two

Figure 10-6. States of ScriptEngineManager and three ScriptEngines after a new
global scope bindings is set

Chapter 10 SCripting in Java

778

versions of the eval() method of the ScriptEngine use its default context to execute

the script:

• Object eval(String script)

• Object eval(Reader reader)

You can pass a Bindings to the following two versions of the eval() method:

• Object eval(String script, Bindings bindings)

• Object eval(Reader reader, Bindings bindings)

These versions of the eval() method do not use the default context of the

ScriptEngine. They use a new ScriptContext whose engine scope Bindings is the one

passed to these methods, and the global scope Bindings is the same as for the default

context of the engine. Note that these two versions of the eval() method keep the

default context of the ScriptEngine untouched.

You can pass a ScriptContext to the following two versions of the eval() method:

• Object eval(String script, ScriptContext context)

• Object eval(Reader reader, ScriptContext context)

These versions of the eval() method use the specified context to execute the script.

They keep the default context of the ScriptEngine untouched.

The three sets of the eval() method let you execute scripts using different

isolation levels:

• The first set lets you share the default context by all scripts.

• The second set lets scripts use different engine scope Bindings and

share the global scope Bindings.

• The third set lets scripts execute in an isolated ScriptContext.

Listing 10-12 shows how scripts are executed in different isolation levels using the

different versions of the eval() method.

Chapter 10 SCripting in Java

779

Listing 10-12. Using Different Isolation Levels for Executing Scripts

// CustomContext.java

package com.jdojo.script;

import javax.script.Bindings;

import javax.script.ScriptContext;

import javax.script.ScriptEngine;

import javax.script.ScriptEngineManager;

import javax.script.ScriptException;

import javax.script.SimpleScriptContext;

import static javax.script.SimpleScriptContext.

 ENGINE_SCOPE;

import static javax.script.SimpleScriptContext.

 GLOBAL_SCOPE;

public class CustomContext {

 public static void

 main(String[] args) throws ScriptException {

 ScriptEngineManager manager =

 new ScriptEngineManager();

 ScriptEngine engine = manager.getEngineByName(

 "Groovy");

 // Add n1 to Bindings of the manager, which will

 // be shared by all engines as their global scope

 // Bindings

 manager.put("n1", 100);

 // Prepare the script

 String script = """

 def sum = n1 + n2

 println(msg + ' n1=' + n1 + ', n2=' + n2 +

 ', sum=' + sum)

 """;

 // Add n2 to the engine scope of the default

 // context of the engine

 engine.put("n2", 200);

 engine.put("msg", "Using the default context:");

 engine.eval(script);

Chapter 10 SCripting in Java

780

 // Use a Bindings to execute the script

 Bindings bindings = engine.createBindings();

 bindings.put("n2", 300);

 bindings.put("msg", "Using a Bindings:");

 engine.eval(script, bindings);

 // Use a ScriptContext to execute the script

 ScriptContext ctx = new SimpleScriptContext();

 Bindings ctxGlobalBindings =

 engine.createBindings();

 ctx.setBindings(ctxGlobalBindings, GLOBAL_SCOPE);

 ctx.setAttribute("n1", 400, GLOBAL_SCOPE);

 ctx.setAttribute("n2", 500, ENGINE_SCOPE);

 ctx.setAttribute("msg", "Using a ScriptContext:",

 ENGINE_SCOPE);

 engine.eval(script, ctx);

 // Execute the script again using the default

 // context to prove that the default context is

 // unaffected.

 engine.eval(script);

 }

}

Using the default context: n1=100, n2=200, sum=300

Using a Bindings: n1=100, n2=300, sum=400

Using a ScriptContext: n1=400, n2=500, sum=900

Using the default context: n1=100, n2=200, sum=300

The program uses three variables called msg, n1, and n2. It displays the value stored

in the msg variable. The values of n1 and n2 are added, and the sum is displayed. The

script prints what values of n1 and n2 were used in computing the sum. The value

of n1 is stored in the Bindings of ScriptEngineManager that is shared by the default

context of all ScriptEngines. The value of n2 is stored in the engine scope of the default

context and the custom contexts. The script is executed twice using the default context

of the engine, once in the beginning and once in the end, to prove that using a custom

Bindings or a ScriptContext in the eval() method does not affect the Bindings in the

default context of the ScriptEngine. The program declares a throws clause in its main()

method to keep the code shorter.

Chapter 10 SCripting in Java

781

 Return Value of the eval() Method
The eval() method of the ScriptEngine returns an Object, which is the last value in the

script. It returns null if there is no last value in the script. It is error-prone, and confusing

at the same time, to depend on the last value in a script. The following snippet of code

shows some examples of using the return value of the eval() method for Groovy. The

comments in the code indicate the returned value from the eval() method:

Object result = null;

// Assigns 3 to result

result = engine.eval("1 + 2");

// Assigns 7 to result

result = engine.eval("1 + 2; 3 + 4");

// Assigns 6 to result

result = engine.eval("""1 + 2; 3 + 4;

 def v = 5; v = 6""");

// Assigns 5 to result

result = engine.eval("""1 + 2; 3 + 4;

 def v = 5""");

// Assigns null to result

result = engine.eval("println(1 + 2)");

It is better not to depend on the returned value from the eval() method. You should

pass a Java object to the script as a parameter and let the script store the returned value

of the script in that object. After the eval() method is executed, you can query that Java

object for the returned value.

Listing 10-13 contains the code for a Result class that wraps an integer. You will pass

an object of the Result class to the script that will store the returned value in it. After the

script finishes, you can read the integer value stored in the Result object in your Java

code. The Result needs to be declared public so it is accessible to the script engine.

Listing 10-13. A Result Class That Wraps an Integer

// Result.java

package com.jdojo.script;

public class Result {

 public int val = -1;

}

Chapter 10 SCripting in Java

782

The program in Listing 10-14 shows how to pass a Result object to a script that

populates the Result object with a value. The program contains a throws clause in the

main() method’s declaration to keep the code short.

Listing 10-14. Collecting the Return Value of a Script in a Result Object

// ResultBearingScript.java

package com.jdojo.script;

import javax.script.ScriptEngine;

import javax.script.ScriptEngineManager;

import javax.script.ScriptException;

public class ResultBearingScript {

 public static void

 main(String[] args) throws ScriptException {

 // Get the Groovy engine

 ScriptEngineManager manager =

 new ScriptEngineManager();

 ScriptEngine engine = manager.getEngineByName(

 "Groovy");

 // Pass a Result object to the script. The script

 // will store the result of the script in the

 // result object

 Result result = new Result();

 engine.put("result", result);

 // Store the script in a String

 String script = "3 + 4; result.val = 101";

 // Execute the script, which uses the passed in

 // Result object to return a value

 engine.eval(script);

 // Use the result object to get the returned value

 // from the script

 int returnedValue = result.val; // -> 101

Chapter 10 SCripting in Java

783

 System.out.println("Returned value is " +

 returnedValue);

 }

}

Returned value is 101

 Reserved Keys for Engine Scope Bindings
Typically, a key in the engine scope Bindings represents a script variable. Some keys

are reserved, and they have special meanings. Their values may be passed to the

engine by the implementation of the engine. An implementation may define additional

reserved keys.

Table 10-1 contains the list of all reserved keys. Those keys are also declared as

constants in the ScriptEngine interface. An implementation of a script engine is not

required to pass all these keys to the engine in the engine scope bindings. As a developer,

you are not supposed to use these keys to pass parameters from a Java application to a

script engine.

Table 10-1. Reserved Keys for Engine Scope Bindings

Key Constant in ScriptEngine
Interface

Meaning of the Value of the Key

"javax.script.argv" ScriptEngine.ARGV Used to pass an array of Object to

pass a set of positional argument.

"javax.script.engine" ScriptEngine.ENGINE the name of the script engine.

"javax.script.engine_

version"

ScriptEngine.ENGINE_

VERSION

the version of the script engine.

"javax.script.filename" ScriptEngine.FILENAME Used to pass the name of the file or

the resource that is the source of

the script.

(continued)

Chapter 10 SCripting in Java

784

 Changing the Default ScriptContext
You can get and set the default context of a ScriptEngine using its getContext() and

setContext() methods, respectively, as shown:

ScriptEngineManager manager = new ScriptEngineManager();

ScriptEngine engine = manager.getEngineByName(

 "Groovy");

// Get the default context of the ScriptEngine

ScriptContext defaultCtx = engine.getContext();

// Work with defaultCtx here

// Create a new context

ScriptContext ctx = new SimpleScriptContext();

// Configure ctx here

// Set ctx as the new default context for the engine

engine.setContext(ctx);

Note that setting a new default context for a ScriptEngine will not use the Bindings of

the ScriptEngineManager as its global scope Bindings. If you want the new default context

to use the Bindings of the ScriptEngineManager, you need set it explicitly as shown:

// Create a new context

ScriptContext ctx = new SimpleScriptContext();

// Set the global scope Bindings for ctx the same as the

// Bindings for the manager

Key Constant in ScriptEngine
Interface

Meaning of the Value of the Key

"javax.script.language" ScriptEngine.LANGUAGE the name of the language

supported by the script engine.

"javax.script.

language_version"

ScriptEngine.LANGUAGE_

VERSION

the version of the scripting

language supported by the engine.

"javax.script.name" ScriptEngine.NAME the short name of the scripting

language.

Table 10-1. (continued)

Chapter 10 SCripting in Java

785

ctx.setBindings(manager.getBindings(),

 ScriptContext.GLOBAL_SCOPE);

// Set ctx as the new default context for the engine

engine.setContext(ctx);

 Sending Script Output to a File
You can customize the input source, output destination, and error output destination of

a script execution. You need to set appropriate reader and writers for the ScriptContext

that is used to execute a script. The following snippet of code will write the script output

to a file named output.txt in the current directory:

// Create a FileWriter

FileWriter writer = new FileWriter("output.txt");

// Get the default context of the engine

ScriptContext defaultCtx = engine.getContext();

// Set the output writer for the default context of the

// engine

defaultCtx.setWriter(writer);

The code sets a custom output writer for the default context of the ScriptEngine that

will be used during the execution of scripts that use the default context. If you want to

use a custom output writer for a specific execution of a script, you need to use a custom

ScriptContext and set its writer.

Note Setting a custom output writer for a ScriptContext does not affect the
destination of the standard output of the Java application. to redirect the standard
output of the Java application, you need to use the System.setOut() method.

Listing 10-15 shows you how to write output of a script execution to a file named

output.txt. The program prints the full path of the output file on the standard output.

You may get a different output when you run the program. You need to open the output

file in a text editor to see the script’s output.

Chapter 10 SCripting in Java

786

Listing 10-15. Writing the Output of Scripts to a File

// CustomScriptOutput.java

package com.jdojo.script;

import java.io.File;

import java.io.FileWriter;

import java.io.IOException;

import javax.script.ScriptContext;

import javax.script.ScriptEngine;

import javax.script.ScriptEngineManager;

import javax.script.ScriptException;

public class CustomScriptOutput {

 public static void main(String[] args) {

 // Get the Groovy engine

 ScriptEngineManager manager =

 new ScriptEngineManager();

 ScriptEngine engine = manager.getEngineByName(

 "Groovy");

 // Print the absolute path of the output file

 File outputFile = new File("output.txt");

 System.out.println(

 "Script output will be written to "

 + outputFile.getAbsolutePath());

 try (FileWriter writer =

 new FileWriter(outputFile)) {

 // Set a custom output writer for the engine

 ScriptContext defaultCtx =

 engine.getContext();

 defaultCtx.setWriter(writer);

 // Execute a script

 String script =

 "println('Hello custom output writer')";

 engine.eval(script);

Chapter 10 SCripting in Java

787

 } catch (IOException | ScriptException e) {

 e.printStackTrace();

 }

 }

}

Script output will be written to file output.txt in the current working directory.

 Invoking Procedures in Scripts
A scripting language may allow for creating procedures, functions, and methods. The

Java Scripting API lets you invoke such procedures, functions, and methods from a Java

application. I use the term “procedure” to mean procedure, function, and method in this

section. I use the specific term when the context of the discussion requires it.

Not all script engines are required to support procedure invocation. The Groovy

engine supports procedure invocation. If a script engine supports it, the implementation

of the script engine class must implement the Invocable interface. It is the responsibility

of the developer to check if a script engine implements the Invocable interface, before

invoking a procedure. Invoking a procedure is a four-step process:

• Check if the script engine supports procedure invocation.

• Cast the engine reference to the Invocable type.

• Evaluate the script that contains the source code for the procedure.

• Use the invokeFunction() method of the Invocable interface to

invoke procedures and functions. Use the invokeMethod() method to

invoke methods of the objects created in a scripting language.

The following snippet of code performs the check that the script engine

implementation class implements the Invocable interface:

// Get the Groovy engine

ScriptEngineManager manager = new ScriptEngineManager();

ScriptEngine engine = manager.getEngineByName(

 "Groovy");

// Make sure the script engine implements the Invocable

// interface

Chapter 10 SCripting in Java

788

if (engine instanceof Invocable) {

 System.out.println(

 "Invoking procedures is supported.");

} else {

 System.out.println(

 "Invoking procedures is not supported.");

}

The second step is to cast the engine reference to the Invocable interface type:

Invocable inv = (Invocable) engine;

The third step is to evaluate the script, so the script engine compiles and stores

the compiled form of the procedure for later invocation. The following snippet of code

performs this step:

// Declare a function named add that adds two numbers

String script = "def add(n1, n2) { n1 + n2 }";

// Evaluate the function. Call to eval() does not invoke

// the function. It just compiles it.

engine.eval(script);

The last step is to invoke the procedure or function:

// Invoke the add function with 30 and 40 as the function's

// arguments. It is as if you called add(30, 40) in the

// script.

Object result = inv.invokeFunction("add", 30, 40);

The first argument to the invokeFunction() is the name of the procedure or

function. The second argument is a varargs that is used to specify arguments to the

procedure or function. The invokeFunction() method returns the value returned by the

procedure or function.

Listing 10-16 shows how to invoke a function. It invokes a function written in Groovy.

Chapter 10 SCripting in Java

789

Listing 10-16. Invoking a Function Written in Groovy

// InvokeFunction.java

package com.jdojo.script;

import javax.script.Invocable;

import javax.script.ScriptEngine;

import javax.script.ScriptEngineManager;

import javax.script.ScriptException;

public class InvokeFunction {

 public static void main(String[] args) {

 ScriptEngineManager manager =

 new ScriptEngineManager();

 ScriptEngine engine = manager.getEngineByName(

 "Groovy");

 // Make sure the script engine implements the

 // Invocable interface

 if (!(engine instanceof Invocable)) {

 System.out.println(

 "Invoking procedures is not supported.");

 return;

 }

 // Cast the engine reference to the Invocable type

 Invocable inv = (Invocable) engine;

 try {

 String script =

 "def add(n1, n2) { n1 + n2 }";

 // Evaluate the script first

 engine.eval(script);

 // Invoke the add function twice

 Object result1 = inv.invokeFunction(

 "add", 30, 40);

 System.out.println("Result1 = " + result1);

 Object result2 = inv.invokeFunction(

 "add", 10, 20);

 System.out.println("Result2 = " + result2);

 } catch (ScriptException |

Chapter 10 SCripting in Java

790

 NoSuchMethodException e) {

 e.printStackTrace();

 }

 }

}

Result1 = 70

Result2 = 30

An object-oriented or object-based scripting language may let you define objects

and their methods. You can invoke methods of such objects using the invokeMethod()

method of the Invocable interface, which is declared as follows:

Object invokeMethod(Object objectRef, String name,

 Object... args)

The first argument is the reference of the object, the second argument is the name

of the method that you want to invoke on the object, and the third argument is a varargs

argument that is used to pass arguments to the method being invoked.

Listing 10-17 demonstrates the invocation of a method on an object that is created

in Groovy. Note that the object is created inside the Groovy script. To invoke the method

of the object from Java, you need to obtain the reference of the object through the script

engine. The program evaluates the script that creates an object with an add() method

and stores its reference in a variable named calculator. The engine.get(“calculator”)

method returns the reference of the calculator object to the Java code.

Listing 10-17. Invoking a Method on an Object Created in Groovy JavaScript

// InvokeMethod.java

package com.jdojo.script;

import javax.script.Invocable;

import javax.script.ScriptEngine;

import javax.script.ScriptEngineManager;

import javax.script.ScriptException;

public class InvokeMethod {

 public static void main(String[] args) {

Chapter 10 SCripting in Java

791

 // Get the Groovy engine

 ScriptEngineManager manager =

 new ScriptEngineManager();

 ScriptEngine engine = manager.getEngineByName(

 "Groovy");

 // Make sure the script engine implements the

 // Invocable interface

 if (!(engine instanceof Invocable)) {

 System.out.println(

 "Invoking methods is not supported.");

 return;

 }

 // Cast the engine reference to the Invocable type

 Invocable inv = (Invocable) engine;

 try {

 // Declare a global object with an add() method

 String script = """

 class Calculator {

 def add(int n1, int n2){n1 + n2}

 }

 calculator = new Calculator()

 """;

 // Evaluate the script first

 engine.eval(script);

 // Get the calculator object reference created

 // in the script

 Object calculator = engine.get("calculator");

 // Invoke the add() method on the calculator

 // object

 Object result = inv.invokeMethod(calculator,

 "add", 30, 40);

 System.out.println("Result = " + result);

 } catch (ScriptException |

Chapter 10 SCripting in Java

792

 NoSuchMethodException e) {

 e.printStackTrace();

 }

 }

}

Result = 70

Note Use the invocable interface to execute procedures, functions, and methods
repeatedly. the evaluation of the script, having procedures, functions, and
methods, stores the intermediate code in the engine that results in performance
gain on their repeated execution.

 Implementing Java Interfaces in Scripts
The Java Scripting API lets you implement Java interfaces in a scripting language.

Methods of the Java interface may be implemented in scripts using top-level procedures

or instance methods of an object. The advantage of implementing a Java interface in

a scripting language is that you can use instances of the interface in Java code as if the

interface was implemented in Java. You can pass instances of the interface as arguments

to Java methods. The getInterface() method of the Invocable interface is used to

obtain the instances of a Java interface that is implemented in scripts. The method has

two versions:

• <T> T getInterface(Class<T> cls)

• <T> T getInterface(Object obj, Class<T> cls)

The first version is used to obtain an instance of a Java interface whose methods

are implemented as top-level procedures in scripts. The interface type is passed to this

method as its argument. Suppose you have a Calculator interface, as declared in

Listing 10-18, that has two methods called add() and subtract().

Chapter 10 SCripting in Java

793

Listing 10-18. A Calculator Interface

// Calculator.java

package com.jdojo.script;

public interface Calculator {

 int add (int n1, int n2);

 int subtract (int n1, int n2);

}

Consider the following two top-level functions written in Groovy:

def add(n1, n2) {

 n1 + n2

}

def subtract(n1, n2) {

 n1 -n2

}

These two functions provide the implementations for the two methods of the

Calculator interface. After these functions are compiled by a Groovy scripting engine,

you can obtain an instance of the Calculator interface as shown:

// Cast the engine reference to the Invocable type

Invocable inv = (Invocable) engine;

// Get the reference of the Calculator interface

Calculator calc = inv.getInterface(Calculator.class);

if (calc == null) {

 System.err.println(

 "Calculator interface implementation not found.");

} else {

 // Use calc to call add() and subtract() methods

}

You can add two numbers as shown:

int sum = calc.add(15, 10);

Chapter 10 SCripting in Java

794

Listing 10-19 shows how to implement a Java interface using top-level procedures in

Groovy. Consult the documentation of a scripting language to learn how it supports this

functionality.

Listing 10-19. Implementing a Java Interface Using Top-Level Functions in a Script

// UsingInterfaces.java

package com.jdojo.script;

import javax.script.Invocable;

import javax.script.ScriptEngine;

import javax.script.ScriptEngineManager;

import javax.script.ScriptException;

public class UsingInterfaces {

 public static void main(String[] args) {

 // Get the Groovy engine

 ScriptEngineManager manager =

 new ScriptEngineManager();

 ScriptEngine engine = manager.getEngineByName(

 "Groovy");

 // Make sure the script engine implements

 // Invocable interface

 if (!(engine instanceof Invocable)) {

 System.out.println(

 """Interface implementation in script

 is not supported.""");

 return;

 }

 // Cast the engine reference to the Invocable

 // type

 Invocable inv = (Invocable) engine;

 // Create the script for add() and subtract()

 // functions

 String script = """

 def add(n1, n2) { n1 + n2 }

 def subtract(n1, n2) { n1 - n2 }

 """;

Chapter 10 SCripting in Java

795

 try {

 // Compile the script that will be stored in

 // the engine

 engine.eval(script);

 // Get the interface implementation

 Calculator calc = inv.getInterface(

 Calculator.class);

 if (calc == null) {

 System.err.println(

 """Calculator interface implementation

 not found.""");

 return;

 }

 int result1 = calc.add(15, 10);

 System.out.println(

 "add(15, 10) = " + result1);

 int result2 = calc.subtract(15, 10);

 System.out.println(

 "subtract(15, 10) = " + result2);

 } catch (ScriptException e) {

 e.printStackTrace();

 }

 }

}

add(15, 10) = 25

subtract(15, 10) = 5

The second version of the getInterface() method is used to obtain an instance of

a Java interface whose methods are implemented as instance methods of an object. Its

first argument is the reference of the object that is created in the scripting language. The

instance methods of the object implement the interface type passed in as the second

Chapter 10 SCripting in Java

796

argument. The following code in Groovy creates an object whose instance methods

implement the Calculator interface:

 class GCalculator {

 def add(int n1, int n2){n1 + n2}

 def subtract(int n1, int n2){n1 + n2}

 }

 calculator = new GCalculator()

When instance methods of a script object implements methods of a Java interface,

you need to perform an extra step. You need to get the reference of the script object

before you can get the instance of the interface, as shown:

// Get the reference of the global script object calc

Object calc = engine.get("calculator");

// Get the implementation of the Calculator interface

Calculator calculator =

 inv.getInterface(calc, Calculator.class);

Listing 10-20 shows how to implement methods of a Java interface as instance

methods of an object using Groovy.

Listing 10-20. Implementing Methods of a Java Interface As Instance Methods of

an Object in a Script

// ScriptObjectImplInterface.java

package com.jdojo.script;

import javax.script.Invocable;

import javax.script.ScriptEngine;

import javax.script.ScriptEngineManager;

import javax.script.ScriptException;

public class ScriptObjectImplInterface {

 public static void main(String[] args) {

 // Get the Groovy engine

 ScriptEngineManager manager =

 new ScriptEngineManager();

 ScriptEngine engine = manager.getEngineByName(

 "Groovy");

Chapter 10 SCripting in Java

797

 // Make sure the engine implements the Invocable

 // interface

 if (!(engine instanceof Invocable)) {

 System.out.println(

 """Interface implementation in script is

 not supported.""");

 return;

 }

 // Cast the engine reference to the Invocable type

 Invocable inv = (Invocable) engine;

 String script = """

 class GCalculator {

 def add(int n1, int n2){n1 + n2}

 def subtract(int n1, int n2){n1 + n2}

 }

 calculator = new GCalculator()

 """;

 try {

 // Compile and store the script in the engine

 engine.eval(script);

 // Get the reference of the global script

 // object calc

 Object calc = engine.get("calculator");

 // Get the implementation of the Calculator

 // interface

 Calculator calculator =

 inv.getInterface(calc, Calculator.class);

 if (calculator == null) {

 System.err.println(

 """Calculator interface implementation

 not found.""");

 return;

 }

 int result1 = calculator.add(15, 10);

 System.out.println(

Chapter 10 SCripting in Java

798

 "add(15, 10) = " + result1);

 int result2 = calculator.subtract(15, 10);

 System.out.println(

 "subtract(15, 10) = " + result2);

 } catch (ScriptException e) {

 e.printStackTrace();

 }

 }

}

add(15, 10) = 25

subtract(15, 10) = 5

 Using Compiled Scripts
A script engine may allow compiling a script and executing it repeatedly. Executing

compiled scripts may increase the performance of an application. A script engine may

compile and store scripts in the form of Java classes, Java class files, or in a language-

specific form.

Not all script engines are required to support script compilation. Script engines that

support script compilation must implement the Compilable interface. Groovy engine

supports script compilation. The following snippet of code checks if a script engine

implements the Compilable interface:

// Get the script engine reference

ScriptEngineManager manager = new ScriptEngineManager();

ScriptEngine engine = manager.getEngineByName(

 "YOUR_ENGINE_NAME");

if (engine instanceof Compilable) {

 System.out.println(

 "Script compilation is supported.");

} else {

 System.out.println(

 "Script compilation is not supported.");

}

Chapter 10 SCripting in Java

799

Once you know that a script engine implements the Compilable interface, you can

cast its reference to a Compilable type as

// Cast the engine reference to the Compilable type

Compilable comp = (Compilable) engine;

The Compilable interface contains two methods:

• CompiledScript compile(String script) throws

ScriptException

• CompiledScript compile(Reader script) throws

ScriptException

The two versions of the method differ only in the type of the source of the script. The

first version accepts the script as a String and the second one as a Reader.

The compile() method returns an object of the CompiledScript class.

CompiledScript is an abstract class. The provider of the script engine provides the

concrete implementation of this class. A CompiledScript is associated with the

ScriptEngine that creates it. The getEngine() method of the CompiledScript class

returns the reference of the ScriptEngine to which it is associated.

To execute a compiled script, you need to call one of the following eval() methods

of the CompiledScript class:

• Object eval() throws ScriptException

• Object eval(Bindings bindings) throws ScriptException

• Object eval(ScriptContext context) throws ScriptException

The eval() method without any arguments uses the default script context of the

script engine to execute the compiled script. The other two versions work the same

as the eval() method of the ScriptEngine interface when you pass a Bindings or a

ScriptContext to them.

Listing 10-21 shows how to compile a script and execute it. It executes the same

compiled script twice with different parameters.

Chapter 10 SCripting in Java

800

Listing 10-21. Using Compiled Scripts

// CompilableTest .java

package com.jdojo.script;

import javax.script.Bindings;

import javax.script.Compilable;

import javax.script.CompiledScript;

import javax.script.ScriptEngine;

import javax.script.ScriptEngineManager;

import javax.script.ScriptException;

public class CompilableTest {

 public static void main(String[] args) {

 // Get the Groovy engine

 ScriptEngineManager manager =

 new ScriptEngineManager();

 ScriptEngine engine = manager.getEngineByName(

 "Groovy");

 if (!(engine instanceof Compilable)) {

 System.out.println(

 "Script compilation not supported.");

 return;

 }

 // Cast the engine reference to the Compilable

 // type

 Compilable comp = (Compilable) engine;

 try {

 // Compile a script

 String script = "println(n1 + n2)";

 CompiledScript cScript = comp.compile(script);

 // Store n1 and n2 script variables in a

 // Bindings

 Bindings scriptParams =

 engine.createBindings();

 scriptParams.put("n1", 2);

 scriptParams.put("n2", 3);

 cScript.eval(scriptParams);

Chapter 10 SCripting in Java

801

 // Execute the script again with different

 // values for n1 and n2

 scriptParams.put("n1", 9);

 scriptParams.put("n2", 7);

 cScript.eval(scriptParams);

 } catch (ScriptException e) {

 e.printStackTrace();

 }

 }

}

5

16

 Using Java in Scripting Languages
Scripting languages allow using Java class libraries in scripts. Each scripting language

has its own syntax for using Java classes. It is not possible, and is outside the scope of this

book, to discuss the syntax of all scripting languages. In this section, I discuss the syntax

of using some Java constructs in Groovy. For the complete coverage of the Groovy, refer

to the website at www.groovy- lang.org/.

 Declaring Variables
Declaring variables in a scripting language is not necessarily related to Java. Often,

scripting languages let you assign values to variables without declaring them. The types

of variables then are determined at runtime based on the types of the values they store.

In Groovy, the keyword def is used to declare a variable. If you decide to omit the

keyword def in a variable declaration, the variable is accessible script-wide, although not in

classes you declare inside the script, and the value is accessible from Java after the script is

processed. The following snippet of code declares two variables and assigns them a value:

// Declare a variable named msg using the def keyword

def msg = "Hello";

// Declare a variable named greeting without using the

// keyword def. We can later use

Chapter 10 SCripting in Java

http://www.groovy-lang.org/

802

// Object greeting = engine.get("greeting");

// in Java to get the value.

greeting = "Hello";

 Importing Java Classes
Groovy sits on top of a JVM, so you can just import Java classes from the standard library

into a Groovy script the same way as if it was a Java class file. The same holds for classes

provided by libraries included in the project and for classes defined in your project:

// A class from the standard library

import java.text.SimpleDateFormat

// A class defined elsewhere in the project

import java17.script.SomeJavaClass

// Some library class. Must be inside the classpath.

import com.foo.superlib.Foo

def obj = new SomeJavaClass(8)

def sdf = new SimpleDateFormat("yyyy-MM-dd")

def foo = new Foo()

...

Other scripting languages define, or do not define, their own ways to import Java

classes. Consult their documentation for details.

 Implementing a Script Engine
Implementing a full-blown script engine is no simple task, and it is out of scope of this

book. This section is meant to give you a brief, but complete, overview of the setup needed

to implement a script engine. In this section, you will implement a simple script engine

called the JKScript engine. It will evaluate arithmetic expressions with the following rules:

• It will evaluate an arithmetic expression that consists of two operands

and one operator.

• The expression may have two number literals, two variables, or one

number literal and one variable as operands. The number literals

Chapter 10 SCripting in Java

803

must be in decimal format. Hexadecimal, octal, and binary number

literals are not supported.

• The arithmetic operations in an expression are limited to add,

subtract, multiply, and divide.

• It will recognize +, -, *, and / as arithmetic operators.

• The engine will return a Double object as the result of the expression.

• Operands in an expression may be passed to the engine using global

scope or engine scope bindings of the engine.

• It should allow executing scripts from a String object and a

java.io.Reader object. However, a Reader should have only one

expression as its contents.

• It will not implement the Invocable and Compilable interfaces.

Using these rules, some valid expressions for your script engine are as follows:

• 10 + 90

• 10.7 + 89.0

• +10 + +90

• num1 + num2

• num1 * num2

• 78.0 / 7.5

The Scripting API uses the service provider mechanism to discover script engines.

The service type is the javax.script.ScriptEngineFactory interface. Your script

engine must provide an implementation for this service type. You will package your

script engine in a separate module named jdojo.jkscript, as declared in Listing 10-22.

Listing 10-22. The Declaration of a jdojo.jkscript Module

// module-info.java

module jdojo.jkscript {

 requires java.scripting;

 provides javax.script.ScriptEngineFactory

 with com.jdojo.jkscript.JKScriptEngineFactory;

}

Chapter 10 SCripting in Java

804

The module reads the java.scripting module because it needs to use types

from this module. The module provides an implementation of the javax.script.

ScriptEngineFactory service interface, which is the com.jdojo.jkscript.

JKScriptEngineFactory class. You do not need to export any packages of your module

because no other modules are supposed to access any types from this module directly.

As part of your implementation for the JKScript script engine, you will develop

three classes as listed in Table 10-2. In the subsequent sections, you will develop these

classes.

 The Expression Class
The Expression class contains the main logic for parsing and evaluating an arithmetic

expression. Listing 10-23 contains the complete code for the Expression class.

Table 10-2. Classes to Be Developed for the JKScript Script Engine

Class Description

Expression the Expression class is the heart of your script engine. it performs

the work of parsing and evaluating an arithmetic expression. it is used

inside the eval() methods of the JKScriptEngine class.

JKScriptEngine an implementation of the ScriptEngine interface. it extends the

AbstractScriptEngine class that implements the ScriptEngine

interface. the AbstractScriptEngine class provides a standard

implementation for several versions of the eval() methods of the

ScriptEngine interface. You need to implement the following

two versions of the eval() method: Object eval(String,

ScriptContext) and Object eval(Reader, ScriptContext)

JKScriptEngineFactory an implementation of the ScriptEngineFactory interface.

this is the service provider for the javax.script.

ScriptEngineFactory service interface.

Chapter 10 SCripting in Java

805

Listing 10-23. The Expression Class That Parses and Evaluates an Arithmetic

Expression

// Expression.java

package com.jdojo.jkscript;

import java.util.regex.Matcher;

import java.util.regex.Pattern;

import javax.script.ScriptContext;

public class Expression {

 private String exp;

 private ScriptContext context;

 private String op1;

 private char op1Sign = '+';

 private String op2;

 private char op2Sign = '+';

 private char operation;

 private boolean parsed;

 public Expression(String exp, ScriptContext context) {

 if (exp == null || exp.trim().equals("")) {

 throw new IllegalArgumentException(

 this.getErrorString());

 }

 this.exp = exp.trim();

 if (context == null) {

 throw new IllegalArgumentException(

 "ScriptContext cannot be null.");

 }

 this.context = context;

 }

 public String getExpression() {

 return exp;

 }

 public ScriptContext getScriptContext() {

 return context;

 }

Chapter 10 SCripting in Java

806

 public Double eval() {

 // Parse the expression

 if (!parsed) {

 this.parse();

 this.parsed = true;

 }

 // Extract the values for the operand

 double op1Value = getOperandValue(op1Sign, op1);

 double op2Value = getOperandValue(op2Sign, op2);

 // Evaluate the expression

 Double result = null;

 switch (operation) {

 case '+':

 result = op1Value + op2Value;

 break;

 case '-':

 result = op1Value - op2Value;

 break;

 case '*':

 result = op1Value * op2Value;

 break;

 case '/':

 result = op1Value / op2Value;

 break;

 default:

 throw new RuntimeException(

 "Invalid operation:" + operation);

 }

 return result;

 }

 private double

 getOperandValue(char sign, String operand) {

 // Check if operand is a double

 double value;

 try {

Chapter 10 SCripting in Java

807

 value = Double.parseDouble(operand);

 return sign == '-' ? -value : value;

 } catch (NumberFormatException e) {

 // Ignore it. Operand is not in a format that

 // can be converted to a double value.

 }

 // Check if operand is a bind variable

 Object bindValue = context.getAttribute(operand);

 if (bindValue == null) {

 throw new RuntimeException(operand +

 " is not found in the script context.");

 }

 if (bindValue instanceof Number) {

 value = ((Number) bindValue).doubleValue();

 return sign == '-' ? -value : value;

 } else {

 throw new RuntimeException(operand +

 " must be bound to a number.");

 }

 }

 public void parse() {

 // Supported expressions are of the form v1 op v2,

 // where v1 and v2 are variable names or numbers,

 // and op could be +, -, *, or /

 // Prepare the pattern for the expected expression

 String operandSignPattern = "([+-]?)";

 String operandPattern = "([\\p{Alnum}\\p{Sc}_.]+)";

 String whileSpacePattern = "([\\s]*)";

 String operationPattern = "([+*/-])";

 String pattern = "^" + operandSignPattern

 + operandPattern

 + whileSpacePattern + operationPattern

 + whileSpacePattern

 + operandSignPattern + operandPattern

 + "$";

Chapter 10 SCripting in Java

808

 Pattern p = Pattern.compile(pattern);

 Matcher m = p.matcher(exp);

 if (!m.matches()) {

 // The expression is not in the expected format

 throw new IllegalArgumentException(

 this.getErrorString());

 }

 // Get operand-1

 String temp = m.group(1);

 if (temp != null && !temp.equals("")) {

 this.op1Sign = temp.charAt(0);

 }

 this.op1 = m.group(2);

 // Get operation

 temp = m.group(4);

 if (temp != null && !temp.equals("")) {

 this.operation = temp.charAt(0);

 }

 // Get operand-2

 temp = m.group(6);

 if (temp != null && !temp.equals("")) {

 this.op2Sign = temp.charAt(0);

 }

 this.op2 = m.group(7);

 }

 private String getErrorString() {

 return "Invalid expression[" + exp + "]"

 + "\nSupported expression syntax is: "

 + "op1 operation op2"

 + "\n where op1 and op2 can be a number "

 + " or a bind variable"

 + " , and operation can be"

 + " +, -, *, and /.";

 }

 @Override

Chapter 10 SCripting in Java

809

 public String toString() {

 return "Expression: " + this.exp + ", op1 Sign = "

 + op1Sign + ", op1 = " + op1

 + ", op2 Sign = " + op2Sign

 + ", op2 = " + op2

 + ", operation = " + operation;

 }

}

The Expression class is designed to parse and evaluate an arithmetic expression of

the form

op1 operation op2

Here, op1 and op2 are two operands that can be numbers in decimal format or

variables, and operation can be +, -, *, or /.

The suggested use of the Expression class is

Expression exp = new Expression(expression, scriptContext);

Double value = exp.eval();

Let’s discuss important components of the Expression class in detail. Instance

variables exp and context are the expression and the ScriptContext to evaluate the

expression, respectively. They are passed in to the constructor of this class.

The instance variables op1 and op2 represent the first and the second operands in

the expression, respectively. The instance variables op1Sign and op2Sign represent

signs, which could be + or -, for the first and the second operands in the expression,

respectively. The operands and their signs are populated when the expression is parsed

using the parse() method.

The instance variable operation represents an arithmetic operation (+, -, *, or /) to

be performed on the operands.

The instance variable parsed is used to keep track of the fact whether the expression

has been parsed or not. The parse() method sets it to true.

The constructor accepts an expression and a ScriptContext and makes sure that

they are not null and stores them in the instance variables. It trims the leading and

trailing whitespace from the expression before storing it in the instance variable exp.

Chapter 10 SCripting in Java

810

The parse() method parses the expression into operands and operations. It uses

a regular expression to parse the expression text. The regular expression expects the

expression text in the following form:

• An optional sign + or - for the first operand

• The first operand that may consist of a combination of alphanumeric

letters, currency signs, underscores, and decimal points

• Any amount of whitespace

• An operation sign that may be +, -, *, or /

• An optional sign + or - for the second operand

• The second operand that may consist of a combination of

alphanumeric letters, currency signs, underscores, and decimal points

The regular expression ([+-]?) will match the optional sign for the operand. The

regular expression ([\\pAlnum\\pSc_.]+) will match an operand, which may be a

decimal number or a name. The regular expression ([\\s]*) will match any amount of

whitespace. The regular expression ([+*/-]) will match an operation sign. All regular

expressions are enclosed in parentheses to form groups, so you can capture the matched

parts of the expression.

If an expression matches the regular expression, the parse() method stores the

matches into respective instance variables.

Note that the regular expression to match the operand is not perfect. It will allow

several invalid cases, such as an operand having multiple decimal points, etc. However,

for this demonstration purpose, it will do.

The getOperandValue() method is used during an expression evaluation after the

expression has been parsed. If the operand is a double number, it returns the value by

applying the sign of the operand. Otherwise, it looks up the name of the operand in the

ScriptContext. If the name of the operand is not found in the ScriptContext, it throws

a RuntimeException. If the name of the operand is found in the ScriptContext, it checks

if the value is a number. If the value is a number, it returns the value after applying the

sign to the value; otherwise, it throws a RuntimeException.

The getOperandValue() method does not support operands in hexadecimal, octal,

and binary formats. For example, an expression like “0x2A + 0b1011” will not be treated

as an expression having two operands with int literals. It is left to readers to enhance this

method to support numeric literals in hexadecimal, octal, and binary formats.

Chapter 10 SCripting in Java

811

The eval() method evaluates the expression and returns a double value. First, it

parses the expression if it has not already been parsed. Note that multiple calls to the

eval() parses the expression only once. It obtains values for both operands, performs

the operation, and returns the value of the expression.

 The JKScriptEngine Class
Listing 10-24 contains the implementation for the JKScript script engine. Its

eval(String, ScriptContext) method contains the main logic:

Expression exp = new Expression(script, context); Object result = exp.eval();

It creates an object of the Expression class. It calls the eval() method of the

Expression object that evaluates the expression and returns the result.

The eval(Reader, ScriptContext) method reads all lines from the Reader,

concatenates them, and passes the resulting String to the eval(String, ScriptContext)

method to evaluate the expression. Note that a Reader must have only one expression. An

expression may be split into multiple lines. Whitespace in the Reader is ignored.

Listing 10-24. An Implementation of the JKScript Script Engine

// JKScriptEngine.java

package com.jdojo.jkscript;

import java.io.BufferedReader;

import java.io.IOException;

import java.io.Reader;

import javax.script.AbstractScriptEngine;

import javax.script.Bindings;

import javax.script.ScriptContext;

import javax.script.ScriptEngineFactory;

import javax.script.ScriptException;

import javax.script.SimpleBindings;

public class JKScriptEngine extends AbstractScriptEngine {

 private final ScriptEngineFactory factory;

 public JKScriptEngine(ScriptEngineFactory factory) {

 this.factory = factory;

 }

Chapter 10 SCripting in Java

812

 @Override

 public Object

 eval(String script, ScriptContext context)

 throws ScriptException {

 try {

 Expression exp =

 new Expression(script, context);

 Object result = exp.eval();

 return result;

 } catch (Exception e) {

 throw new ScriptException(e.getMessage());

 }

 }

 @Override

 public Object

 eval(Reader reader, ScriptContext context)

 throws ScriptException {

 // Read all lines from the Reader

 BufferedReader br = new BufferedReader(reader);

 String script = "";

 try {

 String str;

 while ((str = br.readLine()) != null) {

 script = script + str;

 }

 } catch (IOException e) {

 throw new ScriptException(e);

 }

 // Use the String version of eval()

 return eval(script, context);

 }

 @Override

 public Bindings createBindings() {

 return new SimpleBindings();

 }

Chapter 10 SCripting in Java

813

 @Override

 Public ScriptEngineFactory getFactory() {

 return factory;

 }

}

 The JKScriptEngineFactory Class
Listing 10-25 contains the implementation for the ScriptEngineFactory interface

for the JKScript engine. Some of its methods return a "Not Implemented" string

because you do not support features exposed by those methods. The code in the

JKScriptEngineFactory class is self-explanatory. An instance of the JKScript engine

may be obtained using ScriptEngineManager with a name of jks, JKScript, or jkscript

as coded in the getNames() method.

Listing 10-25. A ScriptEngineFactory Implementation for the JKScript Script

Engine

// JKScriptEngineFactory.java

package com.jdojo.jkscript;

import java.util.List;

import javax.script.ScriptEngine;

import javax.script.ScriptEngineFactory;

public class JKScriptEngineFactory

 implements ScriptEngineFactory {

 @Override

 public String getEngineName() {

 return "JKScript Engine";

 }

 @Override

 public String getEngineVersion() {

 return "1.0";

 }

 @Override

 public List<String> getExtensions() {

 return List.of("jks");

 }

Chapter 10 SCripting in Java

814

 @Override

 public List<String> getMimeTypes() {

 return List.of("text/jkscript");

 }

 @Override

 public List<String> getNames() {

 return List.of("jks", "JKScript", "jkscript");

 }

 @Override

 public String getLanguageName() {

 return "JKScript";

 }

 @Override

 public String getLanguageVersion() {

 return "1.0";

 }

 @Override

 public Object getParameter(String key) {

 switch (key) {

 case ScriptEngine.ENGINE:

 return getEngineName();

 case ScriptEngine.ENGINE_VERSION:

 return getEngineVersion();

 case ScriptEngine.NAME:

 return getEngineName();

 case ScriptEngine.LANGUAGE:

 return getLanguageName();

 case ScriptEngine.LANGUAGE_VERSION:

 return getLanguageVersion();

 case "THREADING":

 return "MULTITHREADED";

 default:

 return null;

 }

 }

Chapter 10 SCripting in Java

815

 @Override

 public String

 getMethodCallSyntax(String obj, String m, String[] p) {

 return "Not implemented";

 }

 @Override

 public String

 getOutputStatement(String toDisplay) {

 return "Not implemented";

 }

 @Override

 public String

 getProgram(String[] statements) {

 return "Not implemented";

 }

 @Override

 public ScriptEngine

 getScriptEngine() {

 return new JKScriptEngine(this);

 }

}

 Packaging the JKScript Files
To let others use your JKScript engine, all you need to do is to supply the modular JAR for

the jdojo.jkscript module.

 Using the JKScript Script Engine
It is time to test your JKScript script engine. The first and most important step is to

include the jdojo.jkscript.jar, which you created in the previous section, to the

application’s module path. After that, using the JKScript script engine is no different from

using any other script engines.

Chapter 10 SCripting in Java

816

The following snippet of code creates an instance of the JKScript script engine using

JKScript as its name. You can also use its other names, jks and jkscript:

// Create the JKScript engine

ScriptEngineManager manager = new ScriptEngineManager();

ScriptEngine engine = manager.getEngineByName("JKScript");

if (engine == null) {

 System.out.println(

 "JKScript engine is not available. ");

 System.out.println(

 "Add jkscript.jar to CLASSPATH.");

else {

 // Evaluate your JKScript

}

Listing 10-26 contains a program that uses the JKScript script engine to evaluate

different types of expressions. Expressions stored in String objects and files are

executed. Some expressions use numeric literals and some bind variables whose

values are passed in bindings in the engine scope and global scope of the default

ScriptContext of the engine. Note that this program expects a file named jkscript.txt

in the current directory that contains an arithmetic expression that can be understood by

the JKScript script engine. If the script file does not exist, the program prints a message

on the standard output with the path of the expected script file. You may get a different

output in the last line.

Listing 10-26. Using the JKScript Script Engine

// JKScriptTest.java

package com.jdojo.script;

import java.io.FileNotFoundException;

import java.io.IOException;

import java.io.Reader;

import java.nio.file.Files;

import java.nio.file.Path;

import java.nio.file.Paths;

import javax.script.ScriptEngine;

import javax.script.ScriptEngineManager;

Chapter 10 SCripting in Java

817

import javax.script.ScriptException;

public class JKScriptTest {

 public static void

 main(String[] args)

 throws FileNotFoundException, IOException {

 // Create JKScript engine

 ScriptEngineManager manager =

 new ScriptEngineManager();

 ScriptEngine engine = manager.getEngineByName(

 "JKScript");

 if (engine == null) {

 System.out.println(

 "JKScript engine is not available. ");

 System.out.println(

 "Add jkscript.jar to CLASSPATH.");

 return;

 }

 // Test scripts as String

 testString(manager, engine);

 // Test scripts as a Reader

 testReader(manager, engine);

 }

 public static void

 testString(ScriptEngineManager manager,

 ScriptEngine engine) {

 try {

 // Use simple expressions with numeric literals

 String script = "12.8 + 15.2";

 Object result = engine.eval(script);

 System.out.println(script + " = " + result);

 script = "-90.0 - -10.5";

 result = engine.eval(script);

 System.out.println(script + " = " + result);

 script = "5 * 12";

 result = engine.eval(script);

Chapter 10 SCripting in Java

818

 System.out.println(script + " = " + result);

 script = "56.0 / -7.0";

 result = engine.eval(script);

 System.out.println(script + " = " + result);

 // Use global scope bindings variables

 manager.put("num1", 10.0);

 manager.put("num2", 20.0);

 script = "num1 + num2";

 result = engine.eval(script);

 System.out.println(script + " = " + result);

 // Use global and engine scopes bindings.

 // num1 from engine scope and num2 from

 // global scope will be used.

 engine.put("num1", 70.0);

 script = "num1 + num2";

 result = engine.eval(script);

 System.out.println(script + " = " + result);

 // Try mixture of number literal and bindings.

 // num1 from the engine scope bindings will be

 // used

 script = "10 + num1";

 result = engine.eval(script);

 System.out.println(script + " = " + result);

 } catch (ScriptException e) {

 e.printStackTrace();

 }

 }

 public static void

 testReader(ScriptEngineManager manager,

 ScriptEngine engine) {

 try {

 Path scriptPath = Paths.get("jkscript.txt").

 toAbsolutePath();

 if (!Files.exists(scriptPath)) {

 System.out.println(scriptPath +

 " script file does not exist.");

Chapter 10 SCripting in Java

819

 return;

 }

 try (Reader reader = Files.

 newBufferedReader(scriptPath);) {

 Object result = engine.eval(reader);

 System.out.println("Result of " +

 scriptPath + " = " + result);

 }

 } catch (ScriptException | IOException e) {

 e.printStackTrace();

 }

 }

}

12.8 + 15.2 = 28.0

-90.0 - -10.5 = -79.5

5 * 12 = 60.0

56.0 / -7.0 = -8.0

num1 + num2 = 30.0

num1 + num2 = 90.0

10 + num1 = 80.0

Result of C:\Java9APIsAndModules\jkscript.txt = 88.0

 JavaFX in Groovy
We can use scripting to speed up JavaFX development. In fact, mixing Java code and

scripts helps to separate front-end and back-end logic, and because scripts are more

concise compared to Java code, you can save some development time.

Listing 10-27 contains a simple HelloWorld-style JavaFX application.

Listing 10-27. A JavaFX Application Using a Groovy Script

package com.jdojo.groovyfx;

import javax.script.Invocable;

import javax.script.ScriptEngine;

import javax.script.ScriptEngineManager;

Chapter 10 SCripting in Java

820

import javax.script.ScriptException;

import javafx.application.Application;

import javafx.stage.Stage;

public class HelloGroovyFX extends Application {

 private Invocable inv;

 public static void main(String[] args) {

 launch(args);

 }

 @Override

 public void init() {

 // Create a script engine manager

 ScriptEngineManager manager =

 new ScriptEngineManager();

 // Obtain a Groovy script engine from the manager

 ScriptEngine engine =

 manager.getEngineByName("Groovy");

 // Store the Groovy script in a String

 String script = """

import javafx.scene.Scene

import javafx.scene.control.Button

import javafx.scene.layout.StackPane

import javafx.beans.property.SimpleStringProperty as SP

def go(def primaryStage) {

 primaryStage.setTitle "Hello World!"

 Button btn = new Button()

 btn.text = "Say 'Hello World'"

 btn.onAction = { def event ->

 println("Hello World!")

 }

 StackPane root = new StackPane()

 root.children.add(btn)

Chapter 10 SCripting in Java

821

 primaryStage.scene = new Scene(root, 300, 250)

 primaryStage.show()

}

 """;

 try {

 // Execute the script

 engine.eval(script);

 inv = (Invocable) engine;

 } catch (ScriptException e) {

 e.printStackTrace();

 }

 }

 @Override

 public void start(Stage primaryStage) {

 try {

 inv.invokeFunction("go", primaryStage);

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

For this to work, you must add the JavaFX libraries. For a Maven project, this is easy.

Just add

<dependency>

 <groupId>org.openjfx</groupId>

 <artifactId>javafx-base</artifactId>

 <version>16</version>

</dependency>

<dependency>

 <groupId>org.openjfx</groupId>

 <artifactId>javafx-graphics</artifactId>

 <version>16</version>

</dependency>

Chapter 10 SCripting in Java

822

<dependency>

 <groupId>org.openjfx</groupId>

 <artifactId>javafx-controls</artifactId>

 <version>16</version>

</dependency>

<dependency>

 <groupId>org.openjfx</groupId>

 <artifactId>javafx-web</artifactId>

 <version>16</version>

</dependency>

inside the <dependencies> section of your pom.xml file.

The Groovy version of the front-end code is a little simpler to write compared to Java.

In the script, you are able to call the methods of the Java classes using their properties.

For example, instead of writing this in Java:

btn.setText("Say 'Hello World'");

you can write this in Groovy:

btn.text = "Say 'Hello World'"

An exception to this rule is

primaryStage.setTitle "Hello World!"

because in the Stage class, the title field has a type different from String.

Adding the event handler for buttons is easier, too. You can use a Groovy closure as the

event handler for the buttons. Note that you are also able to use the onAction property to

set the event handler rather than calling the setOnAction() method of the Button class.

The following snippet of code shows how to set the ActionEvent handler for a button:

 btn.onAction = { def event ->

 println("Hello World!")

 }

Chapter 10 SCripting in Java

823

Figure 10-7. A JavaFX application with Groovy scripting

Figure 10-7 shows the running JavaFX application.

 Summary
A scripting language is a programming language that provides you the ability to write

scripts that are evaluated (or interpreted) by a runtime environment called a script

engine (or an interpreter). A script is a sequence of characters that is written using the

syntax of a scripting language and used as the source for a program executed by an

interpreter. The Java Scripting API allows you to execute scripts written in any scripting

language that can be compiled to Java bytecode from the Java application.

Scripts are executed using a script engine that is an instance of the ScriptEngine

interface. The implementer of the ScriptEngine interface also provides an

implementation of the ScriptEngineFactory interface whose job is to create

instances of the script engine and provide details about the script engine. The

ScriptEngineManager class provides a discovery and instantiation mechanism for script

engines. A ScriptManager maintains a mapping of key-value pairs as an instance of the

Bindings interface that is shared by all script engines that it creates.

You can execute scripts contained in a String or a Reader. The eval() method of

the ScriptEngine is used to execute the script. You can pass parameters to the script

using the ScriptContext. Parameters passed can be local to a script engine, local to a

script execution, or global to all script engines created by a ScriptManager. Using the

Java Scripting API, you can also execute procedures and functions written in scripting

languages. You can also precompile the scripts, if the script engine supports it, and

execute the scripts repeated from Java to get a better performance.

Chapter 10 SCripting in Java

824

You can implement your script engine using the Java Scripting API. You need to

provide the implementation for the ScriptEngine and the ScriptEngineFactory

interfaces. You need to package your script engine code in a certain way so the engine

can be discovered by the ScriptManager at runtime.

 Exercises
Exercise 1

What is a scripting language?

Exercise 2

What JDK module contains the Scripting API?

Exercise 3

Briefly describe the use of the following classes and interfaces:

ScriptEngineFactory, ScriptEngine, ScriptEngineManager, Compilable, Invocable,

Bindings, ScriptContext, and ScriptException.

Exercise 4

What is the use of the eval() method of a ScriptEngine?

Exercise 5

Write a program in which you create an instance of the ScriptContext interface

using the SimpleScriptContext class. Store a few attributes in the engine scope and

global scope, retrieve the same attributes, and print their values.

Exercise 6

How do you add attributes to the global scope and engine scope?

Exercise 7

How do you send the output of scripts executed by a ScriptEngine to a file?

Exercise 8

Write a snippet of code that checks if a ScriptEngine supports compiling scripts.

Exercise 9

Create an unmodifiable list of two strings using the of() method of the java.util.List

interface and print the values in the list. Use Groovy scripting to write the code.

Exercise 10

If you want to roll out your own script engine, what is the name of the service

interface whose implementation you must provide?

Chapter 10 SCripting in Java

825
© Kishori Sharan, Peter Späth 2021
K. Sharan and P. Späth, More Java 17, https://doi.org/10.1007/978-1-4842-7135-3_11

CHAPTER 11

Process API
In this chapter, you will learn:

• What the Process API is

• How to interact with the current process running the Java application

• How to create a native process

• How to get information about a new process

• How to get information about the current process

• How to get information about all system processes

• How to set permissions to create, query, and manage native processes

All example programs in this chapter are members of a jdojo.process module,

as declared in Listing 11-1.

Listing 11-1. The Declaration of a jdojo.process Module

// module-info.java

module jdojo.process {

 exports com.jdojo.process;

}

 What Is the Process API?
The Process API consists of classes and interfaces that let you work with native processes

in Java programs. Using the API, you can

• Create new native processes from Java code.

• Get process handles for native processes, whether they were created

by Java code or by other means.

https://doi.org/10.1007/978-1-4842-7135-3_11#DOI

826

• Destroy running native processes.

• Query processes for liveness and their other attributes.

• Get the list of child processes and the parent process of a process.

• Get the process ID (PID) of native processes.

• Get the input, output, and error streams of newly created processes.

• Wait for a process to terminate.

• Execute a task when a process terminates.

The Process API is small. It consists of the classes and interfaces listed in Table 11-1.

I explain these classes and interfaces in detail with examples in the following sections.

Table 11-1. Classes and Interfaces for the Process API

Class/Interface Description

Runtime It is a singleton class whose sole instance represents the runtime

environment of a Java application.

ProcessBuilder An instance of the ProcessBuilder class holds a set of

attributes for a process. Calling its start() method starts a

native process and returns an instance of the Process class that

represents the native process. You can call its start() method

multiple times; each time, it starts a new process using the

attributes held in the ProcessBuilder instance.

ProcessBuilder.Redirect It is a static nested class that represents a source of process input

or a destination of process output.

Process It is an abstract class whose instances represent native processes

started by the current Java program using the start() method of

a ProcessBuilder or the exec() method of a Runtime.

ProcessHandle It is an interface whose instances represent handles to native

processes whether they were started by the current Java program

or by any other means. You can control and query the state of the

native process using this handle.

ProcessHandle.Info An instance of the ProcessHandle.Info interface represents a

snapshot of the attributes of a process.

ChApter 11 proCess ApI

827

In Java, you are able to start native processes and work with their input, output,

and error streams. Also, it is possible to work with native processes that you did not

start and to query the details of processes. For the latter, you use an interface named

ProcessHandle, from inside the Process API. An instance of the ProcessHandle interface

identifies a native process; it lets you query the process state and manage the process.

Compare the Process class and the ProcessHandle interface. An instance of the

Process class represents a native process started by the current Java program, whereas

an instance of the ProcessHandle interface represents a native process whether it was

started by the current Java program or by other means. The Process class contains a

toHandle() method that returns a ProcessHandle.

An instance of the ProcessHandle.Info interface represents a snapshot of the

attributes of a process. Note that processes are implemented differently by different

operating systems, so their attributes vary. The state of a process may change anytime,

for example, the CPU time used by the process increases whenever the process gets more

CPU time. To get the latest information on a process, you need to use the info() method

of the ProcessHandle interface at the time you need it, which will return a new instance

of the ProcessHandle.Info interface.

All examples in this chapter were run on Ubuntu Linux. You may get a different

output when you run these programs on your machine using Windows or any other

different operating system.

Note the CLI code snippets can easily be converted to their Windows counterpart
by adapting the executable and argument file paths.

 Knowing the Runtime Environment
Every Java application has an instance of the Runtime class that lets you query and

interact with the runtime environment in which the current Java application is running.

The Runtime class is a singleton. You can get its sole instance using the getRuntime()

static method of this class:

// Get the instance of the Runtime

Runtime runtime = Runtime.getRuntime();

ChApter 11 proCess ApI

828

Using the Runtime, you can know the maximum memory that the current JVM can

use, the currently allocated memory in the JVM, and the free memory in the JVM. Here

are the three methods that let you query the JVM’s memory in bytes:

• long maxMemory()

• long totalMemory()

• long freeMemory()

JVM allocates memory lazily. The maxMemory() method returns the maximum

amount of memory that the JVM can allocate. The method returns Long.MAX_VALUE if

there is no maximum memory limit.

The totalMemory() method returns the currently allocated memory by the JVM out

of the maximum memory it can allocate. When the JVM needs more memory, it allocates

more memory, and the totalMemory() method will return the currently allocated

memory. The JVM can allocate maximum memory up to the amount returned by the

maxMemory() method.

The freeMemory() method returns the unused memory out of the currently allocated

memory by the JVM. How do you know the memory used by the JVM? The following

formula will give you the memory used by the JVM at a specific point in time:

Used Memory = Total Memory Free Memory

Use the availableProcessors() method to get the number of available processors

to the JVM.

Use the version() method to get a Runtime.Version that represents the version

of the Java runtime environment. Refer to the Javadoc for the Runtime.Version class

for more details about the JDK/JRE versioning scheme. Listing 11-2 shows you a few

applications of the Runtime class in querying the Java runtime environment. You may get

a different output.

Listing 11-2. Querying the Java Runtime Environment

// QueryingRuntime.java

package com.jdojo.process;

public class QueryingRuntime {

 public static void main(String[] args) {

 // Get the Runtime instance

 Runtime rt = Runtime.getRuntime();

ChApter 11 proCess ApI

829

 // Get the JVM memory

 long maxMemory = rt.maxMemory();

 long totalMemory = rt.totalMemory();

 long freeMemory = rt.freeMemory();

 long usedMemory = totalMemory freeMemory;

 System.out.format(

 "Max memory = %d, Total memory = %d,"

 + "Free memory = %d, Used memory = %d.%n",

 maxMemory, totalMemory, freeMemory,

 usedMemory);

 // Print the number of processors available to

 // the JVM

 int processors = rt.availableProcessors();

 System.out.format("Number of processors = %d%n",

 processors);

 // Print the version of the Java runtime

 Runtime.Version version = rt.version();

 System.out.format("Version = %s%n",

 version);

 }

}

Max memory = 3126853632,

 Total memory = 201326592,

 Free memory = 198351728,

 Used memory = 2974864.

Number of processors = 8

Version = 17+01-123

You can invoke the garbage collection using the gc() method of the Runtime class. The

System.gc() static method is the convenience method for the Runtime.getRuntime().gc().

Note Method gc() is just a hint for the os to start garbage collection at the
next convenient time slot. You must not rely on the garbage collection to start
immediately if gc() gets called.

ChApter 11 proCess ApI

830

You can terminate the JVM using the exit(int status) method of the

Runtime class. The System.exit() static method is a convenience method

for Runtime.getRuntime().exit(). By convention, a non-zero value for the status

indicates an abnormal termination of the JVM. You can forcibly terminate the JVM using

the halt() method of the Runtime class.

You can add and remove shutdown hooks to the JVM using the

addShutdownHook(Thread hook) and removeShutdownHook(Thread hook) methods of

the Runtime class. A shutdown hook is a thread, which is initialized, but not started. The

JVM starts the thread registered as the shutdown hook when it is terminated.

Use one of its exec() overloaded methods to start a native process. You should use

the ProcessBuilder class to start a native process. The exec() method of the Runtime

class internally uses the ProcessBuilder class.

 The Current Process
The current() static method of the ProcessHandle interface returns the handle of the

current process. Note that the current process returned by this method is always the Java

process that is executing the code:

// Get the handle of the current process

ProcessHandle current = ProcessHandle.current();

Once you get the handle of the current process, you can use methods of the

ProcessHandle interface to get details about the process. Refer to the next section for an

example on how to get information about the current process.

Note You cannot kill the current process. Attempting to kill the current process by
using the destroy() or destroyForcibly() method of the ProcessHandle
interface results in an IllegalStateException.

 Querying the Process State
You can use methods in the ProcessHandle interface to query the state of a process.

Table 11-2 lists this interface’s commonly used methods with brief descriptions. Note

that many of these methods return the snapshot of the state of a process that was true

ChApter 11 proCess ApI

831

when the snapshot was taken. There is no guarantee that the process will still be in the

same state when you use its attributes later because processes are created, run, and

destroyed asynchronously.

Table 11-2. Methods in the ProcessHandle Interface

Method Description

static Stream<ProcessHandle>

allProcesses()

returns a snapshot of all processes in the os that are visible

to the current process.

Stream<ProcessHandle>

children()

returns a snapshot of the current direct children of the

process. Use the descendants() method to get a list

of children at all levels, for example, child processes,

grandchild processes, great grandchild processes, etc.

static ProcessHandle

current()

returns a ProcessHandle for the current process, which is

the Java process executing this method call.

Stream<ProcessHandle>

descendants()

returns a snapshot of the descendants of the process.

Compare it to the children() method, which returns only

direct descendants of the process.

boolean destroy() requests the process to be killed. returns true if

termination of the process was successfully requested,

false otherwise. Whether you can kill a process depends

on operating system access control.

boolean destroyForcibly() requests the process to be killed forcibly. returns true

if termination of the process was successfully requested,

false otherwise. Killing a process forcibly terminates the

process immediately, whereas a normal termination allows a

process to shut down cleanly. Whether you can kill a process

depends on operating system access control.

ProcessHandle.Info info() returns a snapshot of information about the process.

(continued)

ChApter 11 proCess ApI

832

Table 11-2. (continued)

Method Description

boolean isAlive() returns true if the process represented by this

ProcessHandle has not yet terminated, false otherwise.

Note that this method may return true for some time after

you have successfully requested to terminate the process

because the process will be terminated asynchronously.

static

Optional<ProcessHandle>

of(long pid)

returns an Optional<ProcessHandle> for an existing

native process. returns an empty Optional if a process

with the specified pid does not exist.

CompletableFuture

<ProcessHandle> onExit()

returns a CompletableFuture <ProcessHandle> for

the termination of the process. You can use the returned

object to add a task that will be executed when the process

terminates. Calling this method on the current process

throws an IllegalStateException.

Optional<ProcessHandle>

parent()

returns an Optional<ProcessHandle>for the parent

process.

long pid() returns the native process ID (pID) of the process, which is

assigned by the operating system. Note that a pID may be

reused by operating systems if a process terminates, so two

process handles having the same pID may not represent the

same process.

boolean

supportsNormalTermination()

returns true if the implementation of destroy() normally

terminates the process.

Table 11-3 lists the methods and descriptions of the ProcessHandle.Info nested

interface. An instance of this interface contains snapshot information about a process.

You can obtain a ProcessHandle.Info using the info() method of the ProcessHandle

interface or the Process class. All methods in the interface return an Optional.

ChApter 11 proCess ApI

833

Table 11-3. Methods in the ProcessHandle.Info Interface

Method Description

Optional<String[]>

arguments()

returns arguments of the process. the process may change the original

arguments passed to it after startup. this method returns the changed

arguments in that case.

Optional<String>

command()

returns the executable pathname of the process.

Optional<String>

commandLine()

It is a convenience method for combining the command and arguments

of a process. It returns the command line of the process by combining the

values returned from the command() and arguments() methods if both

methods return non-empty optionals.

Optional<Instant>

startInstant()

returns the start time of the process. If the operating system does not

return a start time, it returns an empty Optional.

Optional<Duration>

totalCpuDuration()

returns the total CpU time used by the process. Note that a process may

run for a long time and may use very little CpU time.

Optional<String>

user()

returns the user of the process.

It is time to see the ProcessHandle and ProcessHandle.Info interfaces in action.

Listing 11-3 contains the code for a class named CurrentProcessInfo. Its printInfo()

method takes a ProcessHandle as an argument and prints the details of the process.

We also use this method in other examples to print the details of a process. The main()

method gets the handle of the current process running the process, which is a Java

process, and prints its details. You may get a different output. The output was generated

when the program ran on Linux.

Listing 11-3. A CurrentProcessInfo Class That Prints the Details of the Current

Process

// CurrentProcessInfo.java

package com.jdojo.process;

import java.time.Duration;

import java.time.Instant;

import java.time.ZoneId;

ChApter 11 proCess ApI

834

import java.time.ZonedDateTime;

import java.util.Arrays;

public class CurrentProcessInfo {

 public static void main(String[] args) {

 // Get the handle of the current process

 ProcessHandle current = ProcessHandle.current();

 // Print the process details

 printInfo(current);

 }

 public static void printInfo(ProcessHandle handle) {

 // Get the process ID

 long pid = handle.pid();

 // Is the process still running

 boolean isAlive = handle.isAlive();

 // Get other process info

 ProcessHandle.Info info = handle.info();

 String command = info.command().orElse("");

 String[] args = info.arguments()

 .orElse(new String[]{});

 String commandLine = info.commandLine()

 .orElse("");

 ZonedDateTime startTime = info.startInstant()

 .orElse(Instant.now())

 .atZone(ZoneId.systemDefault());

 Duration duration = info.totalCpuDuration()

 .orElse(Duration.ZERO);

 String owner = info.user().orElse("Unknown");

 long childrenCount = handle.children().count();

 // Print the process details

 System.out.printf("PID: %d%n", pid);

 System.out.printf("IsAlive: %b%n", isAlive);

 System.out.printf("Command: %s%n", command);

 System.out.printf("Arguments: %s%n",

 Arrays.toString(args));

 System.out.printf("CommandLine: %s%n",

ChApter 11 proCess ApI

835

 commandLine);

 System.out.printf("Start Time: %s%n", startTime);

 System.out.printf("CPU Time: %s%n", duration);

 System.out.printf("Owner: %s%n", owner);

 System.out.printf("Children Count: %d%n",

 childrenCount);

 }

}

PID: 4143

IsAlive: true

Command: /opt/jdk17/bin/java

Arguments: [-Dfile.encoding=UTF-8,

 -classpath,

 [<path-to-project>]/bin,

 -XX:+ShowCodeDetailsInExceptionMessages,

 com.jdojo.process.CurrentProcessInfo]

CommandLine: /opt/openjdk-16.36/bin/java

 -Dfile.encoding=UTF-8

 -classpath [<path-to-project>]/bin

 -XX:+ShowCodeDetailsInExceptionMessages

 com.jdojo.process.CurrentProcessInfo

Start Time: 2021-07-16T14:50:18.870+02:00

 [Europe/Berlin]

CPU Time: PT0.06S

Owner: peter

Children Count: 0

 Comparing Processes
It is tricky to compare two processes for equality or order. You cannot rely on PIDs for

equality of processes. Operating systems reuse PIDs after processes terminate. You

may check the start time of processes along with the PIDs; if they are the same, the two

processes may be the same. The equals() method of the default implementation of the

ChApter 11 proCess ApI

836

ProcessHandle interface checks for the following three pieces of information for two

processes to be equal:

• The implementation class of the ProcessHandle interface must be

the same for both processes.

• Processes must have the same PIDs.

• Processes must have been started at the same time.

Note Using the default implementation of the compareTo() method in the
ProcessHandle interface is not very useful for ordering. It compares the pIDs of
two processes.

 Creating a Process
You need to use an instance of the ProcessBuilder class to start a new native process.

A ProcessBuilder manages a collection of native process attributes. Once you set all

the attributes for the process, you can call its start() method to start a new native

process. The attributes stored in the ProcessBuilder will be used to start the new

process. You can call the start() method multiple times to start new processes using the

attributes stored in the ProcessBuilder. The start() method returns an instance of the

Process class that represents the new native process. You can use one of the following

constructors to create an instance of the ProcessBuilder class:

• ProcessBuilder(String... command)

• ProcessBuilder(List<String> command)

The constructors let you specify the operating system program and arguments.

Suppose you want to run the java program from inside /opt/jdk17/bin on Linux as

follows:

/opt/jdk17/bin/java --version

You would create a ProcessBuilder to represent this command as follows:

ProcessBuilder pb = new ProcessBuilder(

 "/opt/jdk17/bin/java", "--version");

ChApter 11 proCess ApI

837

Using methods of the ProcessBuilder class, you can manage the following attributes

of a process:

• A command

• An environment

• A working directory

• Standard I/O (stdin, stdout, and stderr)

• Redirection property for the standard error stream

A command is simply a list of strings representing the external program and its

arguments. You can set the command in the constructor of the ProcessBuilder class. The

following methods let you retrieve the command strings and set more command strings:

• List<String> command()

• ProcessBuilder command(String... command)

The command() method without any arguments returns the command strings already

set in the ProcessBuilder. The command() method with a varargs argument lets you

add more command strings. The following snippet of code creates a ProcessBuilder to

launch JVM on Linux. It uses the command() method to set the command attribute:

ProcessBuilder pb = new ProcessBuilder()

 .command("/opt/jdk17/bin/java",

 "--module-path",

 "myModulePath",

 "--module",

 "myModule/className");

An environment is a list of system-dependent key-value pairs. It is initialized to a

copy of the Map<String,String> returned from the System.getEnv() static method.

You need to use the environment() method of the ProcessBuilder class to get the

Map<String,String> and add key-value pairs to the map. The following snippet of code

shows you how to set the environment attributes for a ProcessBuilder:

ProcessBuilder pb = new ProcessBuilder("mycommand");

Map<String,String> env = pb.environment();

env.put("arg1", "value1");

env.put("arg2", "value2");

ChApter 11 proCess ApI

838

By default, the working directory for the new process would be the working directory

of the current Java process, which is usually the directory named by the system property

user.dir. The following methods in the ProcessBuilder class let you get and set the

working directory:

• File directory()

• ProcessBuilder directory(File directory)

The following snippet of code shows you how to set the working directory to /home/

USER/mydir on Linux:

ProcessBuilder pb = new ProcessBuilder("myCommand")

 .directory(new File("/home/USER/mydir"));

The new process created by the start() method of a ProcessBuilder is created as

a child process of the current process, which is the Java process running the code. In

other words, the current Java process is the parent process of the newly created process.

The new process does not own a terminal or console for standard I/O (stdin, stdout,

and stderr). By default, the I/O of the new process is connected to the parent process

over a pipe. You have an option to set the standard I/O of the new process to the same

as its parent process by calling the inheritIO() method of a ProcessBuilder. There are

several redirectXxx() methods in the ProcessBuilder class to customize the standard

I/O for the new process, for example, setting the standard error stream to a file, so all

errors are logged to a file.

Once you have configured all attributes of the process, you can call start() to start

the process:

// Start a new process

Process newProcess = pb.start();

You can call the start() method of the ProcessBuilder class multiple times to

start multiple processes with the same attributes previously stored in it. This has a

performance benefit that you can create one ProcessBuilder instance and reuse it to

launch the same process multiple times.

You can obtain the process handle of a process using the toHandle() method of the

Process class:

// Get the process handle

ProcessHandle handle = newProcess.toHandle();

ChApter 11 proCess ApI

839

You can use the process handle to destroy the process, wait for the process to finish,

or query the process for its state and attributes such as its children, descendants, parents,

CPU time used, etc. The information you get about a process and the control you have

on a process depend on the operating system access controls.

It is tricky to come up with examples to create processes that will run on all operating

systems. If you can run other examples in this book, it means that you have JDK17

installed on your machine. You can use the java program on your machine to launch

other processes in the examples. You can use the command attribute of the current

process, which is the current running java program, to get the path of the Java program

on your machine, so the examples will work on all platforms.

Let’s look at a few examples of creating native processes using the Java program. You

can print the Java product version information to the standard output and standard error

using the –version and -version options, respectively, as follows:

/opt/jdk17/bin/java --version

openjdk 17 2021-05-16

OpenJDK Runtime Environment (build 17+1-123)

OpenJDK 64-Bit Server VM (build 17+1-123, mixed mode, sharing)

/opt/jdk17/bin/java -version

openjdk 17 2021-05-16

OpenJDK Runtime Environment (build 17+1-123)

OpenJDK 64-Bit Server VM (build 17+1-123, mixed mode, sharing)

In the previous outputs, you do not see any difference as to where the output was

printed. Both outputs are printed to the same console because, by default, both standard

output and standard error are mapped to the console. However, you will see the

difference when you try capturing the outputs from these two commands in a program.

Listing 11-4 shows a program that runs the java –version command to print the

Java product information to the standard output.

Listing 11-4. Capturing the Output of a Native Process

// PipedIO.java

package com.jdojo.process;

import java.io.IOException;

public class PipedIO {

 public static void main(String[] args) {

ChApter 11 proCess ApI

840

 // Get the path of the java program that started

 // this program

 String javaPath = ProcessHandle.current()

 .info()

 .command().orElse(null);

 if(javaPath == null) {

 System.out.println(

 "Could not get the java command's path.");

 return;

 }

 // Configure the ProcessBuilder

 ProcessBuilder pb =

 new ProcessBuilder(javaPath, "--version");

 try {

 // Start a new java process

 Process p = pb.start();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

When you run the program ProcessIO class, it does not print anything. Where

did the output go? The program created a new process, and the standard output of

the process was connected to the parent process over a pipe. If you want to access the

output, you need to read from the appropriate pipe. When the standard I/O of the new

process is piped to the parent process, you can use the following methods of the Process

to get the I/O streams of the new process:

• OutputStream getOutputStream()

• InputStream getInputStream()

• InputStream getErrorStream()

The OutputStream returned from the getOutputStream() method is connected to

the standard input stream of the new process. Writing to this output stream will be piped

to the standard input of the new process.

ChApter 11 proCess ApI

841

The InputStream returned from the getInputStream() is connected to the standard

output of the new process. If you want to capture the standard output of the new process,

you need to read from this input stream.

The InputStream returned from the getErrorStream() is connected to the standard

error of the new process. If you want to capture the standard error of the new process,

you need to read from this input stream. Sometimes, you want to merge the output

to the standard output and standard error into one destination. It gives the exact

sequence of output and the error for easier troubleshooting issues. You can call the

redirectErrorStream(true) method of the ProcessBuilder to send the data written to

the standard error to the standard output. I show examples of this kind shortly.

Note You have options to redirect the standard I/o of a new process to
other destinations such as a file, and in that case, the getOutputStream(),
getInputStream(), and getErrorStream() methods return null.

The program in Listing 11-5 fixes the problem of not getting any output in the

PipedIO class. It reads and prints the data written to the standard output stream in the

pipe.

Listing 11-5. Capturing the Output of a Native Process

// CapturePipedIO.java

package com.jdojo.process;

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;

public class CapturePipedIO {

 public static void main(String[] args) {

 // Get the path of the java program that started

 // this program

 String javaPath = ProcessHandle.current()

 .info()

 .command().orElse(null);

 if (javaPath == null) {

 System.out.println(

ChApter 11 proCess ApI

842

 "Could not get the java command's path.");

 return;

 }

 // Configure the ProcessBuilder

 ProcessBuilder pb =

 new ProcessBuilder(javaPath, "--version");

 try {

 // Start a new java process

 Process p = pb.start();

 // Read and print the standard output stream

 // of the process

 try (BufferedReader input =

 new BufferedReader(

 new InputStreamReader(

 p.getInputStream()))) {

 String line;

 while ((line = input.readLine()) != null) {

 System.out.println(line);

 }

 }

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

openjdk 17 2021-05-16

OpenJDK Runtime Environment (build 17+1-123)

OpenJDK 64-Bit Server VM (build 17+1-123, mixed mode, sharing)

If you run the java command with a -version option, the output is written to the

standard error. If you change the option from –version to -version in Listing 11-5, you

will not get any output again because the output will be piped to the standard error

stream. You have two ways to fix this:

ChApter 11 proCess ApI

843

• In the program, read from the InputStream returned from

the getErrorStream() method of the Process instead of the

InputStream from the getInputStream() method.

• Redirect the error stream to the standard output stream and keep

reading from the standard output.

The following snippet of code creates a ProcessBuilder with the java -version

command and redirects the error stream in the standard output:

// Configure the ProcessBuilder

ProcessBuilder pb =

 new ProcessBuilder(javaPath, "-version")

 .redirectErrorStream(true);

If you change the statement that creates the ProcessBuilder in Listing 11-5 to this

statement, your program will work fine.

A new process can also inherit the standard I/O of the parent process. If you want

to set all I/O destinations of the new process to the same as the current process, use the

inheritIO() method of the ProcessBuilder, as shown:

// Configure the ProcessBuilder inheriting parent's I/O

ProcessBuilder pb =

 new ProcessBuilder(javaPath, "--version")

 .inheritIO();

If you change the code in Listing 11-4 to match the previous snippet of code, you will

see the output.

The ProcessBuilder.Redirect nested class represents the source of the input and

destination of the outputs of the new process created by the ProcessBuilder. The class

defined the following three constants of the ProcessBuilder.Redirect type:

• ProcessBuilder.Redirect DISCARD: Discards the outputs of the new

process

• ProcessBuilder.Redirect.INHERIT: Indicates that the input source

or output destination of the new process will be the same as that of

the current process

• ProcessBuilder.Redirect.PIPE: Indicates that the new process will

be connected to the current process over a pipe, which is the default

ChApter 11 proCess ApI

844

You can also redirect the input and outputs of the new process to a file using the

following methods of the Process.Redirect class:

• ProcessBuilder.Redirect appendTo(File file)

• ProcessBuilder.Redirect from(File file)

• ProcessBuilder.Redirect to(File file)

In the previous snippet of code, you saw how to use the inheritIO() method of the

ProcessBuilder class to let the new process have the same standard I/O as the current

process. You can rewrite that code as follows:

// Configure the ProcessBuilder inheriting parent's I/O

ProcessBuilder pb =

 new ProcessBuilder(javaPath, "--version")

 .redirectInput(ProcessBuilder.Redirect.INHERIT)

 .redirectOutput(ProcessBuilder.Redirect.INHERIT)

 .redirectError(ProcessBuilder.Redirect.INHERIT);

The following snippet of code redirects the standard output of the new process to a

file named java_product_details.txt in the current directory:

// Configure the ProcessBuilder

 ProcessBuilder pb =

 new ProcessBuilder(javaPath, "--version")

 .redirectOutput(

 ProcessBuilder.Redirect.to(

 new File("java_product_details.txt")));

Let’s look at a little complex example that will explore more information about new

native processes. Listing 11-6 contains the code for a class named Job. Its main() method

expects two arguments: sleep interval and sleep duration in seconds. If they are not

passed, the method uses 5 seconds and 60 seconds as the default values. In the first part,

the method attempts to extract first and second arguments, if specified. In the second

part, it gets the process handle of the current process executing this method using the

ProcessHandle.current() method. It reads the PID of the current process and prints a

message including the PID, sleep interval, and sleep duration. In the end, it starts a for

loop and keeps sleeping for the sleep interval until the sleep duration is reached. In

every iteration of the loop, it prints a message.

ChApter 11 proCess ApI

845

Listing 11-6. The Declaration of a Class Named Job

// Job.java

package com.jdojo.process;

import java.io.IOException;

import java.util.ArrayList;

import java.util.List;

import java.util.concurrent.TimeUnit;

import java.util.stream.Collectors;

/**

 * An instance of this class is used as a job that sleeps

 * at a regular interval up to a maximum duration. The

 * sleep interval in seconds can be specified as the first

 * argument and the sleep duration as the second argument

 * while running this class. The default sleep interval

 * and sleep duration are 5 seconds and 60 seconds,

 * respectively. If these values are less than zero, zero

 * is used instead.

 */

public class Job {

 // The job sleep interval

 public static final long DEFAULT_SLEEP_INTERVAL = 5;

 // The job sleep duration

 public static final long DEFAULT_SLEEP_DURATION = 60;

 public static void main(String[] args) {

 long sleepInterval = DEFAULT_SLEEP_INTERVAL;

 long sleepDuration = DEFAULT_SLEEP_DURATION;

 // Get the passed in sleep interval

 if (args.length >= 1) {

 sleepInterval = parseArg(args[0],

 DEFAULT_SLEEP_INTERVAL);

 if (sleepInterval < 0) {

 sleepInterval = 0;

 }

 }

ChApter 11 proCess ApI

846

 // Get the passed in the sleep duration

 if (args.length >= 2) {

 sleepDuration = parseArg(args[1],

 DEFAULT_SLEEP_DURATION);

 if (sleepDuration < 0) {

 sleepDuration = 0;

 }

 }

 long pid = ProcessHandle.current().pid();

 System.out.printf(

 "Job (pid=%d) info: Sleep Interval"

 + "=%d seconds, Sleep Duration=%d "

 + "seconds.%n",

 pid, sleepInterval, sleepDuration);

 for (long sleptFor = 0; sleptFor < sleepDuration;

 sleptFor += sleepInterval) {

 try {

 System.out.printf(

 "Job (pid=%d) is going to"

 + " sleep for %d seconds.%n",

 pid, sleepInterval);

 // Sleep for the sleep interval

 TimeUnit.SECONDS.sleep(sleepInterval);

 } catch (InterruptedException ex) {

 System.out.printf("Job (pid=%d) was "

 + "interrupted.%n", pid);

 }

 }

 }

 /**

 * Starts a new JVM to run the Job class.

 *

 * @param sleepInterval The sleep interval when the

 * Job class is run. It is passed to the JVM as the

 * first argument.

ChApter 11 proCess ApI

847

 * @param sleepDuration The sleep duration for the

 * Job class. It is passed to the JVM as the

 * second argument.

 * @return The new process reference of the newly

 * launched JVM or null if the JVM

 * cannot be launched.

 */

 public static Process startProcess(long sleepInterval,

 long sleepDuration) {

 // Store the command to launch a new JVM in a

 // List<String>

 List<String> cmd = new ArrayList<>();

 // Add command components in order

 addJvmPath(cmd);

 addModulePath(cmd);

 addClassPath(cmd);

 addMainClass(cmd);

 // Add arguments to run the class

 cmd.add(String.valueOf(sleepInterval));

 cmd.add(String.valueOf(sleepDuration));

 // Build the process attributes

 ProcessBuilder pb = new ProcessBuilder()

 .command(cmd)

 .inheritIO();

 String commandLine = pb.command()

 .stream()

 .collect(Collectors.joining(" "));

 System.out.println(

 "Command used:\n" + commandLine);

 // Start the process

 Process p = null;

 try {

 p = pb.start();

 } catch (IOException e) {

 e.printStackTrace();

 }

ChApter 11 proCess ApI

848

 return p;

 }

 /**

 * Used to parse the arguments passed to the JVM,

 * which in turn is passed to the main() method.

 *

 * @param valueStr The string value of the argument

 * @param defaultValue The default value of the

 * argument if the valueStr is not an integer.

 * @return valueStr as a long or the defaultValue if

 * valueStr is not an integer.

 */

 private static long parseArg(String valueStr,

 long defaultValue) {

 long value = defaultValue;

 if (valueStr != null) {

 try {

 value = Long.parseLong(valueStr);

 } catch (NumberFormatException e) {

 // no action needed

 }

 }

 return value;

 }

 /**

 * Adds the JVM path to the command list. It first

 * attempts to use the command attribute of the

 * current process; failing that it relies on the

 * java.home system property.

 *

 * @param cmd The command list

 */

 private static void addJvmPath(List<String> cmd) {

 // First try getting the command to run the

 // current JVM

ChApter 11 proCess ApI

849

 String jvmPath = ProcessHandle.current()

 .info()

 .command().orElse("");

 if (jvmPath.length() > 0) {

 cmd.add(jvmPath);

 } else {

 // Try composing the JVM path using the

 // java.home system property

 final String FILE_SEPARATOR =

 System.getProperty("file.separator");

 jvmPath = System.getProperty("java.home")

 + FILE_SEPARATOR + "bin"

 + FILE_SEPARATOR + "java";

 cmd.add(jvmPath);

 }

 }

 /**

 * Adds a module path to the command list.

 *

 * @param cmd The command list

 */

 private static void addModulePath(List<String> cmd) {

 String modulePath

 = System.getProperty("jdk.module.path");

 if (modulePath != null

 && modulePath.trim().length() > 0) {

 cmd.add("--module-path");

 cmd.add(modulePath);

 }

 }

 /**

 * Adds class path to the command list.

 *

 * @param cmd The command list

 */

ChApter 11 proCess ApI

850

 private static void addClassPath(List<String> cmd) {

 String classPath =

 System.getProperty("java.class.path");

 if (classPath != null

 && classPath.trim().length() > 0) {

 cmd.add("--class-path");

 cmd.add(classPath);

 }

 }

 /**

 * Adds a main class to the command list. Adds

 * module/className or just className depending on

 * whether the Job class was loaded in a named

 * module or unnamed module

 *

 * @param cmd The command list

 */

 private static void addMainClass(List<String> cmd) {

 Class<Job> cls = Job.class;

 String className = cls.getName();

 Module module = cls.getModule();

 if (module.isNamed()) {

 String moduleName = module.getName();

 cmd.add("--module");

 cmd.add(moduleName + "/" + className);

 } else {

 cmd.add(className);

 }

 }

}

The Job class contains a startProcess(long sleepInterval, long

sleepDuration) method that starts a new process. It launches a JVM with the Job class

as the main class. It passes the sleep interval and duration to the JVM as arguments. The

method attempts to build a command to launch the java command from

ChApter 11 proCess ApI

851

the JDK_HOME\bin directory. If the Job class were loaded in a named module, it would

build a command like this:

JDK_HOME/bin/java --module-path <module-path> \

--module jdojo.process/com.jdojo.process.Job \

<sleepInterval> <sleepDuration>

If the Job class were loaded in an unnamed module, it would attempt to build a

command like this:

JDK_HOME/bin/java \

-class-path <class-path> \

com.jdojo.process.Job \

<sleepInterval> <sleepDuration>

The startProcess() method prints the command used to start a process, attempts

to start the process, and returns the process reference.

The addJvmPath() method adds the JVM path to the command list. It attempts to get

the command for the current JVM process to use as the JVM path for the new process. If

it is not available, it attempts to build it from the java.home system property.

The Job class contains several utility methods that are used to compose parts of

commands and parse the arguments passed to the main() method. Refer to their Javadoc

for descriptions.

If you want to start a new process that should run for 15 seconds and wake up every 5

seconds, you can do so using the startProcess() method of the Job class:

// Start a process that runs for 15 seconds

Process p = Job.startProcess(5, 15);

You can print the process details using the printInfo() method of the

CurrentProcessInfo class that you created in Listing 11-3:

// Get the handle of the current process

ProcessHandle handle = p.toHandle();

// Print the process details

CurrentProcessInfo.printInfo(handle);

ChApter 11 proCess ApI

852

You can use the returned value of the onExit() method of the ProcessHandle to run

a task when the process terminates:

CompletableFuture<ProcessHandle> future = handle.onExit();

// Print a message when process terminates

future.thenAccept((ProcessHandle ph) -> {

 System.out.printf(

 "Job (pid=%d) terminated.%n", ph.pid());

});

You can wait for the new process to terminate like so:

// Wait for the process to terminate

future.get();

In this example, future.get() will return the ProcessHandle of the process. I did not

use the return value, because I already had it in the handle variable.

Listing 11-7 contains the code for a StartProcessTest class that shows you how

to create a new process using the Job class. In its main() method, it creates a new

process, prints process details, adds a shutdown task to the process, waits for the process

to terminate, and prints the process details again. Note that the process runs for 15

seconds, but it uses only 0.359375 seconds of CPU time because most of the time the

main thread of the process was sleeping. You may get a different output. The output was

generated when the program ran on Linux.

Listing 11-7. A StartProcessTest Class That Creates New Processes

// StartProcessTest.java

package com.jdojo.process;

import java.util.concurrent.CompletableFuture;

import java.util.concurrent.ExecutionException;

public class StartProcessTest {

 public static void main(String[] args) {

 // Start a process that runs for 15 seconds

 Process p = Job.startProcess(5, 15);

 if (p == null) {

 System.out.println(

 "Could not create a new process.");

ChApter 11 proCess ApI

853

 return;

 }

 // Get the handle of the current process

 ProcessHandle handle = p.toHandle();

 // Print the process details

 CurrentProcessInfo.printInfo(handle);

 CompletableFuture<ProcessHandle> future =

 handle.onExit();

 // Print a message when process terminates

 future.thenAccept((ProcessHandle ph) -> {

 System.out.printf(

 "Job (pid=%d) terminated.%n",

 ph.pid());

 });

 try {

 // Wait for the process to complete

 future.get();

 } catch (InterruptedException

 | ExecutionException e) {

 e.printStackTrace();

 }

 // Print process details again

 CurrentProcessInfo.printInfo(handle);

 }

}

Command used:

/opt/jdk17/bin/java

 --class-path /[<path-to-project>]/bin

 com.jdojo.process.Job 5 15

PID: 8701

IsAlive: true

Command: /opt/jdk17/bin/java

Arguments: [

 --class-path,

ChApter 11 proCess ApI

854

 /[<path-to-project>]/bin,

 com.jdojo.process.Job,

 5, 15]

CommandLine: /opt/jdk17/bin/java

 --class-path /[<path-to-project>]/bin

 com.jdojo.process.Job

 5 15

Start Time: 2021-07-16T18:11:42.510+02:00

 [Europe/Berlin]

CPU Time: PT0.01S

Owner: peter

Children Count: 0

Job (pid=8701) info:

 Sleep Interval=5 seconds, Sleep Duration=15 seconds.

Job (pid=8701) is going to sleep for 5 seconds.

Job (pid=8701) is going to sleep for 5 seconds.

Job (pid=8701) is going to sleep for 5 seconds.

Job (pid=8701) terminated.

PID: 8701

IsAlive: false

Command:

Arguments: []

CommandLine:

Start Time: 2021-07-16T18:11:58.489975569+02:00

 [Europe/Berlin]

CPU Time: PT0S

Owner: Unknown

Children Count: 0

ChApter 11 proCess ApI

855

 Obtaining a Process Handle
There are several ways to get the handle of a native process. For a process created by the

Java code, you can get a ProcessHandle using the toHandle() method of the Process

class. Native processes can also be created from outside the JVM. The ProcessHandle

interface contains the following methods to get the handle of a native process:

• static Optional<ProcessHandle> of(long pid)

• static ProcessHandle current()

• Optional<ProcessHandle> parent()

• Stream<ProcessHandle> children()

• Stream<ProcessHandle> descendants()

• static Stream<ProcessHandle> allProcesses()

The of() static method returns an Optional<ProcessHandle> for the specified pid. If

there is no process with this pid, an empty Optional is returned. To use this method, you

need to know the PID of the process:

// Get the process handle of the process with the pid

// of 1234

Optional<ProcessHandle> handle = ProcessHandle.of(1234L);

The current() static method returns the handle of the current process, which is

always the Java process executing the code. You have already seen an example of this in

Listing 11-3.

The parent() method returns the handle of the parent process. It returns an empty

Optional if the process does not have a parent or the parent cannot be retrieved.

The children() method returns a snapshot of all direct child processes of the

process. There is no guarantee that a process returned by this method is still alive. Note

that a process that’s not alive does not have children.

The descendants() method returns a snapshot of all child processes of the process,

direct or indirect.

The allProcesses() method returns a snapshot of all processes that are visible to

this process. There is no guarantee that the stream contains all process in the operating

system at the time the stream is processed. Processes may have been terminated or

ChApter 11 proCess ApI

856

created after the snapshot was taken. The following snippet of code prints the PIDs of all

processes sorted by their PIDs:

System.out.printf("All processes PIDs:%n");

ProcessHandle.allProcesses()

 .map(ph -> ph.pid())

 .sorted()

 .forEach(System.out::println);

You can compute different types of statistics for all running processes. You can also

create a task manager in Java that displays a UI showing all running processes and their

attributes. Listing 11-8 shows how to get the longest running process details and the

process that used the CPU time the most. I compared the start time of the processes to

get the longest running process and the total CPU duration to get the process that used

the CPU time the most. You may get a different output. I got this output when I ran the

program on Linux.

Listing 11-8. Computing Process Statistics

// ProcessStats.java

package com.jdojo.process;

import java.time.Duration;

import java.time.Instant;

public class ProcessStats {

 public static void main(String[] args) {

 System.out.printf("Longest CPU User Process:%n");

 ProcessHandle.allProcesses()

 .max(ProcessStats::compareCpuTime)

 .ifPresent(CurrentProcessInfo::printInfo);

 System.out.printf("%nLongest Running Process:%n");

 ProcessHandle.allProcesses()

 .max(ProcessStats::compareStartTime)

 .ifPresent(CurrentProcessInfo::printInfo);

 }

 public static int compareCpuTime(ProcessHandle ph1,

 ProcessHandle ph2) {

 return ph1.info()

ChApter 11 proCess ApI

857

 .totalCpuDuration()

 .orElse(Duration.ZERO)

 .compareTo(ph2.info()

 .totalCpuDuration()

 .orElse(Duration.ZERO));

 }

 public static int

 compareStartTime(ProcessHandle ph1,

 ProcessHandle ph2) {

 return ph1.info()

 .startInstant()

 .orElse(Instant.now())

 .compareTo(ph2.info()

 .startInstant()

 .orElse(Instant.now()));

 }

}

Longest CPU User Process:

PID: 2323

IsAlive: true

Command: /usr/lib/tracker/tracker-miner-fs

Arguments: []

CommandLine: /usr/lib/tracker/tracker-miner-fs

Start Time: 2021-07-16T13:43:03.590+02:00[Europe/Berlin]

CPU Time: PT14M35.72S

Owner: peter

Children Count: 0

Longest Running Process:

PID: 9019

IsAlive: true

Command: /opt/openjdk-16.36/bin/java

Arguments: [

 -Dfile.encoding=UTF-8,

 -classpath,

ChApter 11 proCess ApI

858

 [...],

 -XX:+ShowCodeDetailsInExceptionMessages,

 com.jdojo.process.ProcessStats]

CommandLine: /opt/jdk17/bin/java

 -Dfile.encoding=UTF-8

 -classpath [...]

 -XX:+ShowCodeDetailsInExceptionMessages

 com.jdojo.process.ProcessStats

Start Time: 2021-07-16T19:02:01.020+02:00[Europe/Berlin]

CPU Time: PT0.3S

Owner: peter

Children Count: 0

 Terminating Processes
You can terminate a process using the destroy() or destroyForcibly() method of the

ProcessHandle interface and the Process class. Both methods return true if the request

to terminate the process was successful, false otherwise. The destroy() method

requests a normal termination, whereas the destroyForcibly() method requests a

forced termination. It is possible for the isAlive() method to return true for a brief

period after a request to terminate the process has been made.

Note You cannot terminate the current process. Calling the destroy()
or the destroyForcibly() method on the current process throws an
IllegalStateException. the operating system access controls may prevent a
process from being terminated.

A normal termination of a process lets the process terminate cleanly. A

forced termination of a process terminates the process immediately. Whether a

process is normally terminated is implementation dependent. You can use the

supportsNormalTermination() method of the ProcessHandle interface and the Process

class to check if a process supports normal termination. The method returns true if the

process supports normal termination, false otherwise.

ChApter 11 proCess ApI

859

Calling one of these methods to terminate a process that has already been terminated

results in no action. The CompletableFuture<Process> returned from onExit() of the

Process class and the CompletableFuture<ProcessHandle> returned from onExit() of

the ProcessHandle interface are completed when the process terminates.

 Managing Process Permissions
When you ran the examples in the previous sections, I assumed that there was no Java

security manager installed. If a security manager is installed, appropriate permissions

need to be granted to start, manage, and query native processes:

• If you are creating a new process, you need to have

FilePermission(cmd,"execute") permission, where cmd is the

absolute path of the command that will create the process. If cmd

is not an absolute path, you need to have FilePermission("<<ALL

FILES>>","execute") permission.

• To query the state of native processes and destroy the process using

the methods in the ProcessHandle interface, the application needs to

have RuntimePermission("manageProcess") permission.

Listing 11-9 contains a program that gets a process count and creates a new process.

It repeats these two tasks without a security manager and with a security manager.

Listing 11-9. Managing Processes with a Security Manager

// ManageProcessPermission.java

package com.jdojo.process;

import java.util.concurrent.ExecutionException;

public class ManageProcessPermission {

 public static void main(String[] args) {

 // Get the process count

 long count = ProcessHandle.allProcesses().count();

 System.out.printf("Process Count: %d%n", count);

 // Start a new process

 Process p = Job.startProcess(1, 3);

 try {

 p.toHandle().onExit().get();

ChApter 11 proCess ApI

860

 } catch (InterruptedException

 | ExecutionException e) {

 System.out.println(e.getMessage());

 }

 // Install a security manager

 SecurityManager sm = System.getSecurityManager();

 if (sm == null) {

 System.setSecurityManager(

 new SecurityManager());

 System.out.println(

 "A security manager is installed.");

 }

 // Get the process count

 try {

 count = ProcessHandle.allProcesses().count();

 System.out.printf("Process Count: %d%n",

 count);

 } catch (RuntimeException e) {

 System.out.println(

 "Could not get a process count: " +

 e.getMessage());

 }

 // Start a new process

 try {

 p = Job.startProcess(1, 3);

 p.toHandle().onExit().get();

 } catch (InterruptedException

 | ExecutionException

 | RuntimeException e) {

 System.out.println(

 "Could not start a new process: " +

 e.getMessage());

 }

 }

}

ChApter 11 proCess ApI

861

Try running the ManageProcessPermission class using the following command

assuming that you have not changed any Java policy files:

/opt/jdk17/bin/java \

-Dfile.encoding=UTF-8 \

-classpath /[<path-to-project>]/bin \

-XX:+ShowCodeDetailsInExceptionMessages \

com.jdojo.process.ManageProcessPermission

Process Count: 332

Command used:

/opt/jd17/bin/java

 --class-path [...] com.jdojo.process.Job 1 3

Job (pid=3858) info: Sleep Interval=1 seconds,

 Sleep Duration=3 seconds.

Job (pid=3858) is going to sleep for 1 seconds.

Job (pid=3858) is going to sleep for 1 seconds.

Job (pid=3858) is going to sleep for 1 seconds.

A security manager is installed.

Could not get a process count: access denied

 ("java.lang.RuntimePermission" "manageProcess")

Could not start a new process: access denied

 ("java.lang.RuntimePermission" "manageProcess")

You may get a different output. The output indicates that you were able to get the

process count and create a new process before a security manager was installed. After

the security manager was installed, the Java runtime threw exceptions while requesting

the process count and creating a new process. To fix the problem, you need to grant the

following permissions:

• The "manageProcess" RuntimePermission, which will allow the

application to query the native process and create a new process

• The "execute" FilePermission on the Java command path, which

will allow launching the JVM

• The "read" PropertyPermission on the "jdk.module.path" and

"java.class.path" system properties, so the Job class can read

these properties while building the command line to launch the JVM

ChApter 11 proCess ApI

862

Listing 11-10 contains a script to grant these four permissions to all code. You need

to add this script to the JDK_HOME/conf/security/java.policy file on your machine.

The path to the Java launcher is /opt/jdk17/bin/java, and it is valid on Linux only if

you have installed JDK17 in the /opt/jdk17 directory. For all other platforms and JDK

installations, modify this path to point to the correct Java launcher on your machine.

Listing 11-10. Addendum to the JDK_HOME/conf/security/java.policy File

grant {

 permission java.lang.RuntimePermission

 "manageProcess";

 permission java.io.FilePermission

 "/opt/jdk17/bin/java", "execute";

 permission java.util.PropertyPermission

 "jdk.module.path", "read";

 permission java.util.PropertyPermission

 "java.class.path", "read";

};

If you run the ManageProcessPermission class again using the same command, you

should get output similar to the following:

/opt/jdk17/bin/java \

 -Dfile.encoding=UTF-8 \

 -classpath /[<path-to-project>]/bin \

 -XX:+ShowCodeDetailsInExceptionMessages \

 com.jdojo.process.ManageProcessPermission

Process Count: 330

Command used:

/opt/jdk17/bin/java

 --class-path [...]

 com.jdojo.process.Job 1 3

Job (pid=6093) info: Sleep Interval=1 seconds,

 Sleep Duration=3 seconds.

Job (pid=6093) is going to sleep for 1 seconds.

ChApter 11 proCess ApI

863

Job (pid=6093) is going to sleep for 1 seconds.

Job (pid=6093) is going to sleep for 1 seconds.

A security manager is installed.

Process Count: 330

Command used:

/opt/jdk17/bin/java

 --class-path [...]

 com.jdojo.process.Job 1 3

Job (pid=6114) info: Sleep Interval=1 seconds,

 Sleep Duration=3 seconds.

Job (pid=6114) is going to sleep for 1 seconds.

Job (pid=6114) is going to sleep for 1 seconds.

Job (pid=6114) is going to sleep for 1 seconds.

 Summary
The Process API consists of classes and interfaces to work with native processes. Java

SE has provided the Process API since version 1.0 through the Runtime and Process

classes. It allowed you to create new native processes, manage their I/O streams, and

destroy them. Later versions of Java SE improved the API, with an interface named

ProcessHandle that represents a process handle. You can use the process handle to

query and manage a native process.

The following classes and interfaces comprise the Process API: Runtime,

ProcessBuilder, ProcessBuilder.Redirect, Process, ProcessHandle, and

ProcessHandle.Info.

The exec() method of the Runtime class is used to start a native process. The

start() method of the ProcessBuilder class is preferred over the exec() method of

the Runtime class to start a process. An instance of the ProcessBuilder.Redirect class

represents a source of input of a process or a destination output of a process.

By default, the standard I/O of the new process is connected to the current process

over a pipe. You need to read and write the streams associated with the pipe to access

the standard I/O of the new process. You have options to set the standard I/O of the new

process to the same as that of the current process or redirect the I/O to other sources/

destinations such as a file.

ChApter 11 proCess ApI

864

An instance of the Process class represents a native process created by a Java

program.

An instance of the ProcessHandle interface represents a process created by a

Java program or by other means; it was added in Java 9 and provides several methods

to query and manage processes. An instance of the ProcessHandle.Info interface

represents snapshot information of a process; it can be obtained using the info()

method of the Process class or ProcessHandle interface. If you have a Process instance,

use its toHandle() method to get a ProcessHandle.

The onExit() method of the ProcessHandle interface returns a CompletableFuture

<ProcessHandle> for the termination of the process. You can use the returned object to

add a task that will be executed when the process terminates. Note that you cannot use

this method on the current process.

If a security manager is installed, the application needs to have a "manageProcess"

RuntimePermission to query and manage native processes and an "execute"

FilePermission on the command file of the process that is started from the Java code.

 Exercises
Exercise 1

What is the Process API?

Exercise 2

What does an instance of the Runtime class represent?

Exercise 3

How do you get an instance of the Runtime class?

Exercise 4

How do you use the ProcessBuilder class? What method of this class is used to start

a new native process?

Exercise 5

What does an instance of the Process class represent?

Exercise 6

What does an instance of the ProcessHandle interface represent? How do you obtain

a ProcessHandle from a Process?

Exercise 7

How do you get the handle of the current process representing the running Java

program?

ChApter 11 proCess ApI

865

Exercise 8

What does an instance of the ProcessHandle.Info interface represent?

Exercise 9

What is the default standard I/O of the new process created by the start() method

of the ProcessBuilder class?

Exercise 10

Can you terminate the current Java program using the Process API?

ChApter 11 proCess ApI

867
© Kishori Sharan, Peter Späth 2021
K. Sharan and P. Späth, More Java 17, https://doi.org/10.1007/978-1-4842-7135-3_12

CHAPTER 12

Packaging Modules
In this chapter, you will learn:

• Different formats for packaging Java modules

• Enhancements to the JAR format

• What a multi-release JAR is

• How to create and use multi-release JARs

• What the JMOD format is

• How to use the jmod tool to work with JMOD files

• How to create, extract, and describe JMOD files

• How to list the contents of JMOD files

• How to record hashes of modules in JMOD files for dependency

validation

A module can be packaged in different formats to be used in three phases: compile

time, link time, and runtime. Not all formats are supported in all phases. Java supports

the following formats to package modules:

• Exploded directory

• JAR format

• JMOD format

• JIMAGE format

Exploded directories and JAR format were supported before JDK9. The JAR format

has been enhanced in JDK9 to support modular JARs and multi-release JARs. JDK9

introduced two new formats for packaging modules: JMOD format and JIMAGE format.

I discuss the enhancements to the JAR format and the JMOD format in this chapter.

Chapter 13 covers the JIMAGE format along with the jlink tool in detail.

https://doi.org/10.1007/978-1-4842-7135-3_12#DOI

868

 The JAR Format
We did not yet talk about non-modular and modular JARs in this book. However, both

variants belong to a rather introductory style book, so we ask the reader to consult

Oracle’s Java documentation and the command help (entering jar -h) if more

information about standard or modular JARs is needed.

In this chapter, I cover a new feature added to the JAR format, which is called a multi-

release JAR.

 What Is a Multi-release JAR?
As an experienced Java developer, you must have used a Java library/framework such

as the Spring framework, Hibernate, etc. You may be using Java 17, but those libraries

may be still using Java 8. Why can’t the library developers use the latest version to take

advantage of the JDK’s new features? One of the reasons is that not all library users use

the latest JDK. Updating a library to use the newer version of the JDK means forcing all

library users to migrate to that newer JDK, which is not possible in practice. Maintaining

and releasing a library targeting different JDKs is another pain when packaging the code.

Typically, you will find a separate library JAR for different JDKs. Java solves this problem

by offering library developers a particular way of packaging a library’s code—using a

single JAR containing the same release of a library for multiple JDKs. Such a JAR is called

a multi-release JAR.

A multi-release JAR (MRJAR) contains the same release of a library (offering the

same APIs) for multiple JDK versions. That is, you can have a library as a MRJAR that will

work for JDK8 and JDK17. The code in the MRJAR will contain the class files compiled

in JDK8 and JDK17. The classes compiled with JDK17 may take advantage of the APIs

offered by JDK9 and later, whereas the classes compiled with JDK8 may offer the same

library APIs written using JDK8.

A MRJAR extends the already existing directory structure for a JAR. A JAR contains a

root directory where all its contents reside. It contains a META-INF directory that is used

to store metadata about the JAR. Typically, a JAR contains a META-INF/MANIFEST.MF file

containing its attributes. Entries in a typical JAR look like this:

- jar-root

 - C1.class

 - C2.class

Chapter 12 paCkaging Modules

869

 - C3.class

 - C4.class

- META-INF

 - MANIFEST.MF

The JAR contains four class files and a MANIFEST.MF file. A MRJAR extends the META-

INF directory to store classes that are specific to a JDK version. The META-INF directory

contains a versions sub-directory, which may contain many sub-directories—each

of them named the same as the JDK major version. For example, for classes specific to

JDK17, there may be the META-INF/versions/17 directory, and for classes specific to

JDK16, there may be a directory called META-INF/versions/16, etc. A typical MRJAR may

have the following entries:

- jar-root

 - C1.class

 - C2.class

 - C3.class

 - C4.class

- META-INF

 - MANIFEST.MF

 - versions

 - 16

 - C2.class

 - C5.class

 - 17

 - C1.class

 - C2.class

 - C6.class

If this MRJAR is used in an environment that does not support MRJARs, it will be

treated as a regular JAR—the contents in the root directory will be used, and all other

contents in META-INF/versions/17 and META-INF/versions/16 will be ignored. So, if

this MRJAR is used with JDK8, only four classes will be used: C1, C2, C3, and C4.

When this MRJAR is used in JDK16, five classes are in play: C1, C2, C3, C4, and C5. The

C2 class in the META-INF/versions/9 directory will be used instead of the C2 class from

the root directory. In this case, the MRJAR is saying that it has a newer version of the C2

Chapter 12 paCkaging Modules

870

class for JDK16 that overrides the version of C2 in the root directory that is for JDK8 or

earlier. The JDK16 version also adds a new class named C5.

With a similar argument, the MRJAR overrides classes C1 and C2 and contains a new

class named C6 for the JDK version 17.

Targeting multiple JDK versions in a single MRJAR, the search process in a MRJAR is

different from a regular JAR. The search for a resource or class file in a MRJAR uses the

following rules:

• The major version of the JDK is determined for the environment in

which the MRJAR is being used. Suppose the major version of the

JDK is N.

• To locate a resource or a class file named R, the platform-specific sub-

directory under the META-INF/versions directory is searched starting

at the directory for version N.

• If R is found in sub-directory N, it is returned. Otherwise, sub-

directories for versions lower than N are searched. This process

continues for all sub-directories under the META-INF/versions

directory.

• When R is not found in the META-INF/versions/N sub-directories, the

root directory of the MRJAR is searched for R.

Let’s take an example using the previously shown structure of the MRJAR. Suppose

the program is looking for C3.class and the current version of the JDK is 17. The search

will start at META-INF/versions/17, where C3.class is not found. The search continues

in META-INF/versions/16, where C3.class is not found. Now the search continues in

the root directory, where C3.class is found.

As another example, suppose you want to find C2.class when the JDK version is 17.

The search starts at META-INF/versions/17, where C2.class is found and returned.

As another example, suppose you want to find C2.class when the JDK version is 16.

The search starts at META-INF/versions/16, where C2.class is found and returned.

As another example, suppose you want to find C2.class when the JDK version is 8.

There is no JDK8-specific directory named META-INF/versions/8. So, the search starts at

the root directory, where C2.class is found and returned.

Chapter 12 paCkaging Modules

871

Note all tools that process Jars—such as java, javac, and javap—are
capable of working with multi-release Jars. apis dealing with Jars also know how
to deal with multi-release Jars.

 Creating Multi-release JARs
Once you know the search order of the directories in a MRJAR when a resource or

class file is searched on a specific JDK version, it is easy to understand how classes

and resources are found. There are some rules on the contents of JDK version–specific

directories. I describe those rules in subsequent sections. In this section, I focus on

creating MRJARs.

To run this example, you need JDK8 and JDK17 installed on your machine.

I use a MRJAR to store the JDK8 and JDK17 versions of an application. The

application consists of the following two classes:

• com.jdojo.mrjar.Main

• com.jdojo.mrjar.TimeUtil

The Main class creates an object of the TimeUtil class and calls a method in it.

The Main class can be used as a main class to run the application. The TimeUtil class

contains a getLocalDate(Instant now) method that takes an Instant as an argument

and returns a LocalDate interpreting the instant in the current time zone. JDK17 has a

method in the LocalDate class, which is named ofInstant(Instant instant, ZoneId

zone). We will update the application to use JDK17 to take advantage of this method and

will keep the old application that used the JDK8 Time API for the same purpose.

The source code for this book contains two projects. The main project under the

jdk17book directory contains a module named jdojo.mrjar for JDK17. The jdk17book\

jdojo.mrjar.jdk8 directory contains a project named jdojo.mrjar.jdk8 that contains

the JDK8 code.

Listings 12-1 and 12-2 contain the code for the TimeUtil and Main classes,

respectively, for JDK8. The source code for these projects is simple, so I will not provide

any explanation. I could have made the getLocalDate() method in the TimeUtil class

a static method. I kept it as an instance method, so you can see in the output (discussed

later) which version of the class is instantiated. When you run the Main class, it prints the

current local date, which may be different when you run this example.

Chapter 12 paCkaging Modules

872

Listing 12-1. A TimeUtil Class for JDK8

// TimeUtil.java

package com.jdojo.mrjar;

import java.time.Instant;

import java.time.LocalDate;

import java.time.ZoneId;

public class TimeUtil {

 public TimeUtil() {

 System.out.println(

 "Creating JDK 8 version of TimeUtil...");

 }

 public LocalDate getLocalDate(Instant now) {

 return now.atZone(ZoneId.systemDefault())

 .toLocalDate();

 }

}

Listing 12-2. A Main Class for JDK8

// Main.java

package com.jdojo.mrjar;

import java.time.Instant;

import java.time.LocalDate;

public class Main {

 public static void main(String[] args) {

 System.out.println(

 "Inside JDK 8 version of Main.main()...");

 TimeUtil t = new TimeUtil();

 LocalDate ld = t.getLocalDate(Instant.now());

 System.out.println("Local Date: " + ld);

 }

}

Inside JDK 8 version of Main.main()...

Creating JDK 8 version of TimeUtil...

Local Date: 2021-09-22

Chapter 12 paCkaging Modules

873

We will put all the JDK17 classes in a module named jdojo.mrjar whose declaration

is shown in Listing 12-3. Listings 12-4 and 12-5 contain the code for the TimeUtil and

Main classes, respectively, for JDK17.

Listing 12-3. A Module Declaration for a Module Named com.jdojo.mrjar

// module-info.java

module jdojo.mrjar {

 exports com.jdojo.mrjar;

}

Listing 12-4. A TimeUtil Class for JDK17

// TimeUtil.java

package com.jdojo.mrjar;

import java.time.Instant;

import java.time.LocalDate;

import java.time.ZoneId;

public class TimeUtil {

 public TimeUtil() {

 System.out.println(

 "Creating JDK 17 version of TimeUtil...");

 }

 public LocalDate getLocalDate(Instant now) {

 return LocalDate.ofInstant(now,

 ZoneId.systemDefault());

 }

Listing 12-5. A Main Class for JDK17

// Main.java

package com.jdojo.mrjar;

import java.time.Instant;

import java.time.LocalDate;

public class Main {

 public static void main(String[] args) {

 System.out.println(

 "Inside JDK 17 version of Main.main()...");

Chapter 12 paCkaging Modules

874

 TimeUtil t = new TimeUtil();

 LocalDate ld = t.getLocalDate(Instant.now());

 System.out.println("Local Date: " + ld);

 }

}

Inside JDK 17 version of Main.main()...

Creating JDK 17 version of TimeUtil...

Local Date: 2021-09-22

I have shown the output that you will get when you run the Main class on JDK8 and

JDK17. However, the purpose of this example is not to run those two classes individually,

but rather to package them all in a MRJAR and run them from that MRJAR, which I am

going to show you shortly.

In order to handle MRJARs, the jar tool accepts an option called – release. Its

syntax is as follows:

jar <options> --release N <other-options>

Here, N is a JDK major version such as 17 for JDK17. The value for N must be

greater than or equal to 9. All files following the –release N option are added to the

META-INF/versions/N directory in the MRJAR.

The following command creates a MRJAR named jdojo.mrjar.jar and places it in

the C:\jdk17book\mrjars directory. Make sure that the output directory, mrjars in this

case, exists before you run the following command:

C:\jdk17book>jar --create --file mrjars\jdojo.mrjar.jar ^

 -C jdojo.mrjar.jdk8\build\classes . ^

 --release 17 -C build\modules\jdojo.mrjar .

Notice the use of the –release 17 option in this command. All files from the

build\modules\jdojo.mrjar directory will be added to the META-INF/versions/17

directory in the MRJAR. All files from the jdojo.mrjar.jdk8\build\classes directory

will be added to the root of the MRJAR. The entries in the MRJAR will look like this:

- jar-root

 - com

 - jdojo

 - mrjar

Chapter 12 paCkaging Modules

875

 - Main.class

 - TimeUtil.class

- META-INF

 - MANIFEST.MF

 - versions

 - 17

 - module-info.class

 - com

 - jdojo

 - mrjar

 - Main.class

 - TimeUtil.class

It is very helpful to use the –verbose option with the jar tool while creating MRJARs.

The option prints out many useful pieces of information that help diagnose errors. The

following is the same command as before, but with the –verbose option. The output

shows what files were copied and their locations:

C:\jdk17book>jar --create --verbose ^

 --file mrjars\jdojo.mrjar.jar ^

 -C jdojo.mrjar.jdk8\build\classes . ^

 --release 17 -C build\modules\jdojo.mrjar .

added manifest

added module-info: META-INF/versions/17/module-info.class

adding: com/(in = 0) (out= 0)(stored 0%)

adding: com/jdojo/(in = 0) (out= 0)(stored 0%)

adding: com/jdojo/mrjar/(in = 0) (out= 0)(stored 0%)

adding: com/jdojo/mrjar/Main.class(in = 1098)

 (out= 591)(deflated 46%)

adding: com/jdojo/mrjar/TimeUtil.class(in = 884)

 (out= 503)(deflated 43%)

adding: META-INF/versions/17/(in = 0)

 (out= 0)(stored 0%)

adding: META-INF/versions/17/com/(in = 0)

 (out= 0)(stored 0%)

adding: META-INF/versions/17/com/jdojo/(in = 0)

Chapter 12 paCkaging Modules

876

 (out= 0)(stored 0%)

adding: META-INF/versions/17/com/jdojo/mrjar/(in = 0)

 (out= 0)(stored 0%)

adding: META-INF/versions/17/com/jdojo/mrjar/Main.class

 (in = 1326) (out= 688)(deflated 48%)

adding: META-INF/versions/17/com/jdojo/mrjar/TimeUtil.class

 (in = 814) (out= 470)(deflated 42%)

Suppose you want to create a MRJAR for JDK versions 8, 16, and 17. The following

command will do the job, assuming that the jdojo.mrjar.jdk16\modules\jdojo.mrjar

directory contains classes that are specific to JDK16:

C:\jdk17book>jar --create --verbose ^

 --file mrjars\jdojo.mrjar.jar ^

 -C jdojo.mrjar.jdk8\build\classes . ^

--release 17 -C build\modules\jdojo.mrjar . ^

--release 16 -C jdojo.mrjar.jdk16\modules\jdojo.mrjar .

You can verify the entries in the MRJAR by using the –list option as follows:

C:\jdk17book>jar -list --file mrjars\jdojo.mrjar.jar

META-INF/

META-INF/MANIFEST.MF

META-INF/versions/17/module-info.class

com/

com/jdojo/

com/jdojo/mrjar/

com/jdojo/mrjar/Main.class

com/jdojo/mrjar/TimeUtil.class

META-INF/versions/17/

META-INF/versions/17/com/

META-INF/versions/17/com/jdojo/

META-INF/versions/17/com/jdojo/mrjar/

META-INF/versions/17/com/jdojo/mrjar/Main.class

META-INF/versions/17/com/jdojo/mrjar/TimeUtil.class

Chapter 12 paCkaging Modules

877

Suppose you have a JAR that contains resource and class files for JDK8, and you want

to update the JAR to make it a MRJAR by adding resource and class files for JDK17. You

can do so by updating the contents of the JAR using the –update option. The following

command creates a JAR with only JDK8 files:

C:\jdk17book>jar --create --file mrjars\jdojo.mrjar.jar ^

 -C jdojo.mrjar.jdk8\build\classes .

The following command updates the JAR to make it a MRJAR:

C:\jdk17book>jar --update ^

 --file mrjars\com.jdojo.mrjar.jar ^

 --release 17 -C com.jdojo.mrjar.jdk17\build\classes .

C:\jdk17book>jar --update ^

 --file mrjars\jdojo.mrjar.jar ^

 --release 17 -C build\modules\jdojo.mrjar .

Take a look at this MRJAR in action. The following command runs the Main class in

the com.jdojo.mrjar package, placing the MRJAR on the class path. JDK8 is used to run

the class:

C:\jdk17book>C:\java8\bin\java ^

 -classpath mrjars\jdojo.mrjar.jar ^

 com.jdojo.mrjar.Main

Inside JDK 8 version of Main.main()...

Creating JDK 8 version of TimeUtil...

Local Date: 2021-09-22

The output shows that both classes, Main and TimeUtil, were used from the root

directory of the MRJAR because JDK8 does not support MRJAR. The following command

runs the same class using the module path. JDK17 was used to run the command:

C:\jdk17book>C:\java17\bin\java ^

 --module-path mrjars\jdojo.mrjar.jar ^

 --module jdojo.mrjar/com.jdojo.mrjar.Main

Inside JDK 17 version of Main.main()...

Creating JDK 17 version of TimeUtil...

Local Date: 2021-09-22

Chapter 12 paCkaging Modules

878

The output shows that both classes, Main and TimeUtil, were used from the META-

INF/versions/17 directory of the MRJAR because JDK17 supports MRJAR and the

MRJAR had versions of these classes specific to JDK17.

Let’s give this MRJAR a little twist. Create a MRJAR having the same contents, but

without the Main.class file in the META-INF/versions/17 directory. In a real-world

scenario, only the TimeUtil class has changed in the JDK17 version of the application,

so there is no need to package the Main class for JDK17. The Main class for JDK8 can also

be used on JDK17. The following command packages everything we did last time, except

the Main class for JDK17. The resulting MRJAR is named jdojo.mrjar2.jar.

C:\jdk17book>jar --create ^

 --file mrjars\jdojo.mrjar2.jar ^

 -C jdojo.mrjar.jdk8\build\classes . ^

 --release 17 ^

 -C build\modules\jdojo.mrjar ^

 module-info.class ^

 -C build\modules\jdojo.mrjar ^

 com\jdojo\mrjar\TimeUtil.class

You can verify the contents of the new MRJAR using the following command:

C:\jdk17book>jar --list --file mrjars\jdojo.mrjar2.jar

META-INF/

META-INF/MANIFEST.MF

META-INF/versions/17/module-info.class

com/

com/jdojo/

com/jdojo/mrjar/

com/jdojo/mrjar/Main.class

com/jdojo/mrjar/TimeUtil.class

META-INF/versions/17/com/jdojo/mrjar/TimeUtil.class

If you run the Main class on JDK8, you will get the same output as before. However,

running it on JDK17 will give you a different output:

C:\jdk17book>C:\java17\bin\java ^

 --module-path mrjars\jdojo.mrjar2.jar ^

 --module jdojo.mrjar/com.jdojo.mrjar.Main

Chapter 12 paCkaging Modules

879

Inside JDK 8 version of Main.main()...

Creating JDK 17 version of TimeUtil...

Local Date: 2021-09-22

The output shows that the Main class was used from the JAR root directory, whereas

the TimeUtil class was used from the META-INF/versions/17 directory. Note that you

will get a different local date value. It prints the current date on your machine.

 Rules for Multi-release JARs
You need to follow a few rules while creating multi-release JARs. If you make a mistake,

the jar tool will print errors. Sometimes, error messages are not intuitive. As I have

suggested, it’s best to run the jar tool with the –verbose option to get more details on

errors.

Most of the rules are based on one fact: a MRJAR contains an API for one release of a

library (or an application) for multiple JDK platforms. For example, you have a MRJAR

named jdojo-lib-1.0.jar that may contain version 1.0 of the APIs for the library

named jdojo-lib, and that library may use APIs from JDK8 and JDK17. That means

that this MRJAR should provide the same API (in terms of public types and their public

members) when it is used on JDK8 on the class path, on JDK17 on the class path, or on

JDK17 on the module path. If the MRJAR provides different APIs on JDK8 from JDK17,

this is not a valid MRJAR. The following sections describe a few rules.

A MRJAR can be a modular JAR, and, in that case, it can contain a module descriptor,

module-info.class, in the root directory, in one or more versioned directories, or a

combination of both. The versioned descriptors must be identical to the root module

descriptor, with a few exceptions:

• A versioned descriptor can have different non-transitive requires

statements of java.* and jdk.* modules.

• Different module descriptors cannot have different non-transitive

requires statements for non-JDK modules.

• A versioned descriptor can have different uses statements.

These rules are based on the fact that changes in implementation details are allowed,

but not in the API itself. Allowing changes in the requires statement for non- JDK

modules is considered a change in the API—it requires you to have different user- defined

modules for different versions of the JDK. This is the reason why this is not allowed.

Chapter 12 paCkaging Modules

880

A modular MRJAR need not have a module descriptor in the root directory. This

is what we had in our examples in the previous section. We had no module descriptor

in the root directory, but had one in the META-INF/versions/17 directory. This

arrangement makes it possible to have non-modular code for JDK8 and modular code

for JDK17 in one MRJAR.

If you add a new public type in a versioned directory, which is not present in the root

directory, you will receive an error while creating a MRJAR. Suppose, in our example,

you add a public class named Test for JDK17. If the Test class is in the com.jdojo.mrjar

package, it will be exported by the module and will be available to the code outside the

MRJAR. Note that the root directory does not contain a Test class, so this MRJAR offers

different public APIs for JDK8 and JDK17. In this case, adding a public Test class in the

com.jdojo.mrjar package for JDK17 will generate an error when you create a MRJAR.

Continuing with the same example, suppose you add the Test class to a com.jdojo.

test package for JDK17. Note that the module does not export this package. When you

use this MRJAR on the module path, the Test class won’t be accessible to the outside

code. In this sense, this MRJAR offers the same public API for JDK8 and JDK17. However,

there is a catch! You can also place this MRJAR on the class path in JDK17, and, in

that case, the Test class is accessible to the outside code—a violation of the modular

encapsulation and a violation of the rule that a MRJAR should offer the same public API

across JDK releases. Therefore, adding a public type to a non-exported package for a

module in a MRJAR is also not allowed. If you attempt to do so, you will receive an error

message similar to the following:

entry: META-INF/versions/17/com/jdojo/test/Test.class,

 contains a new public class not found

 in base entries

invalid multi-release jar file mrjars\jdojo.mrjar.jar

 deleted

Sometimes, it is necessary to add more types for the same library to support a newer

version of the JDK. These types must be added to support newer implementations. You

can do this by adding package-private types to a versioned directory in a MRJAR. In this

example, you can add the Test class for JDK17 if you make the class non-public.

The boot loader does not support multi-release JARs, for example, specifying

MRJARs using the -Xbootclasspath/a option. Supporting this would have complicated

the boot loader implementation for a rarely needed feature.

Chapter 12 paCkaging Modules

881

A MRJAR is supposed to contain different versions of the same file in a versioned

directory. If a resource or class file is the same across different platform releases, such a

file should be added once to the root directory. Currently, the jar tool issues a warning if

it sees the same entry in a multiple versioned directory with the same contents.

 Multi-release JARs and JAR URL
Before MRJARs, all resources in a JAR lived under the root directory. When you

requested a resource from a class loader (ClassLoader.getResource("com/jdojo/

mrjar/TimeUtil.class")), the URL returned was similar to the following:

jar:file:/C:/jdk17book/mrjars/jdojo.mrjar.jar!

com/jdojo/mrjar/TimeUtil.class

With MRJARs, a resource may be returned from the root directory or from a

versioned directory. If you are looking for the TimeUtil.class file on JDK17, the URL

will be as follows:

jar:file:/C:/jdk17book/mrjars/jdojo.mrjar.jar!

/META-INF/versions/17/com/jdojo/mrjar/TimeUtil.class

If your existing code expected the jar URL of a resource in a specific format or you

hand-coded a jar URL likewise, you may get surprising results with MRJARs. You need

to look at your code again and change it to work with MRJARs, if you are repacking your

JARs with MRJARs.

 Multi-release Manifest Attribute
A MRJAR contains a special attribute entry in its MANIFEST.MF file:

Multi-Release: true

The Multi-Release attribute is added by the jar tool for a MRJAR. If the value for

this attribute is true, it means the JAR is a multi-release JAR. If its value is false or the

attribute is missing, it is not a multi-release JAR. The attribute is added to the main

section in the manifest file.

A constant named MULTI_RELEASE has been added to the Attributes.Name class,

which is in the java.util.jar package, to represent the attribute Multi-Release in the

Chapter 12 paCkaging Modules

882

manifest file. So, the Attributes.Name.MULTI_RELEASE constant represents the value for

the Multi-Release attribute in Java code.

 The JMOD Format
Java provides another format, called JMOD, to package modules. JMOD files are

designed to handle more content types than JAR files can. JMOD files can package native

code, configuration files, native commands, and other kinds of data. The JMOD format

is based on the ZIP format, so you could use a standard ZIP tool to see their contents.

The JDK modules are packaged in JMOD format for you to use at compile time and link

time. JMOD format is not supported at runtime. You can find JDK modules in JMOD

format in the JDK_HOME\jmods directory, where JDK_HOME is the directory in which you

have installed the JDK. You can package your own modules in JMOD format. Files in the

JMOD format have a .jmod extension. For example, the platform module named java.

base has been packaged in the java.base.jmod file.

JMOD files can contain native code, which is a bit tricky to extract and link on the

fly at runtime. This is the reason that JMOD files are supported at compile time and link

time, but not at runtime.

 Using the jmod Tool
Although you could use a ZIP tool to work with JMOD files, JDK ships with an especially

tailored tool called jmod. It is located in the JDK_HOME\bin directory. It can be used to

create a JMOD file, list the contents of a JMOD file, print the description of a module, and

record hashes of the modules used. The general syntax to use the jmod tool is as follows:

jmod <subcommand> <options> <jmod-file>

You must use one of the following sub-commands with the jmod command:

• create

• extract

• list

• describe

• hash

Chapter 12 paCkaging Modules

883

The list and describe sub-commands do not accept any options. The <jmod-file>

is the JMOD file you are creating or an existing JMOD file that you want to describe.

Table 12-1 contains the list of options supported by the tool.

Table 12-1. List of Options for the jmod Tool

Option Description

–class-path <path> specifies the class path where classes to be packaged can be

found. <path> can be a list of paths to Jar files or directories

containing application classes. Contents at <path> will be copied

to the JMod file.

–cmds <path> specifies a list of directories containing native commands, which

need to be copied to the JMod file.

–config <path> specifies a list of directories containing user-editable configuration

files to be copied to the JMod file.

–dir <path> specifies the target directory where the contents of the specified

JMod file will be extracted.

–do-not-resolve- by-

default

if you create a JMod file using this option, the module contained in

the JMod file will be excluded from the default set of root modules.

to resolve such a module, you have to add it to the default set of

root modules using the –add-modules command-line option.

–dry-run dry runs the hashing of modules. using this option computes and

prints the hashes, but does not record them in the JMod file.

–exclude <pattern-list> excludes file matching the supplied comma-separated pattern list,

each element using one of the following forms: <glob-pattern>,

glob:<glob-pattern>, or regex:<regex-pattern>.

–hash-modules <regex-

pattern>

Computes and records hashes to tie a packaged module with

modules matching the given <regex-pattern> and depending

on it directly or indirectly. the hashes are recorded in the JMod file

being created, or a JMod file or modular Jar on the module path

specified with the jmod hash command.

(continued)

Chapter 12 paCkaging Modules

884

Table 12-1. (continued)

Option Description

–help, -h prints the usage description and the list of all options for the jmod

command.

–header-files <path> specifies a list of path as <path> where header files for native

code to be copied to the JMod file are located.

–help-extra prints help on additional options supported by the jmod tool.

–legal-notices <path> specifies the location of the legal notices to be copied to the JMod

file.

–libs <path> specifies the list of directories containing native libraries to be

copied to the JMod file.

 –main-class <class-

name>

specifies the main class name to be used to run the application.

–man-pages <path> specifies the location of the manual pages.

–module-version

<version>

specifies the module version to be recorded in the module-info.

class file.

 –module-path <path>,

-p<path>

specifies the module path to find the modules for hashing.

–target-

platform<platform>

the <platform> is specified in the form of <os>-<arch>,

for example, windows-amd64 and linux-amd64. the option

specifies the target operating system and architecture, to be

recorded in the ModuleTarget attribute of the module-info.

class file.

–version prints the version of the jmod tool.

–warn-if-resolved

<reason>

specifies a hint to the jmod tool to issue a warning if a module

is resolved, which has been deprecated, deprecated for removal,

or incubating. the value for <reason> could be one of three:

deprecated, deprecated- for- removal, or incubating.

@<filename> reads options from the specified file.

Chapter 12 paCkaging Modules

885

The following sections explain in detail how to use the jmod command. All

commands used in this chapter should be entered into one line. Sometimes, I show

them on multiple lines for clarity in the book.

You can create a JMOD file using the create sub-command with the jmod tool. The

contents of a JMOD file are the contents of a module. Assume the following directories

and files exist:

C:\jdk17book\jmods

C:\jdk17book\dist\jdojo.javafx.jar

The following command creates a jdojo.javafx.jmod file in the C:\jdk17book\

jmods directory. The contents of the JMOD file come from the jdojo.javafx.jar file:

C:\jdk17book>jmod create ^

 --class-path dist\jdojo.javafx.jar ^

 jmods\jdojo.javafx.jmod

Typically, the contents of the JMOD file come from a set of directories containing

the compiled code for a module. The following command creates a jdojo.javafx.jmod

file. Its contents come from a build\modules\jdojo.javafx directory. The command

uses the –module-version option to set the module version that will be recorded in the

module-info.class file found in the build\modules\jdojo.javafx directory. Make

sure to delete the JMOD file created in the previous step before you run the following

command:

C:\jdk17book>jmod create --module-version 1.0 ^

 --class-path build\modules\jdojo.javafx ^

 jmods\jdojo.javafx.jmod

What can you do with this JMOD file? You can place it on the module path to use it at

compile time. You can use it with the jlink tool to create a custom runtime image that you

can use to run your application. Recall that you cannot use a JMOD file at runtime. If you try to

use a JMOD file at runtime by placing it on a module path, you will receive the following error:

Error occurred during initialization of VM

java.lang.module.ResolutionException:

 JMOD files not supported: jmods\jdojo.javafx.jmod

...

Extracting JMOD File Contents

Chapter 12 paCkaging Modules

886

You can extract the contents of a JMOD file using the extract sub-command. The

following command extracts the contents of the jmods\jdojo.javafx.jmod file into a

directory named extracted:

C:\jdk17book>jmod extract --dir extracted ^

 jmods\jdojo.javafx.jmod

Without the –dir option, the JMOD file’s contents are extracted into the current

directory.

You can use the list sub-command with the jmod tool to print the names of all

entries in a JMOD file. The following command lists the contents of the jdojo.javafx.

jmod file, which you created in the previous section:

C:\jdk17book>jmod list jmods\jdojo.javafx.jmod

classes/module-info.class

classes/com/jdojo/javafx/BindingTest.class

...

classes/resources/fxml/sayhello.fxml

The following command lists the contents of the java.base module, which is

shipped as a JMOD file named java.base.jmod. The command assumes that you have

installed the JDK in the C:\java17 directory. The output is over 120 pages. A partial

output is shown. Note that a JMOD file internally stores different types of content in

different directories.

C:\jdk17book>jmod list C:\java17\jmods\java.base.jmod

classes/module-info.class

classes/java/nio/file/WatchEvent.class

classes/java/nio/file/WatchKey.class

bin/java.exe

bin/javaw.exe

native/amd64/jvm.cfg

native/java.dll

conf/net.properties

conf/security/java.policy

conf/security/java.security

...

Chapter 12 paCkaging Modules

887

You can use the describe sub-command with the jmod tool to describe the module

contained in a JMOD file. The following command describes the module contained in

the jdojo.javafx.jmod file:

C:\jdk17book>jmod describe jmods\jdojo.javafx.jmod

jdojo.javafx@1.0

exports com.jdojo.javafx

requires java.base mandated

requires javafx.controls

requires javafx.fxml

contains resources.fxml

You can describe the platform modules using this command. The following

command describes the module contained in the java.sql.jmod, assuming that you

installed the JDK in the C:\java17 directory:

C:\jdk17book>jmod describe C:\java17\jmods\java.sql.jmod

java.sql@9.0.1

exports java.sql

exports javax.sql

exports javax.transaction.xa

requires java.base mandated

requires java.logging transitive

requires java.xml transitive

uses java.sql.Driver

platform windows-amd64

You can use the hash sub-command with the jmod tool to record hashes of other

modules in the module-info.class file of a module contained in a JMOD file. The

hashes will be used later for dependency validation. Suppose you have four modules in

four JMOD files:

• jdojo.prime

• jdojo.prime.faster

• jdojo.prime.probable

• jdojo.prime.client

Chapter 12 paCkaging Modules

888

Suppose you want to ship these modules to your clients and ensure that the module

code remains the same. You can achieve this by recording hashes for the jdojo.prime.

faster, jdojo.prime.probable, and jdojo.prime.client modules in the jdojo.prime

module. Let’s see how to achieve this.

To compute the hashes for other modules, the jmod tool needs to find those modules.

You will need to use the –module-path option to specify the module path where the

other modules will be found. You also need to use the –hash-modules option to specify

the list of patterns to be used for the modules whose hashes need to be recorded.

Note You can also use the –hash-modules and –module-path options with
the jar tool to record hashes for dependent modules when you are packaging a
module as a module Jar.

Use the following four commands to create the JMOD files for the four modules. Note

that I used the –main-class option when creating the com.jdojo.prime.client.jmod

file. I use it again in Chapter 13 when I discuss the jlink tool. If you get a “file already

exists” error while running these commands, delete the existing JMOD file from the

jmods directory and rerun the command:

C:\jdk17book>jmod create --module-version 1.0 ^

 --class-path build\modules\jdojo.prime ^

 jmods\jdojo.prime.jmod

C:\jdk17book>jmod create --module-version 1.0 ^

 --class-path build\modules\jdojo.prime.faster ^

 jmods\jdojo.prime.faster.jmod

C:\jdk17book>jmod create --module-version 1.0 ^

 --class-path build\modules\jdojo.prime.probable ^

 jmods\jdojo.prime.probable.jmod

C:\jdk17book>jmod create --module-version 1.0 ^

 --class-path build\modules\jdojo.prime.client ^

 jmods\jdojo.prime.client.jmod

Chapter 12 paCkaging Modules

889

Now you are ready to record hashes for all modules whose names start with "jdojo.

prime." in the jdojo.prime module using the following command:

C:\jdk17book>jmod hash ^

 --module-path jmods ^

 --hash-modules jdojo.prime.? jmods\jdojo.prime.jmod

Hashes are recorded in module jdojo.prime

Let’s see the hashes that were recorded in the com.jdojo.prime module. The

following command prints the module description along with the hashes recorded in the

com.jdojo.prime module:

C:\jdk17book>jmod describe jmods\jdojo.prime.jmod

jdojo.prime@1.0

exports com.jdojo.prime

requires java.base mandated

uses com.jdojo.prime.PrimeChecker

provides com.jdojo.prime.PrimeChecker with

 com.jdojo.prime.impl.genericprimechecker

contains com.jdojo.prime.impl

hashes jdojo.prime.client SHA-256

5950...6ce95e9849f520f4b9f54bc520d7969c396dc4f93805121b

hashes jdojo.prime.faster SHA-256

5538...4e264cfa12848be32d3f0b9a5df506aa57ba4443dfcbdc6a

hashes jdojo.prime.probable SHA-256

a1b8...5d62313de97ee285ed845895c8ef3c52b53a16370dd3b2d5

You can also record hashes for other modules when you create a new JMOD file

using the create sub-command. Assuming that the three modules jdojo.prime.faster,

jdojo.prime.probable, and jdojo.prime.client exist on the module path, you can

use the following command to create the jdojo.prime.jmod file that will also record the

hashes for the three modules:

C:\jdk17book>jmod create --module-version 1.0 ^

 --module-path jmods ^

Chapter 12 paCkaging Modules

890

 --hash-modules jdojo.prime.? ^

 --class-path build\modules\jdojo.prime ^

 jmods\jdojo.prime.jmod

You can dry run the hashing process for a JMOD file where the hashes will be

printed, but not recorded. The dry run option is useful to make sure all the settings are

correct without creating the JMOD file. The following sequence of commands steps you

through the process. First, delete the jmods\jdojo.prime.jmod file, which you created in

the previous step.

The following command creates the jmods\jdojo.prime.jmod file without recording

hashes for any other modules:

C:\jdk17book>jmod create --module-version 1.0 ^

 --module-path jmods ^

 --class-path build\modules\jdojo.prime ^

 jmods\jdojo.prime.jmod

The following command dry runs the hash sub-command. It computes and prints

the hashes for other modules, matching the regular expression specified in the –hash-

modules option. No hashes will be recorded in the jmods\jdojo.javafx.jmod file:

C:\jdk17book>jmod hash --dry-run ^

 --module-path jmods ^

 --hash-modules jdojo.prime.? ^

 jmods\jdojo.prime.jmod

Dry run:

jdojo.prime

 hashes jdojo.prime.client SHA-256

5950...6ce95e9849f520f4b9f54bc520d7969c396dc4f93805121b

 hashes jdojo.prime.faster SHA-256

5538...4e264cfa12848be32d3f0b9a5df506aa57ba4443dfcbdc6a

 hashes jdojo.prime.probable SHA-256

a1b8...5d62313de97ee285ed845895c8ef3c52b53a16370dd3b2d5

Chapter 12 paCkaging Modules

891

The following command verifies that the previous command did not record any

hashes in the JMOD file:

C:\jdk17book>jmod describe jmods\jdojo.prime.jmod

jdojo.prime@1.0

exports com.jdojo.prime

requires java.base mandated

uses com.jdojo.prime.PrimeChecker

provides com.jdojo.prime.PrimeChecker with

 com.jdojo.prime.impl.genericprimechecker

contains com.jdojo.prime.impl

You will see JMOD files in action again in Chapter 13 when you use the jlink tool to

create custom runtime images.

 Summary
Java supports four formats to package modules: exploded directories, JAR files, JMOD

files, and JIMAGE files. The JAR format has been enhanced in JDK9 to support modular

JARs and multi-release JARs. A multi-release JAR allows you to package the same version

of a library or an application targeting different versions of the JDK. For example, a

multi-release JAR may contain the code for a library version 1.2 that contains code for

JDK8 and JDK17. When the multi-release JAR is used on JDK8, the JDK8 version of the

library code will be used. When it is used on JDK17, the JDK17 version of the library

code will be used. Files that are specific to a JDK version N are stored in the META-INF\

versions\N directory of the multi-release JAR. Files that are common to all JDK versions

are stored in the root directory. For environments not supporting multi-release JARs,

such JARs are treated as regular JARs. The search order for a file is different in a multi-

release JAR—all the versioned directories starting with the major version of the current

platform are searched before the root directory is.

JMOD files are designed to handle more content types than JAR files can. They can

package native code, configuration files, native commands, and other kinds of data. The

JDK modules are packaged in JMOD format for you to use at compile time and link time.

The JMOD format is not supported at runtime. You can use the jmod tool to work with

JMOD files.

Chapter 12 paCkaging Modules

892

 Exercises
Exercise 1

What formats can you use to package your modules?

Exercise 2

What is a multi-release JAR?

Exercise 3

Describe the structure of a multi-release JAR.

Exercise 4

What happens when a multi-release JAR is used on a JDK version (e.g., JDK8) that

does not understand multi-release JARs?

Exercise 5

Describe the search order when a resource is looked up in a multi-release JAR.

Exercise 6

Describe the limitations of a multi-release JAR.

Exercise 7

What is the name of the attribute that is present in the META-INF\MANIFEST.MF file for

a multi-release JAR?

Exercise 8

What is the jmod tool and where is it located?

Exercise 9

What is the JMOD format and how is it better than the JAR format?

Exercise 10

Java supports three phases: compile time, link time, and runtime. In what phases is

the JMOD format supported?

Exercise 11

Suppose you have a JMOD file named jdojo.test.jmod. Write the command using

the jmod tool to describe the module stored in this JMOD file.

Exercise 12

What is the location of the JDK modules in JMOD format?

Chapter 12 paCkaging Modules

893
© Kishori Sharan, Peter Späth 2021
K. Sharan and P. Späth, More Java 17, https://doi.org/10.1007/978-1-4842-7135-3_13

CHAPTER 13

Custom Runtime Images
In this chapter, you will learn:

• What a custom runtime image and the JIMAGE format are

• How to create a custom runtime image using the jlink tool

• How to specify the command name to run the application stored in a

custom image

• How to use plugins with the jlink tool

 What Is a Custom Runtime Image?
Before JDK9, Java runtime image was available as a huge monolithic artifact—thus

increasing the download time, startup time, and the memory footprint. The monolithic

JRE made it impossible to use Java on devices with little memory. If you deploy your Java

applications to a cloud, you pay for the memory you use; most often, the monolithic JRE

uses more memory than required, thus making you pay more for the cloud service. With

Java, it is now possible to reduce the JRE size—hence the runtime memory footprint—by

allowing you to package a subset of the JRE in a custom runtime image called a compact

profile.

The JDK is itself modularized, but you can also package your application code as

modules and merge the required JDK modules and the application modules together.

The way to accomplish this is to create a custom runtime that will contain your

application modules and only those JDK modules that are used by your application. You

can also package native commands in your runtime image. Another benefit of creating

a runtime image is that you have to ship only one bundle—the runtime image—to your

application users. They no longer need to download and install a separate bundle of JRE

to run your application.

https://doi.org/10.1007/978-1-4842-7135-3_13#DOI

894

The runtime image is stored in a special format called JIMAGE, which is optimized

for space and speed. The JIMAGE format is supported only at runtime. It is a container

format for storing and indexing modules, classes, and resources in the JDK. Searching

and loading classes from a JIMAGE file is a lot faster than from JAR and JMOD files.

The JIMAGE format is JDK internal, and developers will rarely need to interact with a

JIMAGE file directly.

The JIMAGE format is expected to evolve significantly over time, and, therefore, its

internals are not exposed to developers. The JDK ships with a tool called jimage, which

can be used to explore JIMAGE files. I explain the tool in detail in a separate section in

this chapter.

Note You use the jlink tool to create a custom runtime image, which uses a new
file format called JIMAGE to store modules. Java ships with the jimage tool to let
you explore the contents of a JIMAGE file.

 Creating Custom Runtime Images
You can create a custom platform-specific runtime image using the jlink tool. The

runtime image will contain specified application modules with their dependencies and

only the needed platform modules, thus reducing the size of the runtime image. This

is useful for applications running on embedded devices that have a small amount of

memory. The jlink tool is located in the JDK_HOME\bin directory. The general syntax for

running the jlink tool is as follows:

jlink <options> --module-path <modulepath> ^

 --add-modules <mods> --output <path>

Here, <options> includes zero or more options for jlink, as listed in Table 13-1.

The <modulepath> is the module path where the platform and application modules

are located. Modules can be in modular JARs, exploded directories, and JMOD files.

The <mods> is a list of modules to be added to the image, which may cause additional

modules to be added because of transitive dependencies on other modules. <path> is

the output directory where the generated runtime image will be stored.

ChAptEr 13 CustoM runtIME IMAGEs

895

Table 13-1. List of Options for the jlink Tool

Option Description

–add-modules

<mod>,<mod>...

specifies the list of root modules to resolve. All resolved modules will

be added to the runtime image.

–bind-services performs full service binding during the linking process. If the added

modules contain uses statements, jlink will scan all modules

on the module path to include all service provider modules in the

runtime image for the service specified in the uses statement.

-c, –compress specifies the compression level of all resources in the output

<0|1|2>[:filter=<pattern-list>] image. 0 means

constant string sharing, 1 means ZIp, and 2 means both. An optional

<pattern-list> filter can be specified to list the pattern of files to

be included.

–disable-plugin

<plugin-name>

Disables the specified plugin.

–endian <little|big> specifies the byte order of the generated runtime image. the default

is the byte order of the native platform.

-h, –help prints the usage description and a list of all options for the jlink

tool.

–ignore-signing-

information

suppress a fatal error when signed modular JArs are linked in the

image. the signatures of related files of the signed modular JArs

are not copied to the runtime image.

–launcher

<command>=<module>

specifies the launcher command for the module. <command> is

the name of the command you want to generate to launch your

application, for example, runmyapp. the tool will create a

script/batch file named <command> to run the main class

recorded in <module>.

(continued)

ChAptEr 13 CustoM runtIME IMAGEs

896

Let’s create a runtime image that contains the four modules for the prime checker

application and the required platform modules, which includes only the java.base

module. The prime checker application was created in Chapter 7, in which I explained

Table 13-1. (continued)

Option Description

–launcher <command>=

<module>/<mainclass>

specifies the launcher command for the module and the main class.

<command> is the name of the command you want to generate to

launch your application, for example, runmyapp. the tool will create

a script/batch file named <command> to run the <main-class> in

<module>.

–limit-modules

<mod>,<mod>

Limits the observable modules to those in the transitive closure of

the named modules plus the main module, if specified, as well as

any further modules specified with the –add-modules option.

–list-plugins Lists the available plugins.

-p, –module-path

<modulepath>

specifies the module path where the platform and application

modules will be found to be added to the runtime image.

–no-header-files Excludes the include header files for the native code.

–no-man-pages Excludes the manual pages.

–output <path> specifies the location of the generated runtime image.

–save-opts <filename> saves the jlink options in the specified file.

-G, –strip-debug strips the debug information from the output image.

–suggest-providers

[<service-name>,...]

If no service name is specified, it suggests the name of the providers

of all services that would be linked for the added modules. If you

specify one or more service names, it suggests providers of the

specified service names. this option can be used before creating an

image to know what services will be included when you use the –

bind-services option.

-v, –verbose prints verbose output.

–version prints the version of the jlink tool.

@<filename> reads options from the specified file.

ChAptEr 13 CustoM runtIME IMAGEs

897

how to implement services. I included the source code for the prime checker application

in the source code for this book. The modules are jdojo.prime, jdojo.prime.faster,

jdojo.prime.probable, and jdojo.prime.client. You can choose any other modules to

create a custom runtime image.

Note that the following command includes only three modules from the prime

checker application. The fourth one, the jdojo.prime module, will be added because

these three depend on the jdojo.prime module. The command assumes that you have

packaged all four modules in JMOD format and stored them in the jmods directory.

Packaging modules in JMOD format was covered in Chapter 12. The text following the

command contains an explanation.

C:\jdk17book>jlink ^

 --module-path jmods;C:\java17\jmods ^

 --add-modules ^

 jdojo.prime.client,jdojo.prime.faster,

 jdojo.prime.probable ^

 --launcher runprimechecker=

 jdojo.prime.client/com.jdojo.prime.client.Main ^

 --output image\primechecker

(No line break and no spaces after “,” and “=”.)

Before I explain all the options for this command, let’s verify that the runtime image

was created successfully. The command is supposed to copy the runtime image to the

C:\jdk17book\image\primechecker directory. Run the following command to verify

that the runtime image contains the five modules:

C:\jdk17book>image\primechecker\bin\java ^

 --list-modules

java.base@9

jdojo.prime@1.0

jdojo.prime.client@1.0

jdojo.prime.faster@1.0

jdojo.prime.probable@1.0

If you get output similar to what is shown here, the runtime image was created

correctly. The module version number, which is shown after the @ sign in the output,

may be different for you.

ChAptEr 13 CustoM runtIME IMAGEs

898

The –module-path option specifies two directories: jmods and C:\java17\jmods.

I saved the four JMOD files for the prime checker application in the C:\jdk17book\jmods

directory. The first element in the module path lets the jlink tool find all application

modules. I installed the JDK17 in the C:\java17 directory, so the second element in the

module path lets the tool find the platform modules. If you do not specify the second

part, you get an error:

Error: Module java.base not found,

 required by jdojo.prime.probable

The –add-modules option specifies three modules of the prime checker

application. You might wonder why we did not specify the fourth module named

jdojo.prime with this option. This list contains root modules, not just the modules

to be included in the runtime image. The jlink tool will resolve all dependencies

transitively for these root modules and include all the resolved dependent modules

into the runtime image. The three modules depend on the jdojo.prime module,

which will be resolved by locating it on the module path and, hence, will be included

in the runtime image. The image will also contain the java.base module because all

application modules implicitly depend on it.

The –output option specifies the directory where the runtime image will be copied.

The command will copy the runtime image to the C:\jdk17book\image\primechecker

directory. The output directory contains the sub-directories and a file named release.

The release file contains the JDK version and a list of all JDK and user modules linked to

this image. Table 13-2 contains the descriptions of the contents of each directory.

Table 13-2. Sub-directories Inside the Output Directory

Directory Description

bin Contains executable files. on Windows, it also contains dynamically linked native

libraries (.dll files).

conf Contains the editable configuration files such as .properties and .policy files.

include Contains C/C++ header files.

legal Contains legal notices.

lib Contains, among other files, the modules added to the runtime image. on Mac, Linux,

and solaris, it will also contain the system’s dynamically linked native libraries.

ChAptEr 13 CustoM runtIME IMAGEs

899

You used the –launcher option with the jlink command. You specified

runprimechecker as the command name, jdojo.prime.client as the module

name, and com.jdojo.prime.client.Main as the main class name in the module.

The –launcher option makes jlink create a platform-specific executable, such as a

runprimechecker.bat file on Windows in the bin directory. You can use this executable

to run your application. The file contents are simply a wrapper for running the main

class in this module. You can use this file to run the application:

C:\jdk17book>image\primechecker\bin\

 runprimechecker

Using default service provider:

3 is a prime.

4 is not a prime.

121 is not a prime.

977 is a prime.

Using faster service provider:

3 is a prime.

4 is not a prime.

121 is not a prime.

977 is a prime.

Using probable service provider:

3 is a prime.

4 is not a prime.

121 is not a prime.

977 is a prime.

(No line break and no spaces after “bin\”.)

You can also use the java command, which is copied to the bin directory by the

jlink tool, to launch your application:

C:\jdk17book>image\primechecker\bin\java ^

 --module jdojo.prime.client/com.jdojo.prime.client.Main

The output of this command will be the same as that of the previous command.

Notice that you did not have to specify the module path. The linker, the jlink tool, took

care of the module path when the runtime image was created. When you run the java

command of the generated runtime image, it knows where to find the modules.

ChAptEr 13 CustoM runtIME IMAGEs

900

 Binding Services
In the previous section, you created a runtime image for the prime service client

application. You had to specify the names of all service provider modules with the –add-

modules option that you wanted to include in the image. In this section, I show you how

to bind services automatically using the –bind-services option with the jlink tool.

This time, you need to add the module, which is the jdojo.prime.client module, to the

module graph. The jlink tool will take care of the rest. The jdojo.prime.client module

reads the jdojo.prime module, so adding the former into the module graph will also

resolve the latter. The following command prints the list of suggested service providers

for the runtime image. A partial output is shown:

C:\jdk17book>jlink ^

 --module-path jmods;C:\java17\jmods ^

 --add-modules jdojo.prime.client --suggest-providers

...

jdojo.prime file:///C:/jdk17book/jmods/

 jdojo.prime.jmod

 uses com.jdojo.prime.PrimeChecker

jdojo.prime.client file:///C:/jdk17book/

 jmods/jdojo.prime.client.jmod

jdojo.prime.faster file:///C:/jdk17book/

 jmods/jdojo.prime.faster.jmod

jdojo.prime.probable file:///C:/jdk17book/

 jmods/jdojo.prime.probable.jmod

...

Suggested providers:

 jdojo.prime provides com.jdojo.prime.

 PrimeChecker used by jdojo.prime

 jdojo.prime.faster provides com.jdojo.prime.

 PrimeChecker used by jdojo.prime

 jdojo.prime.probable provides com.jdojo.prime.

 PrimeChecker used by jdojo.prime

...

ChAptEr 13 CustoM runtIME IMAGEs

901

The command specifies only the jdojo.prime.client module to the –add-modules

option. The jdojo.prime and java.base modules are resolved because the jdojo.

prime.client module reads them. All resolved modules are scanned for the uses

statement, and, subsequently, all modules in the module path are scanned for service

providers for the services specified in the uses statement. All service providers that are

found are printed.

Note You may specify arguments to the –suggest-providers option. If
you are using it without arguments, make sure you specify it at the end of the
command. otherwise, the option after the –suggest-providers option will be
interpreted as its arguments, and you will receive an error.

The following command specifies com.jdojo.prime.PrimeChecker as the service

name to the –suggest-providers option to print all service providers found for this

service:

C:\jdk17book>jlink ^

 --module-path jmods;C:\java17\jmods ^

 --add-modules jdojo.prime.client ^

 --suggest-providers ^

 com.jdojo.prime.PrimeChecker

Suggested providers:

 jdojo.prime provides com.jdojo.prime.

 PrimeChecker used by jdojo.prime

 jdojo.prime.faster provides com.jdojo.prime.

 PrimeChecker used by jdojo.prime

 jdojo.prime.probable provides com.jdojo.prime.

 PrimeChecker used by jdojo.prime

Using the same logic as described before, all three service providers were found.

Let’s create a new runtime image that includes all three service providers. The following

command does the job:

ChAptEr 13 CustoM runtIME IMAGEs

902

C:\jdk17book>jlink ^

 --module-path jmods;C:\java17\jmods ^

 --add-modules jdojo.prime.client ^

 --launcher runprimechecker=

 jdojo.prime.client/com.jdojo.prime.client.Main ^

 --bind-services

 --output image\primecheckerservice

(No line break and no spaces after “=”.)

Compare this command with the command used in the previous section. This time,

you specified only one module with the –add-modules option. That is, you did not have to

specify the names of service provider modules. You used the –bind-services option, so all

service provider references in the added modules are added automatically to the runtime

image. You specified a new output directory named image\primecheckerservice.

The following command runs the newly created runtime image:

C:\jdk17book>image\primecheckerservice\bin\

 runprimechecker

Using default service provider:

3 is a prime.

4 is not a prime.

121 is not a prime.

977 is a prime.

Using faster service provider:

3 is a prime.

4 is not a prime.

121 is not a prime.

977 is a prime.

Using probable service provider:

3 is a prime.

4 is not a prime.

121 is not a prime.

977 is a prime.

(No line break and no spaces after “bin\”.)

The output proves that all three prime checker service providers, which were in the

module path, were added automatically to the runtime image.

ChAptEr 13 CustoM runtIME IMAGEs

903

There is a catch when you used the –bind-services option in the previous command.

Compare the sizes of the image\primechecker and image\primecheckerservice

directories, which are 173MB and 36MB, respectively. You did use a shorter command.

However, the size of the runtime image went up by 280. You do not want this.

The problem is with using the –bind-services option that resolved all services,

including the java.base module. You do not want to resolve any services other than the

com.jdojo.prime.PrimeChecker service, which is defined in the jdojo.prime module.

You can achieve this by using the –limit-modules option to limit the universe of

observable modules to the following five modules:

• java.base

• jdojo.prime

• jdojo.prime.faster

• jdojo.prime.probable

• jdojo.prime.client

The following command is a revised copy of the previous command. This command

uses the –limit-modules. Note that you have not included the jdojo.prime.client

module in the –list-modules because this module is already in the –add-modules.

Including it in the list of modules with –list-modules will not make any difference. This

time, your runtime image will be 36MB as it was the first time.

C:\jdk17book>jlink ^

 --module-path jmods;C:\java17\jmods ^

 --add-modules jdojo.prime.client ^

 --compress 2 ^

 --strip-debug ^

 --launcher runprimechecker=

 jdojo.prime.client/com.jdojo.prime.client.Main ^

 --bind-services ^

 --limit-modules java.base,jdojo.prime,

 jdojo.prime.faster,jdojo.prime.probable ^

--output image\image\primecheckercompactservice

(No line break and no spaces after “=” or “,”.)

ChAptEr 13 CustoM runtIME IMAGEs

904

 Using Plugins with the jlink Tool
The jlink tool uses a plugin architecture to create runtime images. It collects all classes,

native libraries, and configuration files into a set of resources. It builds a pipeline of

transformers, which are plugins specified as command-line options. Resources are fed

into the pipeline. Each transformer in the pipeline applies some kind of transformation

to resources, and the transformed resources are fed to the next transformer. At the end,

jlink feeds the transformed resources to an image builder.

The JDK ships the jlink tool with a few plugins. Those plugins define command-line

options. To use a plugin, you need to use the command-line option for it. You can run

the jlink tool with the –list-plugins options to print the list of all available plugins

with their descriptions and command-line options:

C:\jdk17book>jlink --list-plugins

...

The following command uses the compress and strip-debug plugins. The compress

plugin will compress the image, which will result in a smaller image size. I use the

compression level 2 to have the maximum compression. The strip-debug plugin will

remove the debugging information from the Java code, thus further reducing the size of

the image.

C:\jdk17book>jlink ^

 --module-path jmods;C:\java17\jmods ^

 --add-modules jdojo.prime.client,

 jdojo.prime.faster,jdojo.prime.probable ^

 --compress 2 ^

 --strip-debug ^

 --launcher runprimechecker=

 jdojo.prime.client/com.jdojo.prime.client.Main ^

 --output image\primecheckercompact

(No line break and no spaces after “=” or “,”.)

The output was copied to the image\primecheckercompact directory. The size of the

new image is 33MB, whereas the size of the image created in the image\primechecker

directory is 36MB. This is approximately 39% more compact image because of the two

plugins you used.

ChAptEr 13 CustoM runtIME IMAGEs

905

 The jimage Tool
The Java runtime ships the JDK runtime image in a JIMAGE file. The file is named

modules, and it is located in JAVA_HOME\lib, where JAVA_HOME could be your JDK_HOME

or JRE_HOME. JDK9 also ships with a jimage tool, which is used to explore the contents of

JIMAGE files. The tool can

• Extract entries from the JIMAGE file

• Print the summary of the contents stored in the JIMAGE file

• Print the list of entries such as their name, size, offset, etc.

• Verify class files

The jimage tool is stored in the JDK_HOME\bin directory. The general format of the

command is as follows:

jimage <subcommand> <options> <jimage-file-list>

Here, <subcommand> is one of the sub-commands listed in Table 13-3. <options> is

one or more options listed in Table 13-4; <jimage-file-list> is a space-separated list of

JIMAGE files to be explored.

Table 13-3. List of Sub-commands Used with the jimage Tool

Sub- command Description

Extract Extracts all entries from the specified JIMAGE files to the current directory.

use the –dir option to specify another directory for extracted entries.

Info prints the detailed information contained in the header of the specified

JIMAGE file.

List prints the list of all modules and their entries in the specified JIMAGE file.

use the –verbose option to include the details of the entries such as its size,

offset, and whether the entry is compressed.

verify prints a list of .class entries in the specified JIMAGE files that do not verify

as classes.

ChAptEr 13 CustoM runtIME IMAGEs

906

I show a few examples of using the jimage command. Examples use the JDK runtime

image that is stored at C:\java17\lib\modules on my computer. You will need to

replace this image location with yours when you run these examples. You can also use

any custom runtime image created by the jlink tool in these examples.

The following command extracts all entries from the runtime image and copies them

to the extracted_jdk directory. The command takes a few seconds to complete:

C:\jdk17book>jimage extract ^

 --dir extracted_jdk C:\java17\lib\modules

The following command extracts all image entries with the .png extension from the

JDK runtime image into an extracted_images directory:

C:\jdk17book>jimage extract ^

 --include regex:.+\.png ^

 --dir extracted_images ^

 C:\java17\lib\modules

Table 13-4. List of Options Used with the jimage Tool

Option Description

–dir <dir- name> specifies the target directory for the extract sub-command

where the entries in the JIMAGE files will be extracted.

-h, –help prints a usage message for the jimage tool.

–include <pattern- list> specifies a list of patterns for filtering entries. the value for the

pattern list is a comma-separated list of elements, each using

one of the following forms:

• <glob-pattern>

• glob:<glob-pattern>

• regex:<regex-pattern>

–verbose When used with the list sub-command, prints entry details

such as size, offset, and compression level.

–version prints version information for the jimage tool.

ChAptEr 13 CustoM runtIME IMAGEs

907

The following command lists all entries in the runtime image. A partial output is

shown:

C:\jdk17book>jimage list C:\java17\lib\modules

jimage: C:\java17\lib\modules

Module: java.activation

 META-INF/mailcap.default

 META-INF/mimetypes.default

...

Module: java.annotations.common

 javax/annotation/Generated.class

...

The following command lists all entries in the runtime image along with the entries’

details. Notice the use of the –verbose option. A partial output is shown:

C:\jdk17book>jimage list ^

 --verbose ^

 C:\java17\lib\modules

jimage: C:\java17\lib\modules

Module: java.activation

Offset Size Compressed Entry

34214466 292 0 META-INF/mailcap.default

34214758 562 0 META-INF/mimetypes.default

...

Module: java.annotations.common

Offset Size Compressed Entry

34296622 678 0 javax/annotation/

 Generated.class

...

The following command prints the list of class files that are invalid. You may wonder

how you make a class file invalid. Typically, you won’t have an invalid class file—but

hackers would! However, to run this example, I need to have an invalid class file. I used

a simple idea—take a valid class file, open it in a text editor, and remove its contents

partly and randomly to make it an invalid class file. I copied the contents of a compiled

ChAptEr 13 CustoM runtIME IMAGEs

908

class file into the Main2.class file and removed some of its contents to make it an invalid

class. I added the Main2.class file to the jdojo.prime.client module in the same

directory as the Main.class. I recreated the runtime image using the previous command

for the prime checker application for this example. If you use the Java runtime image that

comes with the JDK, you will not see any output because all class files in the JDK runtime

image are valid.

C:\jdk17book>jimage verify ^

 image\primechecker\lib\modules

jimage: primechecker\lib\modules

Error(s) in Class: /jdojo.prime.client/com/jdojo/prime/

 client/Main2.class

 Summary
In Java, the runtime image is stored in a special format called JIMAGE, which is

optimized for space and speed. The JIMAGE format is supported only at runtime. It

is a container format for storing and indexing modules, classes, and resources in the

JDK. Searching and loading classes from a JIMAGE file is a lot faster than from JAR

and JMOD files. The JIMAGE format is JDK internal, and developers will rarely need to

interact with a JIMAGE file directly.

The JDK ships with a tool called jlink that lets you create a runtime image in

JIMAGE format for your application that will contain application modules and only

those platform modules that are used by your application. The jlink tool can create

runtime images from modules stored in module JARs, exploded directories, and JMOD

files. The JDK ships with a tool called jimage that can be used to explore the contents of

JIMAGE files.

 Exercises
Exercise 1

What is a custom Java runtime image?

Exercise 2

What is the JIMAGE format?

ChAptEr 13 CustoM runtIME IMAGEs

909

Exercise 3

What is the jlink tool?

Exercise 4

Why do you use the –launcher option with the jlink tool?

Exercise 5

 What is the effect of using or not using the –bind-services option with the jlink

tool?

Exercise 6

What are the plugins for the jlink tool?

Exercise 7

How do you list the plugins available for jlink?

Exercise 8

Name two jlink plugins.

Exercise 9

Can you use a custom plugin with jlink?

Exercise 10

 What is the jimage tool? Describe the use of the following four sub-commands for

the jimage tool: extract, info, list, and verify.

ChAptEr 13 CustoM runtIME IMAGEs

911
© Kishori Sharan, Peter Späth 2021
K. Sharan and P. Späth, More Java 17, https://doi.org/10.1007/978-1-4842-7135-3_14

CHAPTER 14

Miscellanea
In this chapter, you will learn:

• The selection of chapters, compared to the previous edition

• Various enhancements after JDK9

 Deleted Chapters from Previous Editions
If you compare this book with previous editions, namely, Java Language Features,

Second Edition, and Java APIs, Extensions and Libraries, Second Edition, you might miss

some chapters that didn’t make their way to the new edition. The main reason for that is

that we didn’t want the new book, which is a merger of the aforementioned books, to be

too big.

The question is of course: how would you decide which chapters to omit? None of

the chapters from the two second edition books is really outdated or one or the other

way uninteresting. Decision points are not easy to find out, but the author decided

to consider two aspects. First, if a topic too much belongs to a developer’s standard

know- how and information about it can easily be found in Oracle’s documentation,

including tutorials, a chapter was subjected to be removed from the third edition.

Second, if a topic wouldn’t show up too often in a developer’s everyday work, and

thus belongs to the corner-case type of possible topics, a chapter was subjected to be

removed from the new edition as well.

In detail, the rationale for chapter selection is

• No inner classes: Pretty standard—the reader easily can find details

in the Oracle documentation and elsewhere on the net.

• No input/output and no working with archive files: Not so important for

server-side development. Standard stuff for applications and info can

easily be found in the Oracle documentation and elsewhere on the net.

https://doi.org/10.1007/978-1-4842-7135-3_14#DOI

912

• No garbage collection and no details about stack walking: Interesting,

but to such detail not important for everyday work. Introductory texts

can easily be found on the net.

• No collections: Important, but pretty standard stuff and subject of

many introductory texts.

• No Module API: Developers rarely would have to use it.

• No reactive streams: While kind of “in,” it is actually a Java library

topic with just a few bolts in the Java standard. Best consult reactive

streams library projects if you want to learn about it.

• No JDBC: A coherent topic and very well documented on the Web.

Enterprise project developers almost never use JDBC directly.

• No Java Native Interface: Somewhat thwarts the Java philosophy

(write once, run everywhere) and as such is a corner case.

• No Swing and no JavaFX: Front-end development is such a vast topic

that it better gets handled in specialized books.

 More JDK17 Novelties
In this section, I present a collection of helpful or interesting novelties, which entered

the Java universe since the previous editions of the books this text is a successor of. Or,

in version numbers, it describes what happened since JDK9. The list is not exhausting—

some changes referring to internals or not so important in a developer’s everyday work

were left off.

 Local Variables with Automatic Types
Scripting languages, including those that eventually run on a JVM, often allow for a

simplified undefined type variable declaration, to simplify writing code. In Groovy, for

example, this would be def, as in

// This is Groovy

def a = "Hello"

def b = 3

def c = 5.9

Chapter 14 MisCellanea

913

In JavaScript, you can write

// This is JavaScript

var a = "Hello";

var b = 3;

var c = 5.9;

The Java language developers for a long time insisted on precisely typed variable

declaration for Java. Only with the later Java versions this was somehow relaxed, and it

became possible to use var as a type placeholder for local variables. So you can write

// This is Java, inside a method

var a = "Hello";

var b = 3;

var c = 5.9;

You must initialize var variables, you cannot use var for class fields, and you cannot

switch value types:

public class Car {

 private var a = "Hello";

 // <- Won't compile

}

...

var a;

a = 3;

// <- Won't compile

...

var b = 3;

b = 5.9;

// <-Won't compile

Chapter 14 MisCellanea

914

The var local variable syntax comes handy for longer types, and you can also use it

for lambda parameters:

var x = new ArrayList<String>();

 // <-x has type ArrayList

 Function<String,Integer> fsi = (var s) -> s.length();

Caution Do not overuse var local variable syntax. after all, a clean code
programming state also is about expressiveness, and hiding type information
makes complex code almost unreadable.

 Launch Single-File Source Code Programs
For very short programs that consist just of a single class with a static void

main(String[] args) method, you can bypass the compilation step and just write

java HelloTest.java

 # or, if we need args

 java HelloTest.java arg1 arg2 ...

This performs an in-memory compilation and then runs the main() method.

 Enhanced switch Statements
The old venerable switch statement

int x = ...;

 switch(x) {

 case 1:

 case 2:

 System.out.println("1 or 2");

 break;

 case 3:

 System.out.println("3");

 fbreak;

Chapter 14 MisCellanea

915

 default:

 System.out.println("default");

 }

lacked a feature many other programming languages included: in Java, you could not

use switch{ } as an expression. Besides, while useful in some scenarios, the fall-through

mechanism (the missing break for case 1: in the preceding example) more often led to

errors if a break was accidentally forgotten. For this reason, Java now has a new variant

included with a slightly different syntax, replacing the : in the case sub-statements by ->:

var a = 5;

switch(a) {

 case 4 -> System.out.println("4");

 default -> System.out.println("default: " + a);

}

var b = switch(a) {

 case 4 -> -1;

 default -> a;

};

var c = switch(a) {

 case 4 -> -1;

 default-> {

 var x9 = a*2;

 yield x9; // goes to c

 }

};

So there no longer exists a fall-through if there is no break. In fact, breaks are

obsolete and you cannot use them. Using this syntax, switch can have a value and thus

be used as an expression. The new yield defines the outcome of switch in case you

need { ... } blocks for more lengthy calculations.

Of course, you can still employ the old syntax if you don’t need the new behavior.

Chapter 14 MisCellanea

916

 Text Blocks
Multiline string literals always have been annoying in Java. Most developers used

constructs like

 String s = "This is the first line\n" +

 "This is the second line\n" +

 "This is the third line";

to enter multiline strings. A new feature allows for entering multiline strings more

concisely:

String s = """

 This is the first line

 This is the second line

 This is the third line

 """;

One problem is left, however. If you write the last string to the console, you will see

something like

This is the first line

This is the second line

This is the third line

with six spaces prepending each line.

Of course, you could write something like

String s = """

This is the first line

This is the second line

This is the third line

 """;

to avoid the unwanted indentation. This solution however breaks the indentation

structure of your sources. As a remedy, the method stripIndent() was added to the

String class:

Chapter 14 MisCellanea

917

 String s = """

 This is the first line

 This is the second line

 This is the third line

 """.stripIndent();

Output:

This is the first line

This is the second line

This is the third line

If you don’t need the line breaks in the resulting string, you can escape the line

endings using backslash characters:

 String s = """

 This is the first line \

 Still inside the same line \

 Still inside the same line

 """;

Just make sure each backslash is the last character of each input line.

 Enhanced instanceof Operator
The usual instanceof operator has a new boilerplate code–avoiding variant that allows

for immediately assigning the object in question to a correctly typed variable. So, instead

of writing

Object s = "Hello";

...

if(s instanceof String) {

 String str = (String) s;

 if(str.equalsIgnoreCase("hello")) {

 System.out.println("Hello String!");

 }

}

Chapter 14 MisCellanea

918

you can more concisely write

Object s = "Hello";

...

if(s instanceof String str) {

 // use local variable 'str', which

 // is of type String

}

...

if(s instanceof String str &&

 str.equalsIgnoreCase("hello")) {

 System.out.println("Hello String!");

}

 Value Classes: Records
Value objects are objects whose primary purpose is to hold a bunch of values.

In traditional Java, you would write classes like

package jdk17;

import java.time.LocalDate;

import java.util.Objects;

public class Person {

 private String firstName;

 private String lastName;

 private LocalDate birthDay;

 private String socialSecurityNumber;

 @Override

 public int hashCode() {

 return Objects.hash(birthDay, firstName, lastName,

 socialSecurityNumber);

 }

Chapter 14 MisCellanea

919

 @Override

 public boolean equals(Object obj) {

 if (this == obj)

 return true;

 if (obj == null)

 return false;

 if (getClass() != obj.getClass())

 return false;

 Person other = (Person) obj;

 return Objects.equals(birthDay, other.birthDay)

 && Objects.equals(firstName,

 other.firstName)

 && Objects.equals(lastName, other.lastName)

 && Objects.equals(socialSecurityNumber,

 other.socialSecurityNumber);

 }

 @Override

 public String toString() {

 return "Person [firstName=" + firstName +

 ", lastName=" + lastName +

 ", birthDay=" + birthDay +

 ", socialSecurityNumber=" +

 socialSecurityNumber + "]";

 }

 public String getFirstName() {

 return firstName;

 }

 public void setFirstName(String firstName) {

 this.firstName = firstName;

 }

 public String getLastName() {

 return lastName;

 }

Chapter 14 MisCellanea

920

 public void setLastName(String lastName) {

 this.lastName = lastName;

 }

 public LocalDate getBirthDay() {

 return birthDay;

 }

 public void setBirthDay(LocalDate birthDay) {

 this.birthDay = birthDay;

 }

 public String getSocialSecurityNumber() {

 return socialSecurityNumber;

 }

 public void setSocialSecurityNumber(String

 socialSecurityNumber) {

 this.socialSecurityNumber =

 socialSecurityNumber;

 }

}

for a person value object. This class contains a lot of boilerplate code—actually, all

information this class contains is given by its fields:

private String firstName;

private String lastName;

private LocalDate birthDay;

private String socialSecurityNumber;

Everything else is derived (actually, I let my Eclipse IDE generate it).

To simplify using such value objects together with the restriction of immutability, in

Java you can use records:

// File Person.java

record Person(

 String firstName,

 String lastName,

Chapter 14 MisCellanea

921

 LocalDate birthDay,

 String socialSecurityNumber) {}

That is it! Everything else, getters, equals(), hashCode(), toString(), and a

constructor, gets automatically provided. Setters are not defined, because records are

immutable.

To use such records, you simply write

Person p1 = new Person(

 "John",

 "Smith",

 LocalDate.of(1997,Month.DECEMBER,30),

 "000-00-1234");

System.out.println("Name: " + p1.firstName + " " + p1.lastName);

Note that you just use the dot notation to access members; a getXXX() getter method

is not provided.

The { } block in the record declaration can be used to impose constraints on

parameters during construction. So you can write

// File Person.java

record Person(

 String firstName,

 String lastName,

 LocalDate birthDay,

 String socialSecurityNumber)

{

 public Person {

 if(lastName == null ||

 "".equals(lastName.trim()))

 throw new IllegalArgumentException(

 "lastName must not be empty");

 }

}

Chapter 14 MisCellanea

922

 Sealed Classes
Sometimes, you want to limit the possible set of classes that can inherit from a given

base class. You add the sealed keyword as a modifier and append permits Class1,

Class2, ... to the class declaration, as in

// Circle.java

final class Circle extends Shape {

 ...

}

// Rectangle.java

final class Rectangle extends Shape {

 ...

}

// Shape.java

sealed class Shape

 permits Circle, Rectangle {

 // only Circle or Rectangle can

 // inherit from Shape

 ...

}

You usually use sealed classes if you need inheritance for classes inside a library, but

you don’t want user classes to inherit from library classes.

 Summary
The rationale for chapters omitted if compared to the last editions, and a collection of

useful or interesting novelties since JDK10, concluded the book.

Chapter 14 MisCellanea

923
© Kishori Sharan, Peter Späth 2021
K. Sharan and P. Späth, More Java 17, https://doi.org/10.1007/978-1-4842-7135-3

APPENDIX

Solutions to the Exercises
This appendix contains solution hints to the exercises. Its intent is to provide some

basic aid for working through the exercises and questions given at the end of each of the

chapters, without going beyond the instruction level, and also no complete listings will

be provided. This way, enough freedom will be given to you to extend the exercises to

any depth suitable for your knowledge level and time schedule.

 Exercises in Chapter 1

 1. An annotation lets you associate (or annotate) metadata

(or notes) to the program elements in a Java program.

You declare annotations like

[modifiers] @ interface <annotation-type-name> {

 // Annotation type body goes here

}

 2. Meta-annotation types are used to annotate other annotation type

declarations.

 3. Annotation types describe annotations, whereas annotation

instances embody the annotation behavior of annotated elements.

 4. No.

 5. A marker annotation is used by annotation processing tools,

which generate some kind of boilerplate code based on the

marker annotation type. A marker annotation type does not

declare any elements.

 6. @Override

https://doi.org/10.1007/978-1-4842-7135-3#DOI

924

 7. Described in the text.

 8. Proceed as described in the text.

 9. No inheritance is allowed for annotations.

 10. No void is allowed as a return type. No parameters are

allowed. The meta-annotations Target, Retention, Inherited,

Documented, Repeatable, and Native are described in the text.

 11. Proceed as described in the text.

 12. Proceed as described in the text.

 13. Proceed as described in the text.

 14. Gets described in the text.

 15. Gets described in the text.

 16. Proceed as described in the text.

 17. Proceed as described in the text.

 18. Try yourself.

 19. Try yourself.

 20. Proceed as described in the text.

 Exercises in Chapter 2

 1. Reflection is the ability of a program to inquire information about

its own structure and execution state via introspection.

 2. Consult the Java API documentation.

 3. Class represents the structural information of any Java class.

 4. Described in the text.

 5. Described in the text.

 6. Described in the text.

 7. Described in the text and also present in the API documentation.

Appendix SolutionS to the exerciSeS

925

 8. Described in the text and also present in the API documentation.

 9. Described in the text and also present in the API documentation.

 10. Described in the text and also present in the API documentation.

 11. Try yourself (consult the module chapters in the documentation).

 12. Described in the text and also present in the API documentation.

 13. Described in the text and also present in the API documentation.

 14. Try yourself.

 15. Described in the text.

 16. Make a guess, then try yourself.

 17. Make a guess, then try yourself.

 Exercises in Chapter 3

 1. Described in the text.

 2. Make a guess, then try yourself. (Described in the text, see section

“Supertype-Subtype Relationship.”)

 3. Try yourself.

 4. Described in the text.

 5. Try yourself.

 6. Try yourself.

 7. Described in the text. Also, try yourself.

 8. Type erasure.

 Exercises in Chapter 4

 1. Lambda expressions represent anonymous functions. They can

be used as function literals for defining (instantiating) functional

interfaces.

Appendix SolutionS to the exerciSeS

926

 2. Described in the text.

 3. Make a guess, then try yourself.

 4. Make a guess, then try yourself (write *Function* = ... or

Operator= ... to check).

 5. Make a guess, then try yourself (write *Function* = ... or

Operator= ... to check).

 6. Described in the text.

 7. Make a guess, then try yourself.

 8. Make a guess, then try yourself.

 9. Make a guess, then try yourself.

 10. Make a guess, then try yourself.

 11. Make a guess, then try yourself.

 12. Try yourself.

 13. Make a guess, then try yourself.

 14. Make a guess, then try yourself.

 15. Make a guess, then try yourself.

 16. Make a guess, then try yourself.

 17. Make a guess, then try yourself.

 Exercises in Chapter 5

 1. A thread is a unit of execution within a process. Threads can share

memory, but they also have a non-shareable, local storage for

variables.

 2. Described in the text.

 3. Described in the text.

 4. Described in the text. Remember that new Thread() does not start

a thread.

Appendix SolutionS to the exerciSeS

927

 5. Described in the text.

 6. Described in the text.

 7. Described in the text.

 8. Described in the text.

 9. Described in the text.

 10. Described in the text.

 11. Described in the text.

 12. Described in the text.

 13. Described in the text. Make a guess, then try yourself.

 14. Described in the text.

 15. Described in the text.

 16. Described in the text.

 17. Described in the text.

 18. Described in the text.

 19. Described in the text.

 20. Described in the text.

 21. Described in the text.

 22. Described in the text. Also, consult the Java API documentation.

 23. Described in the text.

 24. Described in the text.

 25. Described in the text.

 26. Described in the text.

 27. Described in the text.

 28. Try yourself.

 29. Try yourself.

 30. Try yourself.

Appendix SolutionS to the exerciSeS

928

 Exercises in Chapter 6

 1. A stream is a sequence of data elements supporting sequential

and parallel aggregate operations. An aggregate operation

computes a single value from a collection of values.

 2. In a collection, all items are present in memory, whereas in

streams, items may be constructed or computed on the fly.

 3. Answers: A: No. B: Internal. C: Functional. D: An infinite.

E: Parallel. F: Terminal. G: May not.

 4. Described in the text.

 5. Try yourself.

 6. Try yourself.

 7. Try yourself.

 8. Described in the text.

 9. Described in the text.

 10. Described in the text.

 11. Described in the text.

 12. Try yourself.

 13. Described in the text.

 14. Described in the text.

 15. Described in the text. Try yourself.

 16. Described in the text.

 17. Try yourself.

 18. Try yourself.

 19. Try yourself.

 20. Try yourself.

Appendix SolutionS to the exerciSeS

929

 Exercises in Chapter 7

 1. A service is a specific functionality provided by an application

(or a library). Service interfaces are Java interfaces that describe

services (without an implementation). Service providers

implement and provision services.

 2. Try yourself.

 3. Try yourself.

 4. Described in the text.

 5. Described in the text.

 6. Described in the text.

 7. Described in the text.

 8. Described in the text.

 9. Described in the text.

 10. Try yourself.

 Exercises in Chapter 8

 1. A network is a group of two or more computers or other types of

electronic devices such as printers that are linked together with a

goal to share information.

 2. Described in the text.

 3. A protocol is the set of rules to handle a specific network task.

 4. Described in the text.

 5. Described in the text.

 6. Described in the text (first find out what the 0.0.0.0 address

designates).

 7. Described in the text.

Appendix SolutionS to the exerciSeS

930

 8. Described in the text.

 9. Described in the text.

 10. Proceed as described in the text.

 11. Described in the text.

 12. Described in the text.

 13. Described in the text.

 14. Described in the text.

 15. Described in the text.

 16. Described in the text.

 Exercises in Chapter 9

 1. Java RMI enables a Java application to invoke a method on a Java

object in a remote JVM.

 2. Described in the text.

 3. Try yourself.

 4. Described in the text.

 5. Described in the text.

 6. Try yourself. Proceed as described in the text.

 7. Described in the text.

 8. Described in the text.

 9. Described in the text.

 10. Described in the text.

 11. Described in the text.

 12. Described in the text.

 13. Described in the text.

Appendix SolutionS to the exerciSeS

931

 Exercises in Chapter 10

 1. A scripting language is a programming language that provides

the ability to write scripts that are evaluated (or interpreted) by a

runtime environment called a script engine (or an interpreter).

 2. Described in the text.

 3. Described in the text.

 4. Described in the text.

 5. Try yourself. Proceed as described in the text.

 6. Try yourself. Proceed as described in the text.

 7. Described in the text.

 8. Try yourself. Proceed as described in the text.

 9. Try yourself. Proceed as described in the text.

 10. Described in the text.

 Exercises in Chapter 11

 1. The Process API consists of classes and interfaces that let you

work with native processes in Java programs.

 2. Described in the text.

 3. Described in the text.

 4. Described in the text.

 5. Described in the text.

 6. Described in the text.

 7. Try yourself, as described in the text.

 8. Described in the text.

 9. Described in the text.

 10. Try yourself.

Appendix SolutionS to the exerciSeS

932

 Exercises in Chapter 12

 1. JAR, JMOD, JIMAGE.

 2. Described in the text.

 3. Described in the text.

 4. Described in the text.

 5. Described in the text.

 6. Described in the text.

 7. Described in the text.

 8. Described in the text.

 9. Described in the text.

 10. Described in the text.

 11. Described in the text.

 12. Make a guess, then try to find them yourself.

 Exercises in Chapter 13

 1. A custom runtime image consists of your application modules,

bundled together with only those JDK modules that are actually

needed to run the program.

 2. Described in the text.

 3. Described in the text.

 4. Described in the text.

Appendix SolutionS to the exerciSeS

933

 5. Described in the text.

 6. Described in the text.

 7. Described in the text.

 8. Described in the text.

 9. Described in the text.

 10. Described in the text.

Appendix SolutionS to the exerciSeS

935
© Kishori Sharan, Peter Späth 2021
K. Sharan and P. Späth, More Java 17, https://doi.org/10.1007/978-1-4842-7135-3

Index

A, B
Annotation

array element, 24, 25
class type, 19–21
declaration, 6–10
DefaultException class, 19
definition, 1
employee class, 2
enum type, 21, 22
error message, 4
evolution, 66
jdojo.annotation module, 1
learning process, 1
manager class, 2, 3
marker elements, 28
Merriam-Webster dictionary, 5
meta types (see Meta-

annotation types)
module declarations, 58, 59
monitoring tool, 28
null reference, 25
@Override annotation, 3
package declaration, 58
primitive data types, 17, 18
process/source code level

AbstractProcessor class, 68
boilerplate code, 67
command compiles, 67
definition, 66
getQualifiedName() method, 70
jdojo.annotation.processor

module, 72

printMessage() method, 71
process() method, 68, 69
processors, 67
source code, 68
version processor, 68, 69, 72, 74, 75

regular documentation, 5
restrictions

concatenate() method, 12
default value, 14, 15
getClass() method, 11
method declarations, 11
object class, 13
return type, 12, 13
throws clause, 12
WrongVersion class, 10

runtime access
AccessAnnotation class, 62
AccessAnnotationTest class, 63, 65
AnnotatedElement interface, 59
getAnnotationsByType()

method, 65
package-info.java file, 62
program elements, 59
repeatable type, 65
test class, 60
toString() method, 60
version type, 61

semantics, 6
setSalary() method, 2, 4
shorthand syntax, 25–28
standard methods

definition, 38

https://doi.org/10.1007/978-1-4842-7135-3#DOI

936

deprecating APIs, 39–53
functional interface, 56, 57
overridden method, 55, 56
SuppressWarnings/compile-time

warnings, 54, 55
string type, 18, 19
TestCase method, 20
type, 15–17, 23

Application programming interface (API)
deprecation

BoxTest class, 45, 47–50
compile-time warnings, 43
constructs, 39
description, 42
FileCopier utility class, 40, 41
Javadoc tool, 41
java.lang.Thread class, 53
jdeprscan tool, 50, 53
JDeprScanTest class, 52
matrix warning, 42
options, 50, 51
since and forRemoval methods, 41
user interface, 39

Asynchronous socket operations
AsynchronousServerSocketChannel

serves, 660
AsynchronousSocketChannel, 660
buffers/channels, 662
client channel

AsyncEchoClientSocket, 674–677
AsynchronousSocketChannel

class, 672
CompletionHandler object, 673
creation, 672
getTextFromUser() method, 673

completed() and failed() methods, 661
error message, 678, 679

server channel
AsyncEchoServerSocket class,

667, 669–672
completed()/failed() methods, 663
ConnectionHandler method,

664, 665
main() method, 663
ReadWriteHandler class, 665, 667
source code, 662
attachment/

ConnectionHandler, 663
socket channel classes, 660

C
Classless Inter-Domain

Routing (CIDR), 570
Compare and swap (CAS), 338, 339
Conditional synchronization, 277, 278
Cooperative multitasking, 258, 259

D
Datagram-oriented socket channels

channel options, 680, 681
client program, 684
close() method, 682
configureBlocking() method, 679
creation, 679
multicasting, 686

binding, 686
close() method, 690–695
creation, 686
join() method, 689
network interface, 687–689
receive() method, 689, 690
setOption() method, 686

receive() method, 682

Annotation (cont.)

INDEX

937

send() method, 682–685
standard options, 680

Deep reflection
AccessibleObject class, 118
across modules

com.jdojo.reflection.model, 132
command-line option, 127
declaration, 130
error message, 129
llegalAccess3 class, 126
jdojo.reflection.model module,

124, 128, 131
opens statement, 130
phone class, 124
private number field, 125, 126

entity’s details, 117
JDK internals, 132–135
jdojo.reflection module, 134
modules

command-line option, 122
IllegalAccess1 class, 119, 120
IllegalAccess2 class, 123
myjava.policy file, 123
source code, 122
trySetAccessible() method, 120, 121

person class, 117
setAccessible() method, 118
unnamed modules, 132

Domain Name System (DNS), 578, 587

E
Enterprise JavaBeans (EJB), 5
Exercises, 923–933
Explicit locking

lock()/unlock() methods, 343
methods, 342
philosophers class, 344–347

ReentrantLock class, 347, 348
ReentrantReadWriteLock method, 349
simplest form, 343
synchronized keyword, 344
tryLock() method, 348
updateResource() method, 343, 344

F
Fork/join framework

advantages, 403
compute() method, 404, 405, 409
CountedCompleter<T>, 404
features, 405
ForkJoinPool class, 406
getRandomInteger() method, 408
java.util.concurrent package, 404
random integers, 406–410
RecursiveTask class, 405, 406

G
Garbage collection

definition, 730
dirty() and clean() methods, 731
java.rmi.dgc.leaseValue property, 732
possibilities, 731
reference count, 730
remote object, 730
RemoteUtilityImpl class, 730, 734
unreferenced() method, 733

Generics
anonymous class, 170
arrays, 170, 171
compile-time error, 149
copy() method, 160
exception classes, 170
get() method, 146

INDEX

938

heap pollution, 173, 174
jdojo.generics module, 145
learning process, 145
lower-bounded wildcard, 159–163
methods/constructors, 163–165
NullPointerException, 157
polymorphism, 150
printDetails() method, 153, 154
raw types, 152, 153
reification, 173
runtime class type, 172
set() and get() methods, 149
string type, 146
supertype-subtype relationship,

151, 152
type inference

ArrayList, 166
constructor, 168
denotable types, 169
diamond operator, 166, 167
intersection type, 169
integer class, 169
object creation expression, 165, 166
process() method, 168
unchecked warning, 166

type parameter, 147
type-safe programs, 147
unbounded wildcards, 153–157
upper-bounded wildcards, 157–159
varargs method, 174–176
wrapper class, 146, 148
WrapperUtil utility class, 161

H
Heap pollution

ClassCastException, 173

compiler unchecked warning, 175
process() method, 174, 175
reifiable/non-reifiable type, 173
source code, 173
varargs method, 174

I
Integrated development

environment (IDE), 139
Interfaces, annotation, 57, 58
Internet Assigned Numbers Authority

(IANA), 567
Internet Control Message Protocol

(ICMP), 564
IP addressing scheme

anycast/cluster, 577
binary and decimal

formats, 568
broadcast, 577
categories, 573
CIDR notation, 571
computer/router, 566
Internet Protocol—IPv4/IPv6, 567
IPv4 addressing scheme, 568–571
IPv6, 571–573
loopback address, 574, 575
multicast package, 576
multihoming, 566
prefix/suffix, 567
regional internet registries, 567
self-identifying/classful, 568
ST, 567
subnet mask/address mask, 570
subnetting/supernetting, 570
unicast, 576
unspecified addresses, 578
zero compression technique, 572

Generics (cont.)

INDEX

939

J, K
JAR (Java Archive) file format, 868
Java Memory Model (JMM)

atomicity, 276
definition, 274
order actions, 277
program, 275
scenarios, 275
visibility, 276

Java programming language, thread
creation, 262–265

Java, reflection, 82–84
Java Virtual Machine (JVM), 740
JMOD file formats

com.jdojo.prime module, 889
definition, 882
directories, 886
error message, 885
hash sub-command, 890, 891
jdojo.javafx.jmod file, 885–887
jdojo.prime.jmod file, 889
jmods directory, 888
module-info.class file, 885
modules, 887
options, 883
sub-commands, 882

L
Lambda expressions

anonymous classes, 188
body/block declaration, 192, 193
comparator interface, 249–251
empty parentheses, 192
equivalent methods, 189, 190
functional interface

comparator interface, 204

contexts, 215
definition, 204
@FunctionalInterface

annotation, 205
Function<T,R> interface, 211–213
FunctionUtil class, 218, 219, 221
gender enum, 216
getPersons() method, 216
intersection type, 208
java.util package, 204
java.util.function package, 209–211
library users, 215
person class, 216, 217
predicate<T>, 213–215

functional programming, 187
jdojo.lambda module, 183
jumps/exits, 246, 247
learning process, 183
lexical scoping, 239–242
local variable syntax, 191
method, 188
method references (see Method

reference)
modifiers, 192
object-oriented programming, 186
omitting parameter type, 190, 191
parameters, 189
recursive function, 247–249
single parameter declaration, 191, 192
source code, 184
string parameter, 185
StringToIntMapper interface, 185, 188
syntax, 188
target (see Target typing)
unnamed function, 183
variable capture, 242–245

Lexical scoping method, 183, 239–242

INDEX

940

M
Machines address

decimal numbers, 587
getAllByName() method, 587
InetAddress class, 587–590
UnknownHostException method, 587

Maximum transmission unit (MTU), 571
Media Access Control (MAC)

address, 565
Meta-annotation types

ChangeLog method, 38
documentation, 36, 37
ElementType enum, 30
fatal and NonZero types, 32
inherits, 35
repeatable type, 37, 38
retain, 33, 34
target type, 29–33
type declarations, 29

Method reference
constructor references, 234–237
definition, 221, 223
generic type parameters, 237, 238
getPrice() method, 231
instance method, 227–231
length() method, 222
source code, 222
static method

error message, 225
getPersons() method, 226
integer class, 224
source code, 224, 226
toBinaryString() method, 224, 225
valueOf() method, 226

supertype method, 231–234
toString() method, 231
types, 223

Multi-release JAR (MRJAR)
main and TimeUtil methods, 878
classes, 871
com.jdojo.mrjar package, 877
contents, 878
definition, 868
directories, 871
directory structure, 868
getLocalDate() method, 871
jdojo.mrjar.jar file, 874
library/framework, 868
list option, 876
main class, 872, 873
manifest attribute, 881
MANIFEST.MF file, 869
module declaration, 873
root directory, 869
root module descriptor, 879
rules, 879–881
search process, 870
TimeUtil class, 872, 873
update option, 877
URL file, 881
verbose option, 875

Mutual exclusion synchronization,
277, 278

N, O
Network programming

application layer protocols, 579
asynchronous socket

operations, 660–679
categories, 560
communication, 561
datagram-oriented channels, 679–695
gateways, 561

INDEX

941

getAddress() method, 591
InetSocketAddress object, 591
internet protocol suite, 563
internetworking/internetwork, 561
IP (see IP addressing scheme)
jdojo.net module, 559
learning process, 559
machines address, 587–592
node/host programs, 560
non-blocking sockets, 641–658
port number, 578, 579
protocol suite, 562

application layer, 563
frame, 565
interfaces, 563
internet layer, 564
internet reference model, 562
IP addressing scheme, 564
MAC address, 565
packet switching networks, 562–566
physical layer, 565
protocol layer, 566
transport layer, 563

security permission, 658
sending message, 560
socket address, 590–592
socket API/client-server

paradigm, 580–586
TCP (see Transmission Control

Protocol (TCP))
UDP sockets, 602–618
URI/URL/URN, 618–641

Non-blocking socket programming
approaches, 643
architecture, 644
ByteBuffer object, 649
class comparison, 642
client/server connection, 641

finishConnect() method, 650
isReadable() and isWritable()

methods, 646
NonBlockingEchoClient class, 651–658
open() static method, 644
operations, 645
read() method, 641
register() method, 646
remote connection, 648
restaurant management, 643
SelectionKey class, 645, 646
selector, 644
ServerSocketChannel object, 643
ServerSocket/Socket classes, 642
SocketChannel class, 645
SocketChannel.open() method, 649
source code, 647

Novelties, 912
instance of operator, 917
local variable/automatic

types, 912–914
rationale, 911
sealed keyword, 922
single-file source code programs, 914
switch statement, 914
text blocks, 916, 917
value objects/records, 918–921

P, Q
Packaging modules

exploded directories, 867
JMOD format, 882–891
learning process, 867
phases, 867

Parameter passing techniques
binding method, 772
createBindings() method, 762

INDEX

942

GlobalBindings, 772–774
bindings interface, 760–763
isolation levels, 779
scope, 762, 763
script context, 763–769
ScriptContext interface, 767
ScriptEngineManager, 770
ScriptEngines/ScriptEngineManager,

769, 771, 775–777
setAttribute() method, 764
setBindings()/getBindings()

method, 769
SimpleScriptContext class, 765
steps, 760

Preemptive multitasking, 258, 259
Prime services

checkPrimes() method, 549
jdojo.prime.faster module, 550
jdojo.prime.probable modules, 550
legacy mode, 552–555
module declaration, 546
module graph, 546
modules, 551
PrimeChecker service, 547–549
resolution process, 552

Process API
addJvmPath() method, 851
availableProcessors() method, 828
classes/interfaces, 825, 827
command() method, 837
compare processes, 835
computing process statistics, 856, 857
current() static method, 830
CurrentProcessInfo class, 833, 834
freeMemory() method, 828
info() method, 832
inheritIO()/start() method, 838

I/O streams, 840
jdojo.process module, 825
job class, 851
learning process, 825
ManageProcessPermission class,

861, 862
managing permissions, 859–863
onExit() method, 852
OutputStream/InoutStream, 840
permissions, 861
PipedIO class, 841, 842
printInfo() method, 851
ProcessBuilder class, 836, 837
ProcessHandle interface, 830–835
Process.Redirect class, 844
product information, 839, 840
runtime environment, 827–830
security manager, 859
sleep interval/duration, 844
source code declaration, 845–850
startProcess() method, 851
StartProcessTest class, 852–854
terminate, 858, 859
toHandle() method, 838, 855–858
totalMemory() method, 828

R
Reduction operation

accumulator, 473, 477
collect() method, 474, 484
definition, 473
DoubleStream method, 483
error message, 476
integers, 481, 482
map()/reduce() methods, 484
max() method, 484
output results, 478, 479

Parameter passing techniques (cont.)

INDEX

943

overloaded versions, 475
parallel stream, 479–481
parameters, 473
pictorial view, 474
source code, 474
stream() method, 476

Reflection
access fields, 115–117
application class loader, 91
arrays

arraycopy() method, 138
definition, 135–138
expanding code, 138, 139
getComponentType() method, 138
getLength() method, 135
multidimensional array, 137
newInstance() method, 135
source code, 136

behavioral introspection/
intercession, 82

categories, 82
class access modifiers, 95–98
classes, 83
constructors, 109–111
deep (see Deep reflection)
definition, 82
features, 84
fields, 100–103
getClassDescription() method, 99
getClassLoader() method, 90
getInterfaces() method, 99
getModifiers() method, 99
getPlatformClassLoader() method, 91
getSimpleName() method, 98
getSuperclass() method, 99
integrated development

environment, 139
introspection/intercession, 81

invoke methods, 113, 114
Java, 82–84
jdojo.reflection module, 81
learning process, 81
loaders, 90–93
loading class

forName() static method, 86–89
getClass() method, 86
literals, 85, 86
references, 85
representation, 84
testing class, 88
bulb class, 87
primitive types/void keyword, 85

methods, 106–109
newInstance() method, 135
objects, 111, 112
person class, 94
platform class loader, 91
PublicPerson class, 115
executable class, 103–106

Remote Method Invocation (RMI)
architecture, 702–704
bootstrap class, 727
classes/interfaces, 699
client program

localhost, 714
lookup() method, 714
remote object, 713
remoteUtilStub, 715
security manager, 714
source code, 715

client/server program, 701
debugging, 725–727
deployment, client program, 713–716
development

binding, 711
exportObject() method, 711

INDEX

944

getRegistry() method, 713
implementation, 706–709
RemoteUtility class, 706
RemoteUtilityImpl class, 710, 712
RemoteUtility interface, 706
requirements, 705, 706
security manager controls, 710
server program, 709–713
steps, 704
UnicastRemoteObject class,

708, 711
distributed programming, 701
dynamic class, 727–729
garbage collection (see Garbage

collection)
jdojo.rmi.client module, 700
jdojo.rmi.common module, 699
learning process, 699
remote object, 701
remote reference, 701
running application

AccessControlException, 723
ClassNotFoundException

exception, 723–725
client program, 721
ExportException, 722, 723
registry, 718, 719
server, 719, 720
server/client programs, 717
specific sequence, 717
troubleshooting, 721

separation (server/client
programs), 716

sockets, 700
standalone application, 700

Runtime image
binding services, 900–903

bundle, 893
compact profile, 893
extracted_images directory, 906
jdojo.prime module, 897
JIMAGE file, 905–908
JIMAGE format, 894
jlink tool, 894–899, 904
learing process, 893
modules, 903
monolithic artifact, 893
plugins options, 904
primecheckerservice, 902
sub-directories, 898
verbose option, 907

S
Scripting language

advantages/disadvantages, 740
calculator interface, 793
compilation, 798–801
definition, 740
engine (Maven) installation

difference, 743
groovy code, 745
ListingAllEngines, 746, 747
pom.xml, 741–743
printing message, 748, 749
println() function, 744
script variable, 745
ScriptEngineManager class, 743

eval() method, 778
return value/eval() method, 781–783
execution, 753–755
getContext() and setContext()

methods, 784, 785
getInterface() method, 792
helloscript.groovy file, 753

Remote Method Invocation (RMI) (cont.)

INDEX

945

invokeFunction() method, 788
invokeMethod() method, 790
invoking procedures, 787–792
isolation levels, 780
Java

classes, 802
class libraries, 801
jdojo.jkscript module, 803
JKScriptEngine class, 811–813
JKScriptEngineFactory

class, 813–815
JKScript files, 815
JKScript script engine, 804, 815–819
script engine, 802–804
variable declaration, 801
expression class, 804–811

JavaFX application/groovy
script, 819–823

Java interfaces
implementation, 792–798

javax.script package, 749
AbstractScriptEngine, 750
compilable/CompiledScript

class, 750
discovery/instantiates, 751
getEngineFactories() method, 751
invocable interface, 750
ScriptContext/SimpleScriptContext

class, 751
ScriptEngine/ScriptEngineFactory

interface, 749
ScriptEngineManager class,

750, 752
ScriptException class, 751
binding/SimpleBindings

class, 750
jdojo.script module, 739
learning process, 739

parameter passing (see Parameter
passing techniques)

pass parameters, 755
global variables, 758
Java program, 755–758
println() function, 757
put() method, 757
script engine, 758–760
toString() method, 758

reserved keys, 783, 784
ScriptContext class, 777–780
ScriptEngineFactory interface, 746
ScriptObjectImplInterface, 796–798
sending script output file, 785–787
symbol tables, 740
top-level functions, 793–795

Secured Socket Layer (SSL) protocol, 695
Services

consumers/clients, 555
definition, 523
discovering/loading, 526, 527
jdojo.prime module, 538
learning process, 523
libraries, 523, 555
modules/classes/interfaces, 525
newInstance() method, 536
pictorial view, 524
prime (see Prime services)
prime checker, 530, 531
PrimeChecker method, 536–538
providers

alternative declaration, 545
default provider, 539–541
faster algorithm, 541–543
FasterPrimeChecker method, 534
faster/probable prime checker, 539
implementation class, 539
iterator() method, 532

INDEX

946

jdojo.prime module, 540
module declaration, 544
PrimeChecker method, 531, 534
probable prime service, 544–546
retrieve instances, 531–535
ServiceLoader class, 533

provides implementations, 528–530
requirements, 530
ServiceLoader class, 525
static methods, 535

Sockets API
accept client requests, 584
binding, 584
client/server application, 582
close, 586
connection, 584–586
connectionless/datagram, 580
connection-oriented/stream, 580, 584
definition, 580
file transfer application, 581
listen primitive, 584
network communication, 582
primitives/descriptions, 583
receive/ReceiveFrom, 586
receptionist, 586
remote application, 581
server/client communication, 585
virtual connection, 580

someBlockingMethodCall() method, 332
stopThread() method, 331
Streams

accept()/add() methods, 437
aggregate operation, 420
architecture, 427–429
BaseStream interface, 428
categories, 435
chars() method, 450

class diagram, 427–429
collectors

addAll() method, 487
collectingAndThen() method,

506, 507
collect() method, 488, 508
collector interface, 488
counting() method, 490
filtering() method, 509
flat mapping operation, 510, 511
joining() method, 497, 498
List<String>, 489
single value/void, 485, 486
sorted() method, 490
summary statistics, 491–494
testing values, 491
toCollection() method, 489
map/toMap() method, 494–497
unmodifiable list, 507

debugging, 460, 461
definition, 420
empty() static method, 439
features, 420
files I/O operations, 448–450
filter operation, 426

definition, 469–473
dropWhile() and takeWhile()

methods, 472
skip()/limit() method, 471
methods, 471
pictorial view, 470
predicates, 471
source code, 470

find and match operations, 511–514
flatMap operation, 466–469
forEach operation, 462, 463
forEach()/toString() method, 467
functions

Services (cont.)

INDEX

947

random class, 446
arguments, 440, 441
collection interface, 447
forEach operation, 441
generate() method, 445, 446
infinite, 441
IntStream interface, 446
isPrime() method, 444
isPrime() static method, 442
iterate()/generate() static

methods, 440
math class, 445
natural numbers, 441
nextInt() method, 446
prime numbers, 443
static methods, 439
utility class, 442, 443

grouping data
counting() method, 500
groupingBy() method, 499
mapping() method, 501
nested groupings, 502, 503
reduction, 501
source code, 501
summary statistics, 503
toList() method, 502

imperative vs. functional, 423
infinite elements, 421
intermediate/lazy operations, 424–426
intermediate operation, 517
internal vs. external iteration, 421–423
iterator() method, 423
jdojo.streams module, 419
learning process, 419
map operation, 426, 464–466
not reusable, 427
ofNullable() method, 436
operations, 459, 460

optional values
flatMap() operation, 458
ifPresent() method, 453
ifPresentOrElse() method, 457
isPresent() method, 452
methods, 453, 456
non-null value, 453
nothing/empty, 451
NullPointerExceptions, 451, 452
Optional<T> class, 452, 456
or() method, 457
source code, 452
testing values, 455, 456

ordered/unordered, 426
parallelStream() method, 423
partitioning data, 504, 505
peek() method, 461
person class, 432
pipeline, 424
spliterator, 516
range()/rangeClosed() methods, 438
reduce operation (see Reduction

operation)
sequential/parallel

processing, 514–517
short-circuiting operation, 517
single/multiple values, 435–439
source code, 429–435, 450, 451
storage, 421
sum() method, 430
terminal/eager operations, 424–426

T
Target typing

add() method, 196
adder variable, 196
ambiguity, 202

INDEX

948

assignment statement, 194, 196
compile-time error, 201
contexts, 194, 203
definition, 194
expressions, 194
functional interface, 193, 195
LambdaUtil class, 197
source code, 196
standalone, 194
statements, 202
test() method, 201
testAdder() and testJoiner()

methods, 198
Thread-local storage (TLS), 260
Threads

atomic variable
array classes, 339
compareAndSet() method, 341
compare and swap, 338, 339
compound variable

classes, 340–342
definition, 338
field updater classes, 340
incrementAndGet() method, 341
scalar variable, 339

class inheritance, 265, 266
code specification, 265
concurrency packages, 337
critical section, 277
currentThread() method, 301
daemon/demon, 315–318
definition, 258
execution, 301, 302
executor framework

advantages, 384
callable task, 389, 390, 392
aspects, 381

callable task, 391
completion service, 399–403
disadvantages, 383
execute() method, 384
ExecutorService method, 384
get() method, 397
handling uncaught

exception, 396–399
newCachedThreadPool()

method, 385
newFixedThreadPool()

method, 385
newSingleThreadExecutor()

method, 386
pool, 385
result-bearing tasks, 389–392
RunnableTask class, 386, 387
scheduled task, 394–398
shutdownNow() method, 388
task representation, 382

finished executing, 304–307
fork/join framework, 403–410
getState() method, 415
interrupt, 318–322
Java, 262–265
jdojo.threads module, 257
JMM (see Java Memory Model (JMM))
join() method, 305, 307
learning process, 257
lifecycle, 308–313
local variable

call() method, 410
CallTracker class, 411, 412
get() method, 413
initialValue() method, 412
methods, 410
remove() method, 414
ThreadLocal object, 410

Target typing (cont.)

INDEX

949

method reference, 267
multiple thread

BalanceUpdate class, 270
component, 271, 272
instruction executions, 273
issues, 270–274
program output, 268
start() method, 269
updateBalance() and

monitorBalance() methods,
273, 274

multitasking
context switch, 258
cooperative/preemptive, 258
definition, 258
instructions, 259
parallel processing, 259
processes, 260
program counter, 260
unit of execution, 260

non-daemon, 317
parkNanos() and parkUntil()

methods, 309
PrinterThread class, 267
priority constants, 313–315
processes, 260, 261
run() method, 263
running/blocked, 318
sleep() method, 302, 303
spin-wait hints, 333–335
stack size, 414
start() method, 262
stop(), suspend(), and

resume() methods
resume features, 331
run() method, 332
thread class, 328–332
ThreadDeath error, 327

synchronization
BalanceUpdate class, 294, 295
buffer class, 296
buffer.consume() method, 293
conditional synchronization, 278
consumer class, 298
doctor-patient analogy, 284–287
monitor-threads, 291
MultiLocks class, 282, 283
mutual exclusion, 278
notify()/notifyAll()

method, 291–293
object’s monitor, 285
operations, 278
phaser class, 360–372
producer/consumer, 296–300
restaurant class, 352, 353
source code, 280, 281
synchronized keyword, 279
synchronized method, 280, 282
updateBalance() and

monitorBalance() methods, 277
wait() method, 287–289, 293, 295
wait, signal, and broadcast, 278
wrongSynchronization method,

289, 290
synchronizer objects

AdderTask class, 369–372
arriveAndDeregister() method, 362
barriers, 355–360
CyclicBarrier class, 357
exchangers, 375–381
getTable() and returnTable()

methods, 352
helper services, 372–375
isTerminated() method, 366
latches, 372–375
onAdvance() method, 366–368

INDEX

950

producer/consumer system, 381
restaurant class, 352
semaphores, 350–354
StartTogetherTask class, 363–365
types, 350

Thread.currentThread()
method, 301

ThreadGroup class, 323, 324
Thread.onSpinWait() method, 334
ThreadState class, 310
ThreadStateTest class, 311
timed-waiting state, 310
uncaught exception thrown,

335–337
runnable interface, 266, 267
volatile variables, 324–327
yield() method, 307, 308

Transmission Control Block (TCB), 585
Transmission control protocol (TCP),

580, 641–658
accept() method, 593
client socket

getInputStream()/
getOutputStream() methods, 599

socket class, 598
readLine() method, 599
TCPEchoClient, 599–601

echo server, 596–598
getInputStream()/getOutputStream()

method, 593
isClosed() method, 594
protocol suite, 564
server/client connection, 601, 602
ServerSocket class, 592
socket creation, 593
strategy, 595

U, V, W, X, Y, Z
Uniform Resource Identifier (URI), 618
Uniform Resource Locator (URL)

accessing process, 630–641
definition, 619
endpoints, 631
getContent() method, 633
getInputStream() method, 636
JAR files, 641
Java objects, 625–630
openConnection() method, 634
protocol suite, 630
reader/writer class, 636–640
source code, 628, 629
toURL() method, 627
URLConnection class, 631, 632, 635

Uniform Resource Name (URN), see URI/
URL/URN resources

URI/URL/URN resources
detailed syntax, 619
URI

absolute/relative, 619
brief_intro.html, 622
case-insensitive, 623
definition, 618
hierarchical structure, 622
hierarchical syntax, 620
intro.html, 621, 622
Java objects, 625–630
reserved characters, 621
source code, 625–627
specification, 623

URN, 619
User Datagram Protocol (UDP), 581

classes, 603
communication, 603
connection, 613, 614

Threads (cont.)

INDEX

951

connectionless protocol, 602
connection-oriented features, 603
datagram packet, 605
DatagramPacket/DatagramSocket

class, 603, 604
datagram socket, 617
definition, 602
echo server creation

client console, 613
send/receive messages, 610–612
server console, 613

source code, 608
steps, 607
UDPEchoServer, 608–610

leaveGroup() method, 615
length property, 606
localhost, 607
multicast sockets, 614–618
protocol suite, 564
receive()/send() method, 606
setAddress() and setPort()

methods, 604

INDEX

	Table of Contents
	About the Authors
	About the Technical Reviewers
	Introduction
	Chapter 1: Annotations
	What Are Annotations?
	Declaring an Annotation Type
	Restrictions on Annotation Types
	Restriction #1
	Restriction #2
	Restriction #3
	Restriction #4
	Restriction #5
	Restriction #6

	Default Value of an Annotation Element
	Annotation Type and Its Instances
	Using Annotations
	Primitive Types
	String Types
	Class Types
	Enum Type
	Annotation Type
	Array Type Annotation Element

	No Null Value in an Annotation
	Shorthand Annotation Syntax
	Marker Annotation Types
	Meta-Annotation Types
	The Target Annotation Type
	The Retention Annotation Type
	The Inherited Annotation Type
	The Documented Annotation Type
	The Repeatable Annotation Type

	Commonly Used Standard Annotations
	Deprecating APIs
	Suppressing Named Compile-Time Warnings
	Overriding Methods
	Declaring Functional Interfaces

	Annotating Packages
	Annotating Modules
	Accessing Annotations at Runtime
	Evolving Annotation Types
	Annotation Processing at Source Code Level
	Summary
	Exercises

	Chapter 2: Reflection
	What Is Reflection?
	Reflection in Java
	Loading a Class
	Using Class Literals
	Using the Object::getClass() Method
	Using the Class::forName() Method

	Class Loaders
	Reflecting on Classes
	Reflecting on Fields
	Reflecting on Executables
	Reflecting on Methods
	Reflecting on Constructors

	Creating Objects
	Invoking Methods
	Accessing Fields
	Deep Reflection
	Deep Reflection Within a Module
	Deep Reflection Across Modules
	Deep Reflection and Unnamed Modules
	Deep Reflection on JDK Modules

	Reflecting on Arrays
	Expanding an Array
	Who Should Use Reflection?
	Summary
	Exercises

	Chapter 3: Generics
	What Are Generics?
	Supertype-Subtype Relationship
	Raw Types
	Unbounded Wildcards
	Upper-Bounded Wildcards
	Lower-Bounded Wildcards
	Generic Methods and Constructors
	Type Inference in Generic Object Creation
	No Generic Exception Classes
	No Generic Anonymous Classes
	Generics and Arrays
	Runtime Class Type of Generic Objects
	Heap Pollution
	Varargs Methods and Heap Pollution Warnings
	Summary
	Exercises

	Chapter 4: Lambda Expressions
	What Is a Lambda Expression?
	Why Do We Need Lambda Expressions?
	Syntax for Lambda Expressions
	Omitting Parameter Types
	Using Local Variable Syntax for Parameters
	Declaring a Single Parameter
	Declaring No Parameters
	Parameters with Modifiers
	Declaring the Body of Lambda Expressions

	Target Typing
	Functional Interfaces
	Using the @FunctionalInterface Annotation
	Generic Functional Interface
	Intersection Type and Lambda Expressions
	Commonly Used Functional Interfaces
	Using the Function<T,R> Interface
	Using the Predicate<T> Interface
	Using Functional Interfaces

	Method References
	Static Method References
	Instance Method References
	Supertype Instance Method References
	Constructor References
	Generic Method References

	Lexical Scoping
	Variable Capture
	Jumps and Exits
	Recursive Lambda Expressions
	Comparing Objects
	Summary
	Exercises

	Chapter 5: Threads
	What Is a Thread?
	Creating Threads in Java
	Specifying Your Code for a Thread
	Inheriting Your Class from the Thread Class
	Implementing the Runnable Interface
	Using a Method Reference
	A Quick Example

	Using Multiple Threads in a Program
	Issues in Using Multiple Threads
	Java Memory Model
	Atomicity
	Visibility
	Ordering

	Object’s Monitor and Thread Synchronization
	Rule #1
	Rule #2

	The Producer/Consumer Synchronization Problem
	Which Thread Is Executing?
	Letting a Thread Sleep
	I Will Join You in Heaven
	Be Considerate to Others and Yield
	Lifecycle of a Thread
	Priority of a Thread
	Is It a Demon or a Daemon?
	Am I Interrupted?
	Threads Work in a Group
	Volatile Variables
	Stopping, Suspending, and Resuming Threads
	Spin-Wait Hints
	Handling an Uncaught Exception in a Thread
	Thread Concurrency Packages
	Atomic Variables
	CAS
	Scalar Atomic Variable Classes
	Atomic Array Classes
	Atomic Field Updater Classes
	Atomic Compound Variable Classes

	Explicit Locks
	Synchronizers
	Semaphores
	Barriers
	Phasers
	Latches
	Exchangers

	The Executor Framework
	Result-Bearing Tasks
	Scheduling a Task
	Handling Uncaught Exceptions in a Task Execution
	Executor’s Completion Service

	The Fork/Join Framework
	Steps in Using the Fork/Join Framework
	Step 1: Declaring a Class to Represent a Task
	Step 2: Implementing the compute() Method
	Step 3: Creating a Fork/Join Thread Pool
	Step 4: Creating the Fork/Join Task
	Step 5: Submitting the Task to the Fork/Join Pool for Execution

	A Fork/Join Example

	Thread-Local Variables
	Setting Stack Size of a Thread
	Summary
	Exercises

	Chapter 6: Streams
	What Are Streams?
	Streams Have No Storage
	Infinite Streams
	Internal Iteration vs. External Iteration
	Imperative vs. Functional
	Stream Operations
	Ordered Streams
	Streams Are Not Reusable
	Architecture of the Streams API

	A Quick Example
	Creating Streams
	Streams from Values
	Empty Streams
	Streams from Functions
	Streams from Arrays
	Streams from Collections
	Streams from Files
	Streams from Other Sources

	Representing an Optional Value
	Applying Operations to Streams
	Debugging a Stream Pipeline
	Applying the ForEach Operation
	Applying the Map Operation
	Flattening Streams
	Applying the Filter Operation
	Applying the Reduce Operation

	Collecting Data Using Collectors
	Collecting Summary Statistics
	Collecting Data in Maps
	Joining Strings Using Collectors
	Grouping Data
	Partitioning Data
	Adapting the Collector Results
	Finding and Matching in Streams
	Parallel Streams
	Summary
	Exercises

	Chapter 7: Implementing Services
	What Is a Service?
	Discovering Services
	Providing Service Implementations
	Defining the Service Interface
	Obtaining Service Provider Instances
	Defining the Service
	Defining Service Providers
	Defining a Default Prime Service Provider
	Defining a Faster Prime Service Provider
	Defining a Probable Prime Service Provider

	Testing the Prime Service
	Testing Prime Service in Legacy Mode
	Summary
	Exercises

	Chapter 8: Network Programming
	What Is Network Programming?
	Network Protocol Suite
	IP Addressing Scheme
	IPv4 Addressing Scheme
	IPv6 Addressing Scheme

	Special IP Addresses
	Loopback IP Address
	Unicast IP Address
	Multicast IP Address
	Anycast IP Address
	Broadcast IP Address
	Unspecified IP Address

	Port Numbers
	Socket API and Client-Server Paradigm
	The Socket Primitive
	The Bind Primitive
	The Listen Primitive
	The Accept Primitive
	The Connect Primitive
	The Send/Sendto Primitive
	The Receive/ReceiveFrom Primitive
	The Close Primitive

	Representing a Machine Address
	Representing a Socket Address
	Creating a TCP Server Socket
	Creating a TCP Client Socket
	Putting a TCP Server and Clients Together
	Working with UDP Sockets
	Creating a UDP Echo Server
	A Connected UDP Socket
	UDP Multicast Sockets
	URI, URL, and URN
	URI and URL As Java Objects
	Accessing the Contents of a URL
	Non-blocking Socket Programming
	Socket Security Permissions
	Asynchronous Socket Channels
	Setting Up an Asynchronous Server Socket Channel
	Setting Up an Asynchronous Client Socket Channel
	Putting the Server and the Client Together

	Datagram-Oriented Socket Channels
	Creating the Datagram Channel
	Setting the Channel Options
	Sending Datagrams

	Multicasting Using Datagram Channels
	Creating the Datagram Channel
	Setting the Channel Options
	Binding the Channel
	Setting the Multicast Network Interface
	Joining the Multicast Group
	Receiving a Message
	Closing the Channel

	Further Reading
	Summary
	Exercises

	Chapter 9: Java Remote Method Invocation
	What Is Java Remote Method Invocation?
	The RMI Architecture
	Developing an RMI Application
	Writing the Remote Interface
	Implementing the Remote Interface
	Writing the RMI Server Program
	Writing the RMI Client Program

	Separating the Server and Client Code
	Running the RMI Application
	Running the RMI Registry
	Running the RMI Server
	Running an RMI Client Program
	Troubleshooting an RMI Application
	java.rmi.server.ExportException
	java.security.AccessControlException
	java.lang.ClassNotFoundException

	Debugging an RMI Application
	Dynamic Class Downloading
	Garbage Collection of Remote Objects
	Summary
	Exercises

	Chapter 10: Scripting in Java
	What Is Scripting in Java?
	Installing Script Engines in Maven
	Executing Your First Script
	Using Other Scripting Languages
	Exploring the javax.script Package
	The ScriptEngine and ScriptEngineFactory Interfaces
	The AbstractScriptEngine Class
	The ScriptEngineManager Class
	The Compilable Interface and the CompiledScript Class
	The Invocable Interface
	The Bindings Interface and the SimpleBindings Class
	The ScriptContext Interface and the SimpleScriptContext Class
	The ScriptException Class
	Discovering and Instantiating Script Engines

	Executing Scripts
	Passing Parameters
	Passing Parameters from Java Code to Scripts
	Passing Parameters from Scripts to Java Code

	Advanced Parameter Passing Techniques
	Bindings
	Scope
	Defining the Script Context
	Putting Them Together

	Using a Custom ScriptContext
	Return Value of the eval( ) Method
	Reserved Keys for Engine Scope Bindings
	Changing the Default ScriptContext
	Sending Script Output to a File
	Invoking Procedures in Scripts
	Implementing Java Interfaces in Scripts
	Using Compiled Scripts
	Using Java in Scripting Languages
	Declaring Variables
	Importing Java Classes

	Implementing a Script Engine
	The Expression Class
	The JKScriptEngine Class
	The JKScriptEngineFactory Class
	Packaging the JKScript Files
	Using the JKScript Script Engine

	JavaFX in Groovy
	Summary
	Exercises

	Chapter 11: Process API
	What Is the Process API?
	Knowing the Runtime Environment
	The Current Process
	Querying the Process State
	Comparing Processes
	Creating a Process
	Obtaining a Process Handle
	Terminating Processes
	Managing Process Permissions
	Summary
	Exercises

	Chapter 12: Packaging Modules
	The JAR Format
	What Is a Multi-release JAR?
	Creating Multi-release JARs
	Rules for Multi-release JARs
	Multi-release JARs and JAR URL
	Multi-release Manifest Attribute

	The JMOD Format
	Using the jmod Tool

	Summary
	Exercises

	Chapter 13: Custom Runtime Images
	What Is a Custom Runtime Image?
	Creating Custom Runtime Images
	Binding Services
	Using Plugins with the jlink Tool
	The jimage Tool
	Summary
	Exercises

	Chapter 14: Miscellanea
	Deleted Chapters from Previous Editions
	More JDK17 Novelties
	Local Variables with Automatic Types
	Launch Single-File Source Code Programs
	Enhanced switch Statements
	Text Blocks
	Enhanced instanceof Operator
	Value Classes: Records
	Sealed Classes

	Summary

	Appendix: Solutions to the Exercises
	Exercises in Chapter 1
	Exercises in Chapter 2
	Exercises in Chapter 3
	Exercises in Chapter 4
	Exercises in Chapter 5
	Exercises in Chapter 6
	Exercises in Chapter 7
	Exercises in Chapter 8
	Exercises in Chapter 9
	Exercises in Chapter 10
	Exercises in Chapter 11
	Exercises in Chapter 12
	Exercises in Chapter 13

	Index

